|  | #ifndef __ASM_SH_IO_H | 
|  | #define __ASM_SH_IO_H | 
|  |  | 
|  | /* | 
|  | * Convention: | 
|  | *    read{b,w,l}/write{b,w,l} are for PCI, | 
|  | *    while in{b,w,l}/out{b,w,l} are for ISA | 
|  | * These may (will) be platform specific function. | 
|  | * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p | 
|  | * and 'string' versions: ins{b,w,l}/outs{b,w,l} | 
|  | * For read{b,w,l} and write{b,w,l} there are also __raw versions, which | 
|  | * do not have a memory barrier after them. | 
|  | * | 
|  | * In addition, we have | 
|  | *   ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. | 
|  | *   which are processor specific. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * We follow the Alpha convention here: | 
|  | *  __inb expands to an inline function call (which calls via the mv) | 
|  | *  _inb  is a real function call (note ___raw fns are _ version of __raw) | 
|  | *  inb   by default expands to _inb, but the machine specific code may | 
|  | *        define it to __inb if it chooses. | 
|  | */ | 
|  | #include <asm/cache.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/addrspace.h> | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm-generic/iomap.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | /* | 
|  | * Depending on which platform we are running on, we need different | 
|  | * I/O functions. | 
|  | */ | 
|  | #define __IO_PREFIX	generic | 
|  | #include <asm/io_generic.h> | 
|  | #include <asm/io_trapped.h> | 
|  |  | 
|  | #define maybebadio(port) \ | 
|  | printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ | 
|  | __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0)) | 
|  |  | 
|  | /* | 
|  | * Since boards are able to define their own set of I/O routines through | 
|  | * their respective machine vector, we always wrap through the mv. | 
|  | * | 
|  | * Also, in the event that a board hasn't provided its own definition for | 
|  | * a given routine, it will be wrapped to generic code at run-time. | 
|  | */ | 
|  |  | 
|  | #define __inb(p)	sh_mv.mv_inb((p)) | 
|  | #define __inw(p)	sh_mv.mv_inw((p)) | 
|  | #define __inl(p)	sh_mv.mv_inl((p)) | 
|  | #define __outb(x,p)	sh_mv.mv_outb((x),(p)) | 
|  | #define __outw(x,p)	sh_mv.mv_outw((x),(p)) | 
|  | #define __outl(x,p)	sh_mv.mv_outl((x),(p)) | 
|  |  | 
|  | #define __inb_p(p)	sh_mv.mv_inb_p((p)) | 
|  | #define __inw_p(p)	sh_mv.mv_inw_p((p)) | 
|  | #define __inl_p(p)	sh_mv.mv_inl_p((p)) | 
|  | #define __outb_p(x,p)	sh_mv.mv_outb_p((x),(p)) | 
|  | #define __outw_p(x,p)	sh_mv.mv_outw_p((x),(p)) | 
|  | #define __outl_p(x,p)	sh_mv.mv_outl_p((x),(p)) | 
|  |  | 
|  | #define __insb(p,b,c)	sh_mv.mv_insb((p), (b), (c)) | 
|  | #define __insw(p,b,c)	sh_mv.mv_insw((p), (b), (c)) | 
|  | #define __insl(p,b,c)	sh_mv.mv_insl((p), (b), (c)) | 
|  | #define __outsb(p,b,c)	sh_mv.mv_outsb((p), (b), (c)) | 
|  | #define __outsw(p,b,c)	sh_mv.mv_outsw((p), (b), (c)) | 
|  | #define __outsl(p,b,c)	sh_mv.mv_outsl((p), (b), (c)) | 
|  |  | 
|  | #define __readb(a)	sh_mv.mv_readb((a)) | 
|  | #define __readw(a)	sh_mv.mv_readw((a)) | 
|  | #define __readl(a)	sh_mv.mv_readl((a)) | 
|  | #define __writeb(v,a)	sh_mv.mv_writeb((v),(a)) | 
|  | #define __writew(v,a)	sh_mv.mv_writew((v),(a)) | 
|  | #define __writel(v,a)	sh_mv.mv_writel((v),(a)) | 
|  |  | 
|  | #define inb		__inb | 
|  | #define inw		__inw | 
|  | #define inl		__inl | 
|  | #define outb		__outb | 
|  | #define outw		__outw | 
|  | #define outl		__outl | 
|  |  | 
|  | #define inb_p		__inb_p | 
|  | #define inw_p		__inw_p | 
|  | #define inl_p		__inl_p | 
|  | #define outb_p		__outb_p | 
|  | #define outw_p		__outw_p | 
|  | #define outl_p		__outl_p | 
|  |  | 
|  | #define insb		__insb | 
|  | #define insw		__insw | 
|  | #define insl		__insl | 
|  | #define outsb		__outsb | 
|  | #define outsw		__outsw | 
|  | #define outsl		__outsl | 
|  |  | 
|  | #define __raw_readb(a)		__readb((void __iomem *)(a)) | 
|  | #define __raw_readw(a)		__readw((void __iomem *)(a)) | 
|  | #define __raw_readl(a)		__readl((void __iomem *)(a)) | 
|  | #define __raw_writeb(v, a)	__writeb(v, (void __iomem *)(a)) | 
|  | #define __raw_writew(v, a)	__writew(v, (void __iomem *)(a)) | 
|  | #define __raw_writel(v, a)	__writel(v, (void __iomem *)(a)) | 
|  |  | 
|  | void __raw_writesl(unsigned long addr, const void *data, int longlen); | 
|  | void __raw_readsl(unsigned long addr, void *data, int longlen); | 
|  |  | 
|  | /* | 
|  | * The platform header files may define some of these macros to use | 
|  | * the inlined versions where appropriate.  These macros may also be | 
|  | * redefined by userlevel programs. | 
|  | */ | 
|  | #ifdef __readb | 
|  | # define readb(a)	({ unsigned int r_ = __raw_readb(a); mb(); r_; }) | 
|  | #endif | 
|  | #ifdef __raw_readw | 
|  | # define readw(a)	({ unsigned int r_ = __raw_readw(a); mb(); r_; }) | 
|  | #endif | 
|  | #ifdef __raw_readl | 
|  | # define readl(a)	({ unsigned int r_ = __raw_readl(a); mb(); r_; }) | 
|  | #endif | 
|  |  | 
|  | #ifdef __raw_writeb | 
|  | # define writeb(v,a)	({ __raw_writeb((v),(a)); mb(); }) | 
|  | #endif | 
|  | #ifdef __raw_writew | 
|  | # define writew(v,a)	({ __raw_writew((v),(a)); mb(); }) | 
|  | #endif | 
|  | #ifdef __raw_writel | 
|  | # define writel(v,a)	({ __raw_writel((v),(a)); mb(); }) | 
|  | #endif | 
|  |  | 
|  | #define __BUILD_MEMORY_STRING(bwlq, type)				\ | 
|  | \ | 
|  | static inline void writes##bwlq(volatile void __iomem *mem,		\ | 
|  | const void *addr, unsigned int count)	\ | 
|  | {									\ | 
|  | const volatile type *__addr = addr;				\ | 
|  | \ | 
|  | while (count--) {						\ | 
|  | __raw_write##bwlq(*__addr, mem);			\ | 
|  | __addr++;						\ | 
|  | }								\ | 
|  | }									\ | 
|  | \ | 
|  | static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\ | 
|  | unsigned int count)			\ | 
|  | {									\ | 
|  | volatile type *__addr = addr;					\ | 
|  | \ | 
|  | while (count--) {						\ | 
|  | *__addr = __raw_read##bwlq(mem);			\ | 
|  | __addr++;						\ | 
|  | }								\ | 
|  | } | 
|  |  | 
|  | __BUILD_MEMORY_STRING(b, u8) | 
|  | __BUILD_MEMORY_STRING(w, u16) | 
|  | #define writesl __raw_writesl | 
|  | #define readsl  __raw_readsl | 
|  |  | 
|  | #define readb_relaxed(a) readb(a) | 
|  | #define readw_relaxed(a) readw(a) | 
|  | #define readl_relaxed(a) readl(a) | 
|  |  | 
|  | /* Simple MMIO */ | 
|  | #define ioread8(a)		readb(a) | 
|  | #define ioread16(a)		readw(a) | 
|  | #define ioread16be(a)		be16_to_cpu(__raw_readw((a))) | 
|  | #define ioread32(a)		readl(a) | 
|  | #define ioread32be(a)		be32_to_cpu(__raw_readl((a))) | 
|  |  | 
|  | #define iowrite8(v,a)		writeb((v),(a)) | 
|  | #define iowrite16(v,a)		writew((v),(a)) | 
|  | #define iowrite16be(v,a)	__raw_writew(cpu_to_be16((v)),(a)) | 
|  | #define iowrite32(v,a)		writel((v),(a)) | 
|  | #define iowrite32be(v,a)	__raw_writel(cpu_to_be32((v)),(a)) | 
|  |  | 
|  | #define ioread8_rep(a, d, c)	readsb((a), (d), (c)) | 
|  | #define ioread16_rep(a, d, c)	readsw((a), (d), (c)) | 
|  | #define ioread32_rep(a, d, c)	readsl((a), (d), (c)) | 
|  |  | 
|  | #define iowrite8_rep(a, s, c)	writesb((a), (s), (c)) | 
|  | #define iowrite16_rep(a, s, c)	writesw((a), (s), (c)) | 
|  | #define iowrite32_rep(a, s, c)	writesl((a), (s), (c)) | 
|  |  | 
|  | #define mmiowb()	wmb()	/* synco on SH-4A, otherwise a nop */ | 
|  |  | 
|  | #define IO_SPACE_LIMIT 0xffffffff | 
|  |  | 
|  | /* | 
|  | * This function provides a method for the generic case where a board-specific | 
|  | * ioport_map simply needs to return the port + some arbitrary port base. | 
|  | * | 
|  | * We use this at board setup time to implicitly set the port base, and | 
|  | * as a result, we can use the generic ioport_map. | 
|  | */ | 
|  | static inline void __set_io_port_base(unsigned long pbase) | 
|  | { | 
|  | extern unsigned long generic_io_base; | 
|  |  | 
|  | generic_io_base = pbase; | 
|  | } | 
|  |  | 
|  | #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n)) | 
|  |  | 
|  | /* We really want to try and get these to memcpy etc */ | 
|  | extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long); | 
|  | extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long); | 
|  | extern void memset_io(volatile void __iomem *, int, unsigned long); | 
|  |  | 
|  | /* SuperH on-chip I/O functions */ | 
|  | static inline unsigned char ctrl_inb(unsigned long addr) | 
|  | { | 
|  | return *(volatile unsigned char*)addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned short ctrl_inw(unsigned long addr) | 
|  | { | 
|  | return *(volatile unsigned short*)addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned int ctrl_inl(unsigned long addr) | 
|  | { | 
|  | return *(volatile unsigned long*)addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long long ctrl_inq(unsigned long addr) | 
|  | { | 
|  | return *(volatile unsigned long long*)addr; | 
|  | } | 
|  |  | 
|  | static inline void ctrl_outb(unsigned char b, unsigned long addr) | 
|  | { | 
|  | *(volatile unsigned char*)addr = b; | 
|  | } | 
|  |  | 
|  | static inline void ctrl_outw(unsigned short b, unsigned long addr) | 
|  | { | 
|  | *(volatile unsigned short*)addr = b; | 
|  | } | 
|  |  | 
|  | static inline void ctrl_outl(unsigned int b, unsigned long addr) | 
|  | { | 
|  | *(volatile unsigned long*)addr = b; | 
|  | } | 
|  |  | 
|  | static inline void ctrl_outq(unsigned long long b, unsigned long addr) | 
|  | { | 
|  | *(volatile unsigned long long*)addr = b; | 
|  | } | 
|  |  | 
|  | static inline void ctrl_delay(void) | 
|  | { | 
|  | #ifdef P2SEG | 
|  | ctrl_inw(P2SEG); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Quad-word real-mode I/O, don't ask.. */ | 
|  | unsigned long long peek_real_address_q(unsigned long long addr); | 
|  | unsigned long long poke_real_address_q(unsigned long long addr, | 
|  | unsigned long long val); | 
|  |  | 
|  | #if !defined(CONFIG_MMU) | 
|  | #define virt_to_phys(address)	((unsigned long)(address)) | 
|  | #define phys_to_virt(address)	((void *)(address)) | 
|  | #else | 
|  | #define virt_to_phys(address)	(__pa(address)) | 
|  | #define phys_to_virt(address)	(__va(address)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On 32-bit SH, we traditionally have the whole physical address space | 
|  | * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do | 
|  | * not need to do anything but place the address in the proper segment. | 
|  | * This is true for P1 and P2 addresses, as well as some P3 ones. | 
|  | * However, most of the P3 addresses and newer cores using extended | 
|  | * addressing need to map through page tables, so the ioremap() | 
|  | * implementation becomes a bit more complicated. | 
|  | * | 
|  | * See arch/sh/mm/ioremap.c for additional notes on this. | 
|  | * | 
|  | * We cheat a bit and always return uncachable areas until we've fixed | 
|  | * the drivers to handle caching properly. | 
|  | * | 
|  | * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply | 
|  | * doesn't exist, so everything must go through page tables. | 
|  | */ | 
|  | #ifdef CONFIG_MMU | 
|  | void __iomem *__ioremap(unsigned long offset, unsigned long size, | 
|  | unsigned long flags); | 
|  | void __iounmap(void __iomem *addr); | 
|  |  | 
|  | /* arch/sh/mm/ioremap_64.c */ | 
|  | unsigned long onchip_remap(unsigned long addr, unsigned long size, | 
|  | const char *name); | 
|  | extern void onchip_unmap(unsigned long vaddr); | 
|  | #else | 
|  | #define __ioremap(offset, size, flags)	((void __iomem *)(offset)) | 
|  | #define __iounmap(addr)			do { } while (0) | 
|  | #define onchip_remap(addr, size, name)	(addr) | 
|  | #define onchip_unmap(addr)		do { } while (0) | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | static inline void __iomem * | 
|  | __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) | 
|  | { | 
|  | #ifdef CONFIG_SUPERH32 | 
|  | unsigned long last_addr = offset + size - 1; | 
|  | #endif | 
|  | void __iomem *ret; | 
|  |  | 
|  | ret = __ioremap_trapped(offset, size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_SUPERH32 | 
|  | /* | 
|  | * For P1 and P2 space this is trivial, as everything is already | 
|  | * mapped. Uncached access for P1 addresses are done through P2. | 
|  | * In the P3 case or for addresses outside of the 29-bit space, | 
|  | * mapping must be done by the PMB or by using page tables. | 
|  | */ | 
|  | if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { | 
|  | if (unlikely(flags & _PAGE_CACHABLE)) | 
|  | return (void __iomem *)P1SEGADDR(offset); | 
|  |  | 
|  | return (void __iomem *)P2SEGADDR(offset); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return __ioremap(offset, size, flags); | 
|  | } | 
|  |  | 
|  | #define ioremap(offset, size)				\ | 
|  | __ioremap_mode((offset), (size), 0) | 
|  | #define ioremap_nocache(offset, size)			\ | 
|  | __ioremap_mode((offset), (size), 0) | 
|  | #define ioremap_cache(offset, size)			\ | 
|  | __ioremap_mode((offset), (size), _PAGE_CACHABLE) | 
|  | #define p3_ioremap(offset, size, flags)			\ | 
|  | __ioremap((offset), (size), (flags)) | 
|  | #define iounmap(addr)					\ | 
|  | __iounmap((addr)) | 
|  |  | 
|  | /* | 
|  | * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
|  | * access | 
|  | */ | 
|  | #define xlate_dev_mem_ptr(p)	__va(p) | 
|  |  | 
|  | /* | 
|  | * Convert a virtual cached pointer to an uncached pointer | 
|  | */ | 
|  | #define xlate_dev_kmem_ptr(p)	p | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* __ASM_SH_IO_H */ |