|  | /************************************************************************ | 
|  | * Copyright 2003 Digi International (www.digi.com) | 
|  | * | 
|  | * Copyright (C) 2004 IBM Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the | 
|  | * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
|  | * PURPOSE.  See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, | 
|  | * MA  02111-1307, USA. | 
|  | * | 
|  | * Contact Information: | 
|  | * Scott H Kilau <Scott_Kilau@digi.com> | 
|  | * Wendy Xiong   <wendyx@us.ibm.com> | 
|  | * | 
|  | ***********************************************************************/ | 
|  | #include <linux/delay.h>	/* For udelay */ | 
|  | #include <linux/serial_reg.h>	/* For the various UART offsets */ | 
|  | #include <linux/tty.h> | 
|  | #include <linux/pci.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include "jsm.h"		/* Driver main header file */ | 
|  |  | 
|  | static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; | 
|  |  | 
|  | /* | 
|  | * This function allows calls to ensure that all outstanding | 
|  | * PCI writes have been completed, by doing a PCI read against | 
|  | * a non-destructive, read-only location on the Neo card. | 
|  | * | 
|  | * In this case, we are reading the DVID (Read-only Device Identification) | 
|  | * value of the Neo card. | 
|  | */ | 
|  | static inline void neo_pci_posting_flush(struct jsm_board *bd) | 
|  | { | 
|  | readb(bd->re_map_membase + 0x8D); | 
|  | } | 
|  |  | 
|  | static void neo_set_cts_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); | 
|  |  | 
|  | /* Turn on auto CTS flow control */ | 
|  | ier |= (UART_17158_IER_CTSDSR); | 
|  | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); | 
|  |  | 
|  | /* Turn off auto Xon flow control */ | 
|  | efr &= ~(UART_17158_EFR_IXON); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on table D, with 8 char hi/low watermarks */ | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); | 
|  |  | 
|  | /* Feed the UART our trigger levels */ | 
|  | writeb(8, &ch->ch_neo_uart->tfifo); | 
|  | ch->ch_t_tlevel = 8; | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static void neo_set_rts_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); | 
|  |  | 
|  | /* Turn on auto RTS flow control */ | 
|  | ier |= (UART_17158_IER_RTSDTR); | 
|  | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); | 
|  |  | 
|  | /* Turn off auto Xoff flow control */ | 
|  | ier &= ~(UART_17158_IER_XOFF); | 
|  | efr &= ~(UART_17158_EFR_IXOFF); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); | 
|  | ch->ch_r_watermark = 4; | 
|  |  | 
|  | writeb(56, &ch->ch_neo_uart->rfifo); | 
|  | ch->ch_r_tlevel = 56; | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  |  | 
|  | /* | 
|  | * From the Neo UART spec sheet: | 
|  | * The auto RTS/DTR function must be started by asserting | 
|  | * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after | 
|  | * it is enabled. | 
|  | */ | 
|  | ch->ch_mostat |= (UART_MCR_RTS); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void neo_set_ixon_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); | 
|  |  | 
|  | /* Turn off auto CTS flow control */ | 
|  | ier &= ~(UART_17158_IER_CTSDSR); | 
|  | efr &= ~(UART_17158_EFR_CTSDSR); | 
|  |  | 
|  | /* Turn on auto Xon flow control */ | 
|  | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | 
|  | ch->ch_r_watermark = 4; | 
|  |  | 
|  | writeb(32, &ch->ch_neo_uart->rfifo); | 
|  | ch->ch_r_tlevel = 32; | 
|  |  | 
|  | /* Tell UART what start/stop chars it should be looking for */ | 
|  | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xonchar2); | 
|  |  | 
|  | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xoffchar2); | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static void neo_set_ixoff_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); | 
|  |  | 
|  | /* Turn off auto RTS flow control */ | 
|  | ier &= ~(UART_17158_IER_RTSDTR); | 
|  | efr &= ~(UART_17158_EFR_RTSDTR); | 
|  |  | 
|  | /* Turn on auto Xoff flow control */ | 
|  | ier |= (UART_17158_IER_XOFF); | 
|  | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on table D, with 8 char hi/low watermarks */ | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | 
|  |  | 
|  | writeb(8, &ch->ch_neo_uart->tfifo); | 
|  | ch->ch_t_tlevel = 8; | 
|  |  | 
|  | /* Tell UART what start/stop chars it should be looking for */ | 
|  | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xonchar2); | 
|  |  | 
|  | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xoffchar2); | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static void neo_set_no_input_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); | 
|  |  | 
|  | /* Turn off auto RTS flow control */ | 
|  | ier &= ~(UART_17158_IER_RTSDTR); | 
|  | efr &= ~(UART_17158_EFR_RTSDTR); | 
|  |  | 
|  | /* Turn off auto Xoff flow control */ | 
|  | ier &= ~(UART_17158_IER_XOFF); | 
|  | if (ch->ch_c_iflag & IXON) | 
|  | efr &= ~(UART_17158_EFR_IXOFF); | 
|  | else | 
|  | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on table D, with 8 char hi/low watermarks */ | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | 
|  |  | 
|  | ch->ch_r_watermark = 0; | 
|  |  | 
|  | writeb(16, &ch->ch_neo_uart->tfifo); | 
|  | ch->ch_t_tlevel = 16; | 
|  |  | 
|  | writeb(16, &ch->ch_neo_uart->rfifo); | 
|  | ch->ch_r_tlevel = 16; | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static void neo_set_no_output_flow_control(struct jsm_channel *ch) | 
|  | { | 
|  | u8 ier, efr; | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | efr = readb(&ch->ch_neo_uart->efr); | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); | 
|  |  | 
|  | /* Turn off auto CTS flow control */ | 
|  | ier &= ~(UART_17158_IER_CTSDSR); | 
|  | efr &= ~(UART_17158_EFR_CTSDSR); | 
|  |  | 
|  | /* Turn off auto Xon flow control */ | 
|  | if (ch->ch_c_iflag & IXOFF) | 
|  | efr &= ~(UART_17158_EFR_IXON); | 
|  | else | 
|  | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); | 
|  |  | 
|  | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on UART enhanced bits */ | 
|  | writeb(efr, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Turn on table D, with 8 char hi/low watermarks */ | 
|  | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | 
|  |  | 
|  | ch->ch_r_watermark = 0; | 
|  |  | 
|  | writeb(16, &ch->ch_neo_uart->tfifo); | 
|  | ch->ch_t_tlevel = 16; | 
|  |  | 
|  | writeb(16, &ch->ch_neo_uart->rfifo); | 
|  | ch->ch_r_tlevel = 16; | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) | 
|  | { | 
|  |  | 
|  | /* if hardware flow control is set, then skip this whole thing */ | 
|  | if (ch->ch_c_cflag & CRTSCTS) | 
|  | return; | 
|  |  | 
|  | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n"); | 
|  |  | 
|  | /* Tell UART what start/stop chars it should be looking for */ | 
|  | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xonchar2); | 
|  |  | 
|  | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | 
|  | writeb(0, &ch->ch_neo_uart->xoffchar2); | 
|  | } | 
|  |  | 
|  | static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) | 
|  | { | 
|  | int qleft = 0; | 
|  | u8 linestatus = 0; | 
|  | u8 error_mask = 0; | 
|  | int n = 0; | 
|  | int total = 0; | 
|  | u16 head; | 
|  | u16 tail; | 
|  |  | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | /* cache head and tail of queue */ | 
|  | head = ch->ch_r_head & RQUEUEMASK; | 
|  | tail = ch->ch_r_tail & RQUEUEMASK; | 
|  |  | 
|  | /* Get our cached LSR */ | 
|  | linestatus = ch->ch_cached_lsr; | 
|  | ch->ch_cached_lsr = 0; | 
|  |  | 
|  | /* Store how much space we have left in the queue */ | 
|  | if ((qleft = tail - head - 1) < 0) | 
|  | qleft += RQUEUEMASK + 1; | 
|  |  | 
|  | /* | 
|  | * If the UART is not in FIFO mode, force the FIFO copy to | 
|  | * NOT be run, by setting total to 0. | 
|  | * | 
|  | * On the other hand, if the UART IS in FIFO mode, then ask | 
|  | * the UART to give us an approximation of data it has RX'ed. | 
|  | */ | 
|  | if (!(ch->ch_flags & CH_FIFO_ENABLED)) | 
|  | total = 0; | 
|  | else { | 
|  | total = readb(&ch->ch_neo_uart->rfifo); | 
|  |  | 
|  | /* | 
|  | * EXAR chip bug - RX FIFO COUNT - Fudge factor. | 
|  | * | 
|  | * This resolves a problem/bug with the Exar chip that sometimes | 
|  | * returns a bogus value in the rfifo register. | 
|  | * The count can be any where from 0-3 bytes "off". | 
|  | * Bizarre, but true. | 
|  | */ | 
|  | total -= 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finally, bound the copy to make sure we don't overflow | 
|  | * our own queue... | 
|  | * The byte by byte copy loop below this loop this will | 
|  | * deal with the queue overflow possibility. | 
|  | */ | 
|  | total = min(total, qleft); | 
|  |  | 
|  | while (total > 0) { | 
|  | /* | 
|  | * Grab the linestatus register, we need to check | 
|  | * to see if there are any errors in the FIFO. | 
|  | */ | 
|  | linestatus = readb(&ch->ch_neo_uart->lsr); | 
|  |  | 
|  | /* | 
|  | * Break out if there is a FIFO error somewhere. | 
|  | * This will allow us to go byte by byte down below, | 
|  | * finding the exact location of the error. | 
|  | */ | 
|  | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) | 
|  | break; | 
|  |  | 
|  | /* Make sure we don't go over the end of our queue */ | 
|  | n = min(((u32) total), (RQUEUESIZE - (u32) head)); | 
|  |  | 
|  | /* | 
|  | * Cut down n even further if needed, this is to fix | 
|  | * a problem with memcpy_fromio() with the Neo on the | 
|  | * IBM pSeries platform. | 
|  | * 15 bytes max appears to be the magic number. | 
|  | */ | 
|  | n = min((u32) n, (u32) 12); | 
|  |  | 
|  | /* | 
|  | * Since we are grabbing the linestatus register, which | 
|  | * will reset some bits after our read, we need to ensure | 
|  | * we don't miss our TX FIFO emptys. | 
|  | */ | 
|  | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  |  | 
|  | linestatus = 0; | 
|  |  | 
|  | /* Copy data from uart to the queue */ | 
|  | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); | 
|  | /* | 
|  | * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed | 
|  | * that all the data currently in the FIFO is free of | 
|  | * breaks and parity/frame/orun errors. | 
|  | */ | 
|  | memset(ch->ch_equeue + head, 0, n); | 
|  |  | 
|  | /* Add to and flip head if needed */ | 
|  | head = (head + n) & RQUEUEMASK; | 
|  | total -= n; | 
|  | qleft -= n; | 
|  | ch->ch_rxcount += n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a mask to determine whether we should | 
|  | * insert the character (if any) into our queue. | 
|  | */ | 
|  | if (ch->ch_c_iflag & IGNBRK) | 
|  | error_mask |= UART_LSR_BI; | 
|  |  | 
|  | /* | 
|  | * Now cleanup any leftover bytes still in the UART. | 
|  | * Also deal with any possible queue overflow here as well. | 
|  | */ | 
|  | while (1) { | 
|  |  | 
|  | /* | 
|  | * Its possible we have a linestatus from the loop above | 
|  | * this, so we "OR" on any extra bits. | 
|  | */ | 
|  | linestatus |= readb(&ch->ch_neo_uart->lsr); | 
|  |  | 
|  | /* | 
|  | * If the chip tells us there is no more data pending to | 
|  | * be read, we can then leave. | 
|  | * But before we do, cache the linestatus, just in case. | 
|  | */ | 
|  | if (!(linestatus & UART_LSR_DR)) { | 
|  | ch->ch_cached_lsr = linestatus; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* No need to store this bit */ | 
|  | linestatus &= ~UART_LSR_DR; | 
|  |  | 
|  | /* | 
|  | * Since we are grabbing the linestatus register, which | 
|  | * will reset some bits after our read, we need to ensure | 
|  | * we don't miss our TX FIFO emptys. | 
|  | */ | 
|  | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { | 
|  | linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Discard character if we are ignoring the error mask. | 
|  | */ | 
|  | if (linestatus & error_mask) { | 
|  | u8 discard; | 
|  | linestatus = 0; | 
|  | memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If our queue is full, we have no choice but to drop some data. | 
|  | * The assumption is that HWFLOW or SWFLOW should have stopped | 
|  | * things way way before we got to this point. | 
|  | * | 
|  | * I decided that I wanted to ditch the oldest data first, | 
|  | * I hope thats okay with everyone? Yes? Good. | 
|  | */ | 
|  | while (qleft < 1) { | 
|  | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, | 
|  | "Queue full, dropping DATA:%x LSR:%x\n", | 
|  | ch->ch_rqueue[tail], ch->ch_equeue[tail]); | 
|  |  | 
|  | ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; | 
|  | ch->ch_err_overrun++; | 
|  | qleft++; | 
|  | } | 
|  |  | 
|  | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); | 
|  | ch->ch_equeue[head] = (u8) linestatus; | 
|  |  | 
|  | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, | 
|  | "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]); | 
|  |  | 
|  | /* Ditch any remaining linestatus value. */ | 
|  | linestatus = 0; | 
|  |  | 
|  | /* Add to and flip head if needed */ | 
|  | head = (head + 1) & RQUEUEMASK; | 
|  |  | 
|  | qleft--; | 
|  | ch->ch_rxcount++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write new final heads to channel structure. | 
|  | */ | 
|  | ch->ch_r_head = head & RQUEUEMASK; | 
|  | ch->ch_e_head = head & EQUEUEMASK; | 
|  | jsm_input(ch); | 
|  | } | 
|  |  | 
|  | static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) | 
|  | { | 
|  | u16 head; | 
|  | u16 tail; | 
|  | int n; | 
|  | int s; | 
|  | int qlen; | 
|  | u32 len_written = 0; | 
|  |  | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | /* No data to write to the UART */ | 
|  | if (ch->ch_w_tail == ch->ch_w_head) | 
|  | return; | 
|  |  | 
|  | /* If port is "stopped", don't send any data to the UART */ | 
|  | if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) | 
|  | return; | 
|  | /* | 
|  | * If FIFOs are disabled. Send data directly to txrx register | 
|  | */ | 
|  | if (!(ch->ch_flags & CH_FIFO_ENABLED)) { | 
|  | u8 lsrbits = readb(&ch->ch_neo_uart->lsr); | 
|  |  | 
|  | ch->ch_cached_lsr |= lsrbits; | 
|  | if (ch->ch_cached_lsr & UART_LSR_THRE) { | 
|  | ch->ch_cached_lsr &= ~(UART_LSR_THRE); | 
|  |  | 
|  | writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); | 
|  | jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev, | 
|  | "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]); | 
|  | ch->ch_w_tail++; | 
|  | ch->ch_w_tail &= WQUEUEMASK; | 
|  | ch->ch_txcount++; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to do it this way, because of the EXAR TXFIFO count bug. | 
|  | */ | 
|  | if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) | 
|  | return; | 
|  |  | 
|  | n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; | 
|  |  | 
|  | /* cache head and tail of queue */ | 
|  | head = ch->ch_w_head & WQUEUEMASK; | 
|  | tail = ch->ch_w_tail & WQUEUEMASK; | 
|  | qlen = (head - tail) & WQUEUEMASK; | 
|  |  | 
|  | /* Find minimum of the FIFO space, versus queue length */ | 
|  | n = min(n, qlen); | 
|  |  | 
|  | while (n > 0) { | 
|  |  | 
|  | s = ((head >= tail) ? head : WQUEUESIZE) - tail; | 
|  | s = min(s, n); | 
|  |  | 
|  | if (s <= 0) | 
|  | break; | 
|  |  | 
|  | memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); | 
|  | /* Add and flip queue if needed */ | 
|  | tail = (tail + s) & WQUEUEMASK; | 
|  | n -= s; | 
|  | ch->ch_txcount += s; | 
|  | len_written += s; | 
|  | } | 
|  |  | 
|  | /* Update the final tail */ | 
|  | ch->ch_w_tail = tail & WQUEUEMASK; | 
|  |  | 
|  | if (len_written >= ch->ch_t_tlevel) | 
|  | ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  |  | 
|  | if (!jsm_tty_write(&ch->uart_port)) | 
|  | uart_write_wakeup(&ch->uart_port); | 
|  | } | 
|  |  | 
|  | static void neo_parse_modem(struct jsm_channel *ch, u8 signals) | 
|  | { | 
|  | u8 msignals = signals; | 
|  |  | 
|  | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, | 
|  | "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals); | 
|  |  | 
|  | /* Scrub off lower bits. They signify delta's, which I don't care about */ | 
|  | /* Keep DDCD and DDSR though */ | 
|  | msignals &= 0xf8; | 
|  |  | 
|  | if (msignals & UART_MSR_DDCD) | 
|  | uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD); | 
|  | if (msignals & UART_MSR_DDSR) | 
|  | uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS); | 
|  | if (msignals & UART_MSR_DCD) | 
|  | ch->ch_mistat |= UART_MSR_DCD; | 
|  | else | 
|  | ch->ch_mistat &= ~UART_MSR_DCD; | 
|  |  | 
|  | if (msignals & UART_MSR_DSR) | 
|  | ch->ch_mistat |= UART_MSR_DSR; | 
|  | else | 
|  | ch->ch_mistat &= ~UART_MSR_DSR; | 
|  |  | 
|  | if (msignals & UART_MSR_RI) | 
|  | ch->ch_mistat |= UART_MSR_RI; | 
|  | else | 
|  | ch->ch_mistat &= ~UART_MSR_RI; | 
|  |  | 
|  | if (msignals & UART_MSR_CTS) | 
|  | ch->ch_mistat |= UART_MSR_CTS; | 
|  | else | 
|  | ch->ch_mistat &= ~UART_MSR_CTS; | 
|  |  | 
|  | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, | 
|  | "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", | 
|  | ch->ch_portnum, | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), | 
|  | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); | 
|  | } | 
|  |  | 
|  | /* Make the UART raise any of the output signals we want up */ | 
|  | static void neo_assert_modem_signals(struct jsm_channel *ch) | 
|  | { | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush the WRITE FIFO on the Neo. | 
|  | * | 
|  | * NOTE: Channel lock MUST be held before calling this function! | 
|  | */ | 
|  | static void neo_flush_uart_write(struct jsm_channel *ch) | 
|  | { | 
|  | u8 tmp = 0; | 
|  | int i = 0; | 
|  |  | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  |  | 
|  | /* Check to see if the UART feels it completely flushed the FIFO. */ | 
|  | tmp = readb(&ch->ch_neo_uart->isr_fcr); | 
|  | if (tmp & 4) { | 
|  | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | 
|  | "Still flushing TX UART... i: %d\n", i); | 
|  | udelay(10); | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Flush the READ FIFO on the Neo. | 
|  | * | 
|  | * NOTE: Channel lock MUST be held before calling this function! | 
|  | */ | 
|  | static void neo_flush_uart_read(struct jsm_channel *ch) | 
|  | { | 
|  | u8 tmp = 0; | 
|  | int i = 0; | 
|  |  | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  |  | 
|  | /* Check to see if the UART feels it completely flushed the FIFO. */ | 
|  | tmp = readb(&ch->ch_neo_uart->isr_fcr); | 
|  | if (tmp & 2) { | 
|  | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | 
|  | "Still flushing RX UART... i: %d\n", i); | 
|  | udelay(10); | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No locks are assumed to be held when calling this function. | 
|  | */ | 
|  | static void neo_clear_break(struct jsm_channel *ch, int force) | 
|  | { | 
|  | unsigned long lock_flags; | 
|  |  | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  |  | 
|  | /* Turn break off, and unset some variables */ | 
|  | if (ch->ch_flags & CH_BREAK_SENDING) { | 
|  | u8 temp = readb(&ch->ch_neo_uart->lcr); | 
|  | writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); | 
|  |  | 
|  | ch->ch_flags &= ~(CH_BREAK_SENDING); | 
|  | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | 
|  | "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse the ISR register. | 
|  | */ | 
|  | static inline void neo_parse_isr(struct jsm_board *brd, u32 port) | 
|  | { | 
|  | struct jsm_channel *ch; | 
|  | u8 isr; | 
|  | u8 cause; | 
|  | unsigned long lock_flags; | 
|  |  | 
|  | if (!brd) | 
|  | return; | 
|  |  | 
|  | if (port > brd->maxports) | 
|  | return; | 
|  |  | 
|  | ch = brd->channels[port]; | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | /* Here we try to figure out what caused the interrupt to happen */ | 
|  | while (1) { | 
|  |  | 
|  | isr = readb(&ch->ch_neo_uart->isr_fcr); | 
|  |  | 
|  | /* Bail if no pending interrupt */ | 
|  | if (isr & UART_IIR_NO_INT) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Yank off the upper 2 bits, which just show that the FIFO's are enabled. | 
|  | */ | 
|  | isr &= ~(UART_17158_IIR_FIFO_ENABLED); | 
|  |  | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "%s:%d isr: %x\n", __FILE__, __LINE__, isr); | 
|  |  | 
|  | if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { | 
|  | /* Read data from uart -> queue */ | 
|  | neo_copy_data_from_uart_to_queue(ch); | 
|  |  | 
|  | /* Call our tty layer to enforce queue flow control if needed. */ | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | jsm_check_queue_flow_control(ch); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | } | 
|  |  | 
|  | if (isr & UART_IIR_THRI) { | 
|  | /* Transfer data (if any) from Write Queue -> UART. */ | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | neo_copy_data_from_queue_to_uart(ch); | 
|  | } | 
|  |  | 
|  | if (isr & UART_17158_IIR_XONXOFF) { | 
|  | cause = readb(&ch->ch_neo_uart->xoffchar1); | 
|  |  | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause); | 
|  |  | 
|  | /* | 
|  | * Since the UART detected either an XON or | 
|  | * XOFF match, we need to figure out which | 
|  | * one it was, so we can suspend or resume data flow. | 
|  | */ | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | if (cause == UART_17158_XON_DETECT) { | 
|  | /* Is output stopped right now, if so, resume it */ | 
|  | if (brd->channels[port]->ch_flags & CH_STOP) { | 
|  | ch->ch_flags &= ~(CH_STOP); | 
|  | } | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "Port %d. XON detected in incoming data\n", port); | 
|  | } | 
|  | else if (cause == UART_17158_XOFF_DETECT) { | 
|  | if (!(brd->channels[port]->ch_flags & CH_STOP)) { | 
|  | ch->ch_flags |= CH_STOP; | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "Setting CH_STOP\n"); | 
|  | } | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "Port: %d. XOFF detected in incoming data\n", port); | 
|  | } | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | } | 
|  |  | 
|  | if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { | 
|  | /* | 
|  | * If we get here, this means the hardware is doing auto flow control. | 
|  | * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. | 
|  | */ | 
|  | cause = readb(&ch->ch_neo_uart->mcr); | 
|  |  | 
|  | /* Which pin is doing auto flow? RTS or DTR? */ | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | if ((cause & 0x4) == 0) { | 
|  | if (cause & UART_MCR_RTS) | 
|  | ch->ch_mostat |= UART_MCR_RTS; | 
|  | else | 
|  | ch->ch_mostat &= ~(UART_MCR_RTS); | 
|  | } else { | 
|  | if (cause & UART_MCR_DTR) | 
|  | ch->ch_mostat |= UART_MCR_DTR; | 
|  | else | 
|  | ch->ch_mostat &= ~(UART_MCR_DTR); | 
|  | } | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | } | 
|  |  | 
|  | /* Parse any modem signal changes */ | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "MOD_STAT: sending to parse_modem_sigs\n"); | 
|  | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) | 
|  | { | 
|  | struct jsm_channel *ch; | 
|  | int linestatus; | 
|  | unsigned long lock_flags; | 
|  |  | 
|  | if (!brd) | 
|  | return; | 
|  |  | 
|  | if (port > brd->maxports) | 
|  | return; | 
|  |  | 
|  | ch = brd->channels[port]; | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | linestatus = readb(&ch->ch_neo_uart->lsr); | 
|  |  | 
|  | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | 
|  | "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus); | 
|  |  | 
|  | ch->ch_cached_lsr |= linestatus; | 
|  |  | 
|  | if (ch->ch_cached_lsr & UART_LSR_DR) { | 
|  | /* Read data from uart -> queue */ | 
|  | neo_copy_data_from_uart_to_queue(ch); | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | jsm_check_queue_flow_control(ch); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a special flag. It indicates that at least 1 | 
|  | * RX error (parity, framing, or break) has happened. | 
|  | * Mark this in our struct, which will tell me that I have | 
|  | *to do the special RX+LSR read for this FIFO load. | 
|  | */ | 
|  | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) | 
|  | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | 
|  | "%s:%d Port: %d Got an RX error, need to parse LSR\n", | 
|  | __FILE__, __LINE__, port); | 
|  |  | 
|  | /* | 
|  | * The next 3 tests should *NOT* happen, as the above test | 
|  | * should encapsulate all 3... At least, thats what Exar says. | 
|  | */ | 
|  |  | 
|  | if (linestatus & UART_LSR_PE) { | 
|  | ch->ch_err_parity++; | 
|  | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | 
|  | "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port); | 
|  | } | 
|  |  | 
|  | if (linestatus & UART_LSR_FE) { | 
|  | ch->ch_err_frame++; | 
|  | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | 
|  | "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port); | 
|  | } | 
|  |  | 
|  | if (linestatus & UART_LSR_BI) { | 
|  | ch->ch_err_break++; | 
|  | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | 
|  | "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port); | 
|  | } | 
|  |  | 
|  | if (linestatus & UART_LSR_OE) { | 
|  | /* | 
|  | * Rx Oruns. Exar says that an orun will NOT corrupt | 
|  | * the FIFO. It will just replace the holding register | 
|  | * with this new data byte. So basically just ignore this. | 
|  | * Probably we should eventually have an orun stat in our driver... | 
|  | */ | 
|  | ch->ch_err_overrun++; | 
|  | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | 
|  | "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port); | 
|  | } | 
|  |  | 
|  | if (linestatus & UART_LSR_THRE) { | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  |  | 
|  | /* Transfer data (if any) from Write Queue -> UART. */ | 
|  | neo_copy_data_from_queue_to_uart(ch); | 
|  | } | 
|  | else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags); | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | 
|  |  | 
|  | /* Transfer data (if any) from Write Queue -> UART. */ | 
|  | neo_copy_data_from_queue_to_uart(ch); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * neo_param() | 
|  | * Send any/all changes to the line to the UART. | 
|  | */ | 
|  | static void neo_param(struct jsm_channel *ch) | 
|  | { | 
|  | u8 lcr = 0; | 
|  | u8 uart_lcr, ier; | 
|  | u32 baud; | 
|  | int quot; | 
|  | struct jsm_board *bd; | 
|  |  | 
|  | bd = ch->ch_bd; | 
|  | if (!bd) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If baud rate is zero, flush queues, and set mval to drop DTR. | 
|  | */ | 
|  | if ((ch->ch_c_cflag & (CBAUD)) == 0) { | 
|  | ch->ch_r_head = ch->ch_r_tail = 0; | 
|  | ch->ch_e_head = ch->ch_e_tail = 0; | 
|  | ch->ch_w_head = ch->ch_w_tail = 0; | 
|  |  | 
|  | neo_flush_uart_write(ch); | 
|  | neo_flush_uart_read(ch); | 
|  |  | 
|  | ch->ch_flags |= (CH_BAUD0); | 
|  | ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); | 
|  | neo_assert_modem_signals(ch); | 
|  | ch->ch_old_baud = 0; | 
|  | return; | 
|  |  | 
|  | } else if (ch->ch_custom_speed) { | 
|  | baud = ch->ch_custom_speed; | 
|  | if (ch->ch_flags & CH_BAUD0) | 
|  | ch->ch_flags &= ~(CH_BAUD0); | 
|  | } else { | 
|  | int i; | 
|  | unsigned int cflag; | 
|  | static struct { | 
|  | unsigned int rate; | 
|  | unsigned int cflag; | 
|  | } baud_rates[] = { | 
|  | { 921600, B921600 }, | 
|  | { 460800, B460800 }, | 
|  | { 230400, B230400 }, | 
|  | { 115200, B115200 }, | 
|  | {  57600, B57600  }, | 
|  | {  38400, B38400  }, | 
|  | {  19200, B19200  }, | 
|  | {   9600, B9600   }, | 
|  | {   4800, B4800   }, | 
|  | {   2400, B2400   }, | 
|  | {   1200, B1200   }, | 
|  | {    600, B600    }, | 
|  | {    300, B300    }, | 
|  | {    200, B200    }, | 
|  | {    150, B150    }, | 
|  | {    134, B134    }, | 
|  | {    110, B110    }, | 
|  | {     75, B75     }, | 
|  | {     50, B50     }, | 
|  | }; | 
|  |  | 
|  | cflag = C_BAUD(ch->uart_port.state->port.tty); | 
|  | baud = 9600; | 
|  | for (i = 0; i < ARRAY_SIZE(baud_rates); i++) { | 
|  | if (baud_rates[i].cflag == cflag) { | 
|  | baud = baud_rates[i].rate; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ch->ch_flags & CH_BAUD0) | 
|  | ch->ch_flags &= ~(CH_BAUD0); | 
|  | } | 
|  |  | 
|  | if (ch->ch_c_cflag & PARENB) | 
|  | lcr |= UART_LCR_PARITY; | 
|  |  | 
|  | if (!(ch->ch_c_cflag & PARODD)) | 
|  | lcr |= UART_LCR_EPAR; | 
|  |  | 
|  | /* | 
|  | * Not all platforms support mark/space parity, | 
|  | * so this will hide behind an ifdef. | 
|  | */ | 
|  | #ifdef CMSPAR | 
|  | if (ch->ch_c_cflag & CMSPAR) | 
|  | lcr |= UART_LCR_SPAR; | 
|  | #endif | 
|  |  | 
|  | if (ch->ch_c_cflag & CSTOPB) | 
|  | lcr |= UART_LCR_STOP; | 
|  |  | 
|  | switch (ch->ch_c_cflag & CSIZE) { | 
|  | case CS5: | 
|  | lcr |= UART_LCR_WLEN5; | 
|  | break; | 
|  | case CS6: | 
|  | lcr |= UART_LCR_WLEN6; | 
|  | break; | 
|  | case CS7: | 
|  | lcr |= UART_LCR_WLEN7; | 
|  | break; | 
|  | case CS8: | 
|  | default: | 
|  | lcr |= UART_LCR_WLEN8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ier = readb(&ch->ch_neo_uart->ier); | 
|  | uart_lcr = readb(&ch->ch_neo_uart->lcr); | 
|  |  | 
|  | if (baud == 0) | 
|  | baud = 9600; | 
|  |  | 
|  | quot = ch->ch_bd->bd_dividend / baud; | 
|  |  | 
|  | if (quot != 0) { | 
|  | ch->ch_old_baud = baud; | 
|  | writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); | 
|  | writeb((quot & 0xff), &ch->ch_neo_uart->txrx); | 
|  | writeb((quot >> 8), &ch->ch_neo_uart->ier); | 
|  | writeb(lcr, &ch->ch_neo_uart->lcr); | 
|  | } | 
|  |  | 
|  | if (uart_lcr != lcr) | 
|  | writeb(lcr, &ch->ch_neo_uart->lcr); | 
|  |  | 
|  | if (ch->ch_c_cflag & CREAD) | 
|  | ier |= (UART_IER_RDI | UART_IER_RLSI); | 
|  |  | 
|  | ier |= (UART_IER_THRI | UART_IER_MSI); | 
|  |  | 
|  | writeb(ier, &ch->ch_neo_uart->ier); | 
|  |  | 
|  | /* Set new start/stop chars */ | 
|  | neo_set_new_start_stop_chars(ch); | 
|  |  | 
|  | if (ch->ch_c_cflag & CRTSCTS) | 
|  | neo_set_cts_flow_control(ch); | 
|  | else if (ch->ch_c_iflag & IXON) { | 
|  | /* If start/stop is set to disable, then we should disable flow control */ | 
|  | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) | 
|  | neo_set_no_output_flow_control(ch); | 
|  | else | 
|  | neo_set_ixon_flow_control(ch); | 
|  | } | 
|  | else | 
|  | neo_set_no_output_flow_control(ch); | 
|  |  | 
|  | if (ch->ch_c_cflag & CRTSCTS) | 
|  | neo_set_rts_flow_control(ch); | 
|  | else if (ch->ch_c_iflag & IXOFF) { | 
|  | /* If start/stop is set to disable, then we should disable flow control */ | 
|  | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) | 
|  | neo_set_no_input_flow_control(ch); | 
|  | else | 
|  | neo_set_ixoff_flow_control(ch); | 
|  | } | 
|  | else | 
|  | neo_set_no_input_flow_control(ch); | 
|  | /* | 
|  | * Adjust the RX FIFO Trigger level if baud is less than 9600. | 
|  | * Not exactly elegant, but this is needed because of the Exar chip's | 
|  | * delay on firing off the RX FIFO interrupt on slower baud rates. | 
|  | */ | 
|  | if (baud < 9600) { | 
|  | writeb(1, &ch->ch_neo_uart->rfifo); | 
|  | ch->ch_r_tlevel = 1; | 
|  | } | 
|  |  | 
|  | neo_assert_modem_signals(ch); | 
|  |  | 
|  | /* Get current status of the modem signals now */ | 
|  | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * jsm_neo_intr() | 
|  | * | 
|  | * Neo specific interrupt handler. | 
|  | */ | 
|  | static irqreturn_t neo_intr(int irq, void *voidbrd) | 
|  | { | 
|  | struct jsm_board *brd = voidbrd; | 
|  | struct jsm_channel *ch; | 
|  | int port = 0; | 
|  | int type = 0; | 
|  | int current_port; | 
|  | u32 tmp; | 
|  | u32 uart_poll; | 
|  | unsigned long lock_flags; | 
|  | unsigned long lock_flags2; | 
|  | int outofloop_count = 0; | 
|  |  | 
|  | brd->intr_count++; | 
|  |  | 
|  | /* Lock out the slow poller from running on this board. */ | 
|  | spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); | 
|  |  | 
|  | /* | 
|  | * Read in "extended" IRQ information from the 32bit Neo register. | 
|  | * Bits 0-7: What port triggered the interrupt. | 
|  | * Bits 8-31: Each 3bits indicate what type of interrupt occurred. | 
|  | */ | 
|  | uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); | 
|  |  | 
|  | jsm_printk(INTR, INFO, &brd->pci_dev, | 
|  | "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll); | 
|  |  | 
|  | if (!uart_poll) { | 
|  | jsm_printk(INTR, INFO, &brd->pci_dev, | 
|  | "Kernel interrupted to me, but no pending interrupts...\n"); | 
|  | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* At this point, we have at least SOMETHING to service, dig further... */ | 
|  |  | 
|  | current_port = 0; | 
|  |  | 
|  | /* Loop on each port */ | 
|  | while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ | 
|  |  | 
|  | tmp = uart_poll; | 
|  | outofloop_count++; | 
|  |  | 
|  | /* Check current port to see if it has interrupt pending */ | 
|  | if ((tmp & jsm_offset_table[current_port]) != 0) { | 
|  | port = current_port; | 
|  | type = tmp >> (8 + (port * 3)); | 
|  | type &= 0x7; | 
|  | } else { | 
|  | current_port++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | jsm_printk(INTR, INFO, &brd->pci_dev, | 
|  | "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type); | 
|  |  | 
|  | /* Remove this port + type from uart_poll */ | 
|  | uart_poll &= ~(jsm_offset_table[port]); | 
|  |  | 
|  | if (!type) { | 
|  | /* If no type, just ignore it, and move onto next port */ | 
|  | jsm_printk(INTR, ERR, &brd->pci_dev, | 
|  | "Interrupt with no type! port: %d\n", port); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Switch on type of interrupt we have */ | 
|  | switch (type) { | 
|  |  | 
|  | case UART_17158_RXRDY_TIMEOUT: | 
|  | /* | 
|  | * RXRDY Time-out is cleared by reading data in the | 
|  | * RX FIFO until it falls below the trigger level. | 
|  | */ | 
|  |  | 
|  | /* Verify the port is in range. */ | 
|  | if (port > brd->nasync) | 
|  | continue; | 
|  |  | 
|  | ch = brd->channels[port]; | 
|  | neo_copy_data_from_uart_to_queue(ch); | 
|  |  | 
|  | /* Call our tty layer to enforce queue flow control if needed. */ | 
|  | spin_lock_irqsave(&ch->ch_lock, lock_flags2); | 
|  | jsm_check_queue_flow_control(ch); | 
|  | spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); | 
|  |  | 
|  | continue; | 
|  |  | 
|  | case UART_17158_RX_LINE_STATUS: | 
|  | /* | 
|  | * RXRDY and RX LINE Status (logic OR of LSR[4:1]) | 
|  | */ | 
|  | neo_parse_lsr(brd, port); | 
|  | continue; | 
|  |  | 
|  | case UART_17158_TXRDY: | 
|  | /* | 
|  | * TXRDY interrupt clears after reading ISR register for the UART channel. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Yes, this is odd... | 
|  | * Why would I check EVERY possibility of type of | 
|  | * interrupt, when we know its TXRDY??? | 
|  | * Becuz for some reason, even tho we got triggered for TXRDY, | 
|  | * it seems to be occassionally wrong. Instead of TX, which | 
|  | * it should be, I was getting things like RXDY too. Weird. | 
|  | */ | 
|  | neo_parse_isr(brd, port); | 
|  | continue; | 
|  |  | 
|  | case UART_17158_MSR: | 
|  | /* | 
|  | * MSR or flow control was seen. | 
|  | */ | 
|  | neo_parse_isr(brd, port); | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | /* | 
|  | * The UART triggered us with a bogus interrupt type. | 
|  | * It appears the Exar chip, when REALLY bogged down, will throw | 
|  | * these once and awhile. | 
|  | * Its harmless, just ignore it and move on. | 
|  | */ | 
|  | jsm_printk(INTR, ERR, &brd->pci_dev, | 
|  | "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); | 
|  |  | 
|  | jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Neo specific way of turning off the receiver. | 
|  | * Used as a way to enforce queue flow control when in | 
|  | * hardware flow control mode. | 
|  | */ | 
|  | static void neo_disable_receiver(struct jsm_channel *ch) | 
|  | { | 
|  | u8 tmp = readb(&ch->ch_neo_uart->ier); | 
|  | tmp &= ~(UART_IER_RDI); | 
|  | writeb(tmp, &ch->ch_neo_uart->ier); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Neo specific way of turning on the receiver. | 
|  | * Used as a way to un-enforce queue flow control when in | 
|  | * hardware flow control mode. | 
|  | */ | 
|  | static void neo_enable_receiver(struct jsm_channel *ch) | 
|  | { | 
|  | u8 tmp = readb(&ch->ch_neo_uart->ier); | 
|  | tmp |= (UART_IER_RDI); | 
|  | writeb(tmp, &ch->ch_neo_uart->ier); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  |  | 
|  | static void neo_send_start_character(struct jsm_channel *ch) | 
|  | { | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | if (ch->ch_startc != __DISABLED_CHAR) { | 
|  | ch->ch_xon_sends++; | 
|  | writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void neo_send_stop_character(struct jsm_channel *ch) | 
|  | { | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | if (ch->ch_stopc != __DISABLED_CHAR) { | 
|  | ch->ch_xoff_sends++; | 
|  | writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * neo_uart_init | 
|  | */ | 
|  | static void neo_uart_init(struct jsm_channel *ch) | 
|  | { | 
|  | writeb(0, &ch->ch_neo_uart->ier); | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  | writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Clear out UART and FIFO */ | 
|  | readb(&ch->ch_neo_uart->txrx); | 
|  | writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); | 
|  | readb(&ch->ch_neo_uart->lsr); | 
|  | readb(&ch->ch_neo_uart->msr); | 
|  |  | 
|  | ch->ch_flags |= CH_FIFO_ENABLED; | 
|  |  | 
|  | /* Assert any signals we want up */ | 
|  | writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make the UART completely turn off. | 
|  | */ | 
|  | static void neo_uart_off(struct jsm_channel *ch) | 
|  | { | 
|  | /* Turn off UART enhanced bits */ | 
|  | writeb(0, &ch->ch_neo_uart->efr); | 
|  |  | 
|  | /* Stop all interrupts from occurring. */ | 
|  | writeb(0, &ch->ch_neo_uart->ier); | 
|  | } | 
|  |  | 
|  | static u32 neo_get_uart_bytes_left(struct jsm_channel *ch) | 
|  | { | 
|  | u8 left = 0; | 
|  | u8 lsr = readb(&ch->ch_neo_uart->lsr); | 
|  |  | 
|  | /* We must cache the LSR as some of the bits get reset once read... */ | 
|  | ch->ch_cached_lsr |= lsr; | 
|  |  | 
|  | /* Determine whether the Transmitter is empty or not */ | 
|  | if (!(lsr & UART_LSR_TEMT)) | 
|  | left = 1; | 
|  | else { | 
|  | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | 
|  | left = 0; | 
|  | } | 
|  |  | 
|  | return left; | 
|  | } | 
|  |  | 
|  | /* Channel lock MUST be held by the calling function! */ | 
|  | static void neo_send_break(struct jsm_channel *ch) | 
|  | { | 
|  | /* | 
|  | * Set the time we should stop sending the break. | 
|  | * If we are already sending a break, toss away the existing | 
|  | * time to stop, and use this new value instead. | 
|  | */ | 
|  |  | 
|  | /* Tell the UART to start sending the break */ | 
|  | if (!(ch->ch_flags & CH_BREAK_SENDING)) { | 
|  | u8 temp = readb(&ch->ch_neo_uart->lcr); | 
|  | writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); | 
|  | ch->ch_flags |= (CH_BREAK_SENDING); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * neo_send_immediate_char. | 
|  | * | 
|  | * Sends a specific character as soon as possible to the UART, | 
|  | * jumping over any bytes that might be in the write queue. | 
|  | * | 
|  | * The channel lock MUST be held by the calling function. | 
|  | */ | 
|  | static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c) | 
|  | { | 
|  | if (!ch) | 
|  | return; | 
|  |  | 
|  | writeb(c, &ch->ch_neo_uart->txrx); | 
|  |  | 
|  | /* flush write operation */ | 
|  | neo_pci_posting_flush(ch->ch_bd); | 
|  | } | 
|  |  | 
|  | struct board_ops jsm_neo_ops = { | 
|  | .intr				= neo_intr, | 
|  | .uart_init			= neo_uart_init, | 
|  | .uart_off			= neo_uart_off, | 
|  | .param				= neo_param, | 
|  | .assert_modem_signals		= neo_assert_modem_signals, | 
|  | .flush_uart_write		= neo_flush_uart_write, | 
|  | .flush_uart_read		= neo_flush_uart_read, | 
|  | .disable_receiver		= neo_disable_receiver, | 
|  | .enable_receiver		= neo_enable_receiver, | 
|  | .send_break			= neo_send_break, | 
|  | .clear_break			= neo_clear_break, | 
|  | .send_start_character		= neo_send_start_character, | 
|  | .send_stop_character		= neo_send_stop_character, | 
|  | .copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart, | 
|  | .get_uart_bytes_left		= neo_get_uart_bytes_left, | 
|  | .send_immediate_char		= neo_send_immediate_char | 
|  | }; |