|  | /* pci_sabre.c: Sabre specific PCI controller support. | 
|  | * | 
|  | * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net) | 
|  | * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be) | 
|  | * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/of_device.h> | 
|  |  | 
|  | #include <asm/apb.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/prom.h> | 
|  |  | 
|  | #include "pci_impl.h" | 
|  | #include "iommu_common.h" | 
|  |  | 
|  | /* All SABRE registers are 64-bits.  The following accessor | 
|  | * routines are how they are accessed.  The REG parameter | 
|  | * is a physical address. | 
|  | */ | 
|  | #define sabre_read(__reg) \ | 
|  | ({	u64 __ret; \ | 
|  | __asm__ __volatile__("ldxa [%1] %2, %0" \ | 
|  | : "=r" (__ret) \ | 
|  | : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ | 
|  | : "memory"); \ | 
|  | __ret; \ | 
|  | }) | 
|  | #define sabre_write(__reg, __val) \ | 
|  | __asm__ __volatile__("stxa %0, [%1] %2" \ | 
|  | : /* no outputs */ \ | 
|  | : "r" (__val), "r" (__reg), \ | 
|  | "i" (ASI_PHYS_BYPASS_EC_E) \ | 
|  | : "memory") | 
|  |  | 
|  | /* SABRE PCI controller register offsets and definitions. */ | 
|  | #define SABRE_UE_AFSR		0x0030UL | 
|  | #define  SABRE_UEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */ | 
|  | #define  SABRE_UEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */ | 
|  | #define  SABRE_UEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */ | 
|  | #define  SABRE_UEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */ | 
|  | #define  SABRE_UEAFSR_SDTE	 0x0200000000000000UL	/* Secondary DMA Translation Error */ | 
|  | #define  SABRE_UEAFSR_PDTE	 0x0100000000000000UL	/* Primary DMA Translation Error */ | 
|  | #define  SABRE_UEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */ | 
|  | #define  SABRE_UEAFSR_OFF	 0x00000000e0000000UL	/* Offset (AFAR bits [5:3] */ | 
|  | #define  SABRE_UEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */ | 
|  | #define SABRE_UECE_AFAR		0x0038UL | 
|  | #define SABRE_CE_AFSR		0x0040UL | 
|  | #define  SABRE_CEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */ | 
|  | #define  SABRE_CEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */ | 
|  | #define  SABRE_CEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */ | 
|  | #define  SABRE_CEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */ | 
|  | #define  SABRE_CEAFSR_ESYND	 0x00ff000000000000UL	/* ECC Syndrome */ | 
|  | #define  SABRE_CEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */ | 
|  | #define  SABRE_CEAFSR_OFF	 0x00000000e0000000UL	/* Offset */ | 
|  | #define  SABRE_CEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */ | 
|  | #define SABRE_UECE_AFAR_ALIAS	0x0048UL	/* Aliases to 0x0038 */ | 
|  | #define SABRE_IOMMU_CONTROL	0x0200UL | 
|  | #define  SABRE_IOMMUCTRL_ERRSTS	 0x0000000006000000UL	/* Error status bits */ | 
|  | #define  SABRE_IOMMUCTRL_ERR	 0x0000000001000000UL	/* Error present in IOTLB */ | 
|  | #define  SABRE_IOMMUCTRL_LCKEN	 0x0000000000800000UL	/* IOTLB lock enable */ | 
|  | #define  SABRE_IOMMUCTRL_LCKPTR	 0x0000000000780000UL	/* IOTLB lock pointer */ | 
|  | #define  SABRE_IOMMUCTRL_TSBSZ	 0x0000000000070000UL	/* TSB Size */ | 
|  | #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000 | 
|  | #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000 | 
|  | #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000 | 
|  | #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000 | 
|  | #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000 | 
|  | #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000 | 
|  | #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000 | 
|  | #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 | 
|  | #define  SABRE_IOMMUCTRL_TBWSZ	 0x0000000000000004UL	/* TSB assumed page size */ | 
|  | #define  SABRE_IOMMUCTRL_DENAB	 0x0000000000000002UL	/* Diagnostic Mode Enable */ | 
|  | #define  SABRE_IOMMUCTRL_ENAB	 0x0000000000000001UL	/* IOMMU Enable */ | 
|  | #define SABRE_IOMMU_TSBBASE	0x0208UL | 
|  | #define SABRE_IOMMU_FLUSH	0x0210UL | 
|  | #define SABRE_IMAP_A_SLOT0	0x0c00UL | 
|  | #define SABRE_IMAP_B_SLOT0	0x0c20UL | 
|  | #define SABRE_IMAP_SCSI		0x1000UL | 
|  | #define SABRE_IMAP_ETH		0x1008UL | 
|  | #define SABRE_IMAP_BPP		0x1010UL | 
|  | #define SABRE_IMAP_AU_REC	0x1018UL | 
|  | #define SABRE_IMAP_AU_PLAY	0x1020UL | 
|  | #define SABRE_IMAP_PFAIL	0x1028UL | 
|  | #define SABRE_IMAP_KMS		0x1030UL | 
|  | #define SABRE_IMAP_FLPY		0x1038UL | 
|  | #define SABRE_IMAP_SHW		0x1040UL | 
|  | #define SABRE_IMAP_KBD		0x1048UL | 
|  | #define SABRE_IMAP_MS		0x1050UL | 
|  | #define SABRE_IMAP_SER		0x1058UL | 
|  | #define SABRE_IMAP_UE		0x1070UL | 
|  | #define SABRE_IMAP_CE		0x1078UL | 
|  | #define SABRE_IMAP_PCIERR	0x1080UL | 
|  | #define SABRE_IMAP_GFX		0x1098UL | 
|  | #define SABRE_IMAP_EUPA		0x10a0UL | 
|  | #define SABRE_ICLR_A_SLOT0	0x1400UL | 
|  | #define SABRE_ICLR_B_SLOT0	0x1480UL | 
|  | #define SABRE_ICLR_SCSI		0x1800UL | 
|  | #define SABRE_ICLR_ETH		0x1808UL | 
|  | #define SABRE_ICLR_BPP		0x1810UL | 
|  | #define SABRE_ICLR_AU_REC	0x1818UL | 
|  | #define SABRE_ICLR_AU_PLAY	0x1820UL | 
|  | #define SABRE_ICLR_PFAIL	0x1828UL | 
|  | #define SABRE_ICLR_KMS		0x1830UL | 
|  | #define SABRE_ICLR_FLPY		0x1838UL | 
|  | #define SABRE_ICLR_SHW		0x1840UL | 
|  | #define SABRE_ICLR_KBD		0x1848UL | 
|  | #define SABRE_ICLR_MS		0x1850UL | 
|  | #define SABRE_ICLR_SER		0x1858UL | 
|  | #define SABRE_ICLR_UE		0x1870UL | 
|  | #define SABRE_ICLR_CE		0x1878UL | 
|  | #define SABRE_ICLR_PCIERR	0x1880UL | 
|  | #define SABRE_WRSYNC		0x1c20UL | 
|  | #define SABRE_PCICTRL		0x2000UL | 
|  | #define  SABRE_PCICTRL_MRLEN	 0x0000001000000000UL	/* Use MemoryReadLine for block loads/stores */ | 
|  | #define  SABRE_PCICTRL_SERR	 0x0000000400000000UL	/* Set when SERR asserted on PCI bus */ | 
|  | #define  SABRE_PCICTRL_ARBPARK	 0x0000000000200000UL	/* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ | 
|  | #define  SABRE_PCICTRL_CPUPRIO	 0x0000000000100000UL	/* Ultra-IIi granted every other bus cycle */ | 
|  | #define  SABRE_PCICTRL_ARBPRIO	 0x00000000000f0000UL	/* Slot which is granted every other bus cycle */ | 
|  | #define  SABRE_PCICTRL_ERREN	 0x0000000000000100UL	/* PCI Error Interrupt Enable */ | 
|  | #define  SABRE_PCICTRL_RTRYWE	 0x0000000000000080UL	/* DMA Flow Control 0=wait-if-possible 1=retry */ | 
|  | #define  SABRE_PCICTRL_AEN	 0x000000000000000fUL	/* Slot PCI arbitration enables */ | 
|  | #define SABRE_PIOAFSR		0x2010UL | 
|  | #define  SABRE_PIOAFSR_PMA	 0x8000000000000000UL	/* Primary Master Abort */ | 
|  | #define  SABRE_PIOAFSR_PTA	 0x4000000000000000UL	/* Primary Target Abort */ | 
|  | #define  SABRE_PIOAFSR_PRTRY	 0x2000000000000000UL	/* Primary Excessive Retries */ | 
|  | #define  SABRE_PIOAFSR_PPERR	 0x1000000000000000UL	/* Primary Parity Error */ | 
|  | #define  SABRE_PIOAFSR_SMA	 0x0800000000000000UL	/* Secondary Master Abort */ | 
|  | #define  SABRE_PIOAFSR_STA	 0x0400000000000000UL	/* Secondary Target Abort */ | 
|  | #define  SABRE_PIOAFSR_SRTRY	 0x0200000000000000UL	/* Secondary Excessive Retries */ | 
|  | #define  SABRE_PIOAFSR_SPERR	 0x0100000000000000UL	/* Secondary Parity Error */ | 
|  | #define  SABRE_PIOAFSR_BMSK	 0x0000ffff00000000UL	/* Byte Mask */ | 
|  | #define  SABRE_PIOAFSR_BLK	 0x0000000080000000UL	/* Was Block Operation */ | 
|  | #define SABRE_PIOAFAR		0x2018UL | 
|  | #define SABRE_PCIDIAG		0x2020UL | 
|  | #define  SABRE_PCIDIAG_DRTRY	 0x0000000000000040UL	/* Disable PIO Retry Limit */ | 
|  | #define  SABRE_PCIDIAG_IPAPAR	 0x0000000000000008UL	/* Invert PIO Address Parity */ | 
|  | #define  SABRE_PCIDIAG_IPDPAR	 0x0000000000000004UL	/* Invert PIO Data Parity */ | 
|  | #define  SABRE_PCIDIAG_IDDPAR	 0x0000000000000002UL	/* Invert DMA Data Parity */ | 
|  | #define  SABRE_PCIDIAG_ELPBK	 0x0000000000000001UL	/* Loopback Enable - not supported */ | 
|  | #define SABRE_PCITASR		0x2028UL | 
|  | #define  SABRE_PCITASR_EF	 0x0000000000000080UL	/* Respond to 0xe0000000-0xffffffff */ | 
|  | #define  SABRE_PCITASR_CD	 0x0000000000000040UL	/* Respond to 0xc0000000-0xdfffffff */ | 
|  | #define  SABRE_PCITASR_AB	 0x0000000000000020UL	/* Respond to 0xa0000000-0xbfffffff */ | 
|  | #define  SABRE_PCITASR_89	 0x0000000000000010UL	/* Respond to 0x80000000-0x9fffffff */ | 
|  | #define  SABRE_PCITASR_67	 0x0000000000000008UL	/* Respond to 0x60000000-0x7fffffff */ | 
|  | #define  SABRE_PCITASR_45	 0x0000000000000004UL	/* Respond to 0x40000000-0x5fffffff */ | 
|  | #define  SABRE_PCITASR_23	 0x0000000000000002UL	/* Respond to 0x20000000-0x3fffffff */ | 
|  | #define  SABRE_PCITASR_01	 0x0000000000000001UL	/* Respond to 0x00000000-0x1fffffff */ | 
|  | #define SABRE_PIOBUF_DIAG	0x5000UL | 
|  | #define SABRE_DMABUF_DIAGLO	0x5100UL | 
|  | #define SABRE_DMABUF_DIAGHI	0x51c0UL | 
|  | #define SABRE_IMAP_GFX_ALIAS	0x6000UL	/* Aliases to 0x1098 */ | 
|  | #define SABRE_IMAP_EUPA_ALIAS	0x8000UL	/* Aliases to 0x10a0 */ | 
|  | #define SABRE_IOMMU_VADIAG	0xa400UL | 
|  | #define SABRE_IOMMU_TCDIAG	0xa408UL | 
|  | #define SABRE_IOMMU_TAG		0xa580UL | 
|  | #define  SABRE_IOMMUTAG_ERRSTS	 0x0000000001800000UL	/* Error status bits */ | 
|  | #define  SABRE_IOMMUTAG_ERR	 0x0000000000400000UL	/* Error present */ | 
|  | #define  SABRE_IOMMUTAG_WRITE	 0x0000000000200000UL	/* Page is writable */ | 
|  | #define  SABRE_IOMMUTAG_STREAM	 0x0000000000100000UL	/* Streamable bit - unused */ | 
|  | #define  SABRE_IOMMUTAG_SIZE	 0x0000000000080000UL	/* 0=8k 1=16k */ | 
|  | #define  SABRE_IOMMUTAG_VPN	 0x000000000007ffffUL	/* Virtual Page Number [31:13] */ | 
|  | #define SABRE_IOMMU_DATA	0xa600UL | 
|  | #define SABRE_IOMMUDATA_VALID	 0x0000000040000000UL	/* Valid */ | 
|  | #define SABRE_IOMMUDATA_USED	 0x0000000020000000UL	/* Used (for LRU algorithm) */ | 
|  | #define SABRE_IOMMUDATA_CACHE	 0x0000000010000000UL	/* Cacheable */ | 
|  | #define SABRE_IOMMUDATA_PPN	 0x00000000001fffffUL	/* Physical Page Number [33:13] */ | 
|  | #define SABRE_PCI_IRQSTATE	0xa800UL | 
|  | #define SABRE_OBIO_IRQSTATE	0xa808UL | 
|  | #define SABRE_FFBCFG		0xf000UL | 
|  | #define  SABRE_FFBCFG_SPRQS	 0x000000000f000000	/* Slave P_RQST queue size */ | 
|  | #define  SABRE_FFBCFG_ONEREAD	 0x0000000000004000	/* Slave supports one outstanding read */ | 
|  | #define SABRE_MCCTRL0		0xf010UL | 
|  | #define  SABRE_MCCTRL0_RENAB	 0x0000000080000000	/* Refresh Enable */ | 
|  | #define  SABRE_MCCTRL0_EENAB	 0x0000000010000000	/* Enable all ECC functions */ | 
|  | #define  SABRE_MCCTRL0_11BIT	 0x0000000000001000	/* Enable 11-bit column addressing */ | 
|  | #define  SABRE_MCCTRL0_DPP	 0x0000000000000f00	/* DIMM Pair Present Bits */ | 
|  | #define  SABRE_MCCTRL0_RINTVL	 0x00000000000000ff	/* Refresh Interval */ | 
|  | #define SABRE_MCCTRL1		0xf018UL | 
|  | #define  SABRE_MCCTRL1_AMDC	 0x0000000038000000	/* Advance Memdata Clock */ | 
|  | #define  SABRE_MCCTRL1_ARDC	 0x0000000007000000	/* Advance DRAM Read Data Clock */ | 
|  | #define  SABRE_MCCTRL1_CSR	 0x0000000000e00000	/* CAS to RAS delay for CBR refresh */ | 
|  | #define  SABRE_MCCTRL1_CASRW	 0x00000000001c0000	/* CAS length for read/write */ | 
|  | #define  SABRE_MCCTRL1_RCD	 0x0000000000038000	/* RAS to CAS delay */ | 
|  | #define  SABRE_MCCTRL1_CP	 0x0000000000007000	/* CAS Precharge */ | 
|  | #define  SABRE_MCCTRL1_RP	 0x0000000000000e00	/* RAS Precharge */ | 
|  | #define  SABRE_MCCTRL1_RAS	 0x00000000000001c0	/* Length of RAS for refresh */ | 
|  | #define  SABRE_MCCTRL1_CASRW2	 0x0000000000000038	/* Must be same as CASRW */ | 
|  | #define  SABRE_MCCTRL1_RSC	 0x0000000000000007	/* RAS after CAS hold time */ | 
|  | #define SABRE_RESETCTRL		0xf020UL | 
|  |  | 
|  | #define SABRE_CONFIGSPACE	0x001000000UL | 
|  | #define SABRE_IOSPACE		0x002000000UL | 
|  | #define SABRE_IOSPACE_SIZE	0x000ffffffUL | 
|  | #define SABRE_MEMSPACE		0x100000000UL | 
|  | #define SABRE_MEMSPACE_SIZE	0x07fffffffUL | 
|  |  | 
|  | static int hummingbird_p; | 
|  | static struct pci_bus *sabre_root_bus; | 
|  |  | 
|  | /* SABRE error handling support. */ | 
|  | static void sabre_check_iommu_error(struct pci_pbm_info *pbm, | 
|  | unsigned long afsr, | 
|  | unsigned long afar) | 
|  | { | 
|  | struct iommu *iommu = pbm->iommu; | 
|  | unsigned long iommu_tag[16]; | 
|  | unsigned long iommu_data[16]; | 
|  | unsigned long flags; | 
|  | u64 control; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | control = sabre_read(iommu->iommu_control); | 
|  | if (control & SABRE_IOMMUCTRL_ERR) { | 
|  | char *type_string; | 
|  |  | 
|  | /* Clear the error encountered bit. | 
|  | * NOTE: On Sabre this is write 1 to clear, | 
|  | *       which is different from Psycho. | 
|  | */ | 
|  | sabre_write(iommu->iommu_control, control); | 
|  | switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { | 
|  | case 1: | 
|  | type_string = "Invalid Error"; | 
|  | break; | 
|  | case 3: | 
|  | type_string = "ECC Error"; | 
|  | break; | 
|  | default: | 
|  | type_string = "Unknown"; | 
|  | break; | 
|  | }; | 
|  | printk("%s: IOMMU Error, type[%s]\n", | 
|  | pbm->name, type_string); | 
|  |  | 
|  | /* Enter diagnostic mode and probe for error'd | 
|  | * entries in the IOTLB. | 
|  | */ | 
|  | control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); | 
|  | sabre_write(iommu->iommu_control, | 
|  | (control | SABRE_IOMMUCTRL_DENAB)); | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long base = pbm->controller_regs; | 
|  |  | 
|  | iommu_tag[i] = | 
|  | sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); | 
|  | iommu_data[i] = | 
|  | sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); | 
|  | sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); | 
|  | sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); | 
|  | } | 
|  | sabre_write(iommu->iommu_control, control); | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long tag, data; | 
|  |  | 
|  | tag = iommu_tag[i]; | 
|  | if (!(tag & SABRE_IOMMUTAG_ERR)) | 
|  | continue; | 
|  |  | 
|  | data = iommu_data[i]; | 
|  | switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { | 
|  | case 1: | 
|  | type_string = "Invalid Error"; | 
|  | break; | 
|  | case 3: | 
|  | type_string = "ECC Error"; | 
|  | break; | 
|  | default: | 
|  | type_string = "Unknown"; | 
|  | break; | 
|  | }; | 
|  | printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", | 
|  | pbm->name, i, tag, type_string, | 
|  | ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), | 
|  | ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), | 
|  | ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); | 
|  | printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", | 
|  | pbm->name, i, data, | 
|  | ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_ue_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct pci_pbm_info *pbm = dev_id; | 
|  | unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR; | 
|  | unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | /* Latch uncorrectable error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear the primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | | 
|  | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | | 
|  | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); | 
|  | if (!error_bits) | 
|  | return IRQ_NONE; | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("%s: Uncorrectable Error, primary error type[%s%s]\n", | 
|  | pbm->name, | 
|  | ((error_bits & SABRE_UEAFSR_PDRD) ? | 
|  | "DMA Read" : | 
|  | ((error_bits & SABRE_UEAFSR_PDWR) ? | 
|  | "DMA Write" : "???")), | 
|  | ((error_bits & SABRE_UEAFSR_PDTE) ? | 
|  | ":Translation Error" : "")); | 
|  | printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", | 
|  | pbm->name, | 
|  | (afsr & SABRE_UEAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_UEAFSR_OFF) >> 29UL, | 
|  | ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); | 
|  | printk("%s: UE AFAR [%016lx]\n", pbm->name, afar); | 
|  | printk("%s: UE Secondary errors [", pbm->name); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_UEAFSR_SDRD) { | 
|  | reported++; | 
|  | printk("(DMA Read)"); | 
|  | } | 
|  | if (afsr & SABRE_UEAFSR_SDWR) { | 
|  | reported++; | 
|  | printk("(DMA Write)"); | 
|  | } | 
|  | if (afsr & SABRE_UEAFSR_SDTE) { | 
|  | reported++; | 
|  | printk("(Translation Error)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | /* Interrogate IOMMU for error status. */ | 
|  | sabre_check_iommu_error(pbm, afsr, afar); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_ce_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct pci_pbm_info *pbm = dev_id; | 
|  | unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR; | 
|  | unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | /* Latch error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | | 
|  | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); | 
|  | if (!error_bits) | 
|  | return IRQ_NONE; | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("%s: Correctable Error, primary error type[%s]\n", | 
|  | pbm->name, | 
|  | ((error_bits & SABRE_CEAFSR_PDRD) ? | 
|  | "DMA Read" : | 
|  | ((error_bits & SABRE_CEAFSR_PDWR) ? | 
|  | "DMA Write" : "???"))); | 
|  |  | 
|  | /* XXX Use syndrome and afar to print out module string just like | 
|  | * XXX UDB CE trap handler does... -DaveM | 
|  | */ | 
|  | printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " | 
|  | "was_block(%d)\n", | 
|  | pbm->name, | 
|  | (afsr & SABRE_CEAFSR_ESYND) >> 48UL, | 
|  | (afsr & SABRE_CEAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_CEAFSR_OFF) >> 29UL, | 
|  | ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); | 
|  | printk("%s: CE AFAR [%016lx]\n", pbm->name, afar); | 
|  | printk("%s: CE Secondary errors [", pbm->name); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_CEAFSR_SDRD) { | 
|  | reported++; | 
|  | printk("(DMA Read)"); | 
|  | } | 
|  | if (afsr & SABRE_CEAFSR_SDWR) { | 
|  | reported++; | 
|  | printk("(DMA Write)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm) | 
|  | { | 
|  | unsigned long csr_reg, csr, csr_error_bits; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  | u16 stat; | 
|  |  | 
|  | csr_reg = pbm->controller_regs + SABRE_PCICTRL; | 
|  | csr = sabre_read(csr_reg); | 
|  | csr_error_bits = | 
|  | csr & SABRE_PCICTRL_SERR; | 
|  | if (csr_error_bits) { | 
|  | /* Clear the errors.  */ | 
|  | sabre_write(csr_reg, csr); | 
|  |  | 
|  | /* Log 'em.  */ | 
|  | if (csr_error_bits & SABRE_PCICTRL_SERR) | 
|  | printk("%s: PCI SERR signal asserted.\n", | 
|  | pbm->name); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  | pci_bus_read_config_word(sabre_root_bus, 0, | 
|  | PCI_STATUS, &stat); | 
|  | if (stat & (PCI_STATUS_PARITY | | 
|  | PCI_STATUS_SIG_TARGET_ABORT | | 
|  | PCI_STATUS_REC_TARGET_ABORT | | 
|  | PCI_STATUS_REC_MASTER_ABORT | | 
|  | PCI_STATUS_SIG_SYSTEM_ERROR)) { | 
|  | printk("%s: PCI bus error, PCI_STATUS[%04x]\n", | 
|  | pbm->name, stat); | 
|  | pci_bus_write_config_word(sabre_root_bus, 0, | 
|  | PCI_STATUS, 0xffff); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id) | 
|  | { | 
|  | struct pci_pbm_info *pbm = dev_id; | 
|  | unsigned long afsr_reg, afar_reg; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | afsr_reg = pbm->controller_regs + SABRE_PIOAFSR; | 
|  | afar_reg = pbm->controller_regs + SABRE_PIOAFAR; | 
|  |  | 
|  | /* Latch error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | | 
|  | SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | | 
|  | SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | | 
|  | SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); | 
|  | if (!error_bits) | 
|  | return sabre_pcierr_intr_other(pbm); | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("%s: PCI Error, primary error type[%s]\n", | 
|  | pbm->name, | 
|  | (((error_bits & SABRE_PIOAFSR_PMA) ? | 
|  | "Master Abort" : | 
|  | ((error_bits & SABRE_PIOAFSR_PTA) ? | 
|  | "Target Abort" : | 
|  | ((error_bits & SABRE_PIOAFSR_PRTRY) ? | 
|  | "Excessive Retries" : | 
|  | ((error_bits & SABRE_PIOAFSR_PPERR) ? | 
|  | "Parity Error" : "???")))))); | 
|  | printk("%s: bytemask[%04lx] was_block(%d)\n", | 
|  | pbm->name, | 
|  | (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); | 
|  | printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar); | 
|  | printk("%s: PCI Secondary errors [", pbm->name); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_PIOAFSR_SMA) { | 
|  | reported++; | 
|  | printk("(Master Abort)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_STA) { | 
|  | reported++; | 
|  | printk("(Target Abort)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_SRTRY) { | 
|  | reported++; | 
|  | printk("(Excessive Retries)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_SPERR) { | 
|  | reported++; | 
|  | printk("(Parity Error)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | /* For the error types shown, scan both PCI buses for devices | 
|  | * which have logged that error type. | 
|  | */ | 
|  |  | 
|  | /* If we see a Target Abort, this could be the result of an | 
|  | * IOMMU translation error of some sort.  It is extremely | 
|  | * useful to log this information as usually it indicates | 
|  | * a bug in the IOMMU support code or a PCI device driver. | 
|  | */ | 
|  | if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { | 
|  | sabre_check_iommu_error(pbm, afsr, afar); | 
|  | pci_scan_for_target_abort(pbm, pbm->pci_bus); | 
|  | } | 
|  | if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) | 
|  | pci_scan_for_master_abort(pbm, pbm->pci_bus); | 
|  |  | 
|  | /* For excessive retries, SABRE/PBM will abort the device | 
|  | * and there is no way to specifically check for excessive | 
|  | * retries in the config space status registers.  So what | 
|  | * we hope is that we'll catch it via the master/target | 
|  | * abort events. | 
|  | */ | 
|  |  | 
|  | if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) | 
|  | pci_scan_for_parity_error(pbm, pbm->pci_bus); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void sabre_register_error_handlers(struct pci_pbm_info *pbm) | 
|  | { | 
|  | struct device_node *dp = pbm->prom_node; | 
|  | struct of_device *op; | 
|  | unsigned long base = pbm->controller_regs; | 
|  | u64 tmp; | 
|  | int err; | 
|  |  | 
|  | if (pbm->chip_type == PBM_CHIP_TYPE_SABRE) | 
|  | dp = dp->parent; | 
|  |  | 
|  | op = of_find_device_by_node(dp); | 
|  | if (!op) | 
|  | return; | 
|  |  | 
|  | /* Sabre/Hummingbird IRQ property layout is: | 
|  | * 0: PCI ERR | 
|  | * 1: UE ERR | 
|  | * 2: CE ERR | 
|  | * 3: POWER FAIL | 
|  | */ | 
|  | if (op->num_irqs < 4) | 
|  | return; | 
|  |  | 
|  | /* We clear the error bits in the appropriate AFSR before | 
|  | * registering the handler so that we don't get spurious | 
|  | * interrupts. | 
|  | */ | 
|  | sabre_write(base + SABRE_UE_AFSR, | 
|  | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | | 
|  | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | | 
|  | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); | 
|  |  | 
|  | err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n", | 
|  | pbm->name, err); | 
|  |  | 
|  | sabre_write(base + SABRE_CE_AFSR, | 
|  | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | | 
|  | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); | 
|  |  | 
|  | err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n", | 
|  | pbm->name, err); | 
|  | err = request_irq(op->irqs[0], sabre_pcierr_intr, 0, | 
|  | "SABRE_PCIERR", pbm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n", | 
|  | pbm->name, err); | 
|  |  | 
|  | tmp = sabre_read(base + SABRE_PCICTRL); | 
|  | tmp |= SABRE_PCICTRL_ERREN; | 
|  | sabre_write(base + SABRE_PCICTRL, tmp); | 
|  | } | 
|  |  | 
|  | static void apb_init(struct pci_bus *sabre_bus) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { | 
|  | if (pdev->vendor == PCI_VENDOR_ID_SUN && | 
|  | pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { | 
|  | u16 word16; | 
|  |  | 
|  | pci_read_config_word(pdev, PCI_COMMAND, &word16); | 
|  | word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | | 
|  | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | | 
|  | PCI_COMMAND_IO; | 
|  | pci_write_config_word(pdev, PCI_COMMAND, word16); | 
|  |  | 
|  | /* Status register bits are "write 1 to clear". */ | 
|  | pci_write_config_word(pdev, PCI_STATUS, 0xffff); | 
|  | pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff); | 
|  |  | 
|  | /* Use a primary/seconday latency timer value | 
|  | * of 64. | 
|  | */ | 
|  | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64); | 
|  | pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64); | 
|  |  | 
|  | /* Enable reporting/forwarding of master aborts, | 
|  | * parity, and SERR. | 
|  | */ | 
|  | pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL, | 
|  | (PCI_BRIDGE_CTL_PARITY | | 
|  | PCI_BRIDGE_CTL_SERR | | 
|  | PCI_BRIDGE_CTL_MASTER_ABORT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init sabre_scan_bus(struct pci_pbm_info *pbm) | 
|  | { | 
|  | static int once; | 
|  |  | 
|  | /* The APB bridge speaks to the Sabre host PCI bridge | 
|  | * at 66Mhz, but the front side of APB runs at 33Mhz | 
|  | * for both segments. | 
|  | * | 
|  | * Hummingbird systems do not use APB, so they run | 
|  | * at 66MHZ. | 
|  | */ | 
|  | if (hummingbird_p) | 
|  | pbm->is_66mhz_capable = 1; | 
|  | else | 
|  | pbm->is_66mhz_capable = 0; | 
|  |  | 
|  | /* This driver has not been verified to handle | 
|  | * multiple SABREs yet, so trap this. | 
|  | * | 
|  | * Also note that the SABRE host bridge is hardwired | 
|  | * to live at bus 0. | 
|  | */ | 
|  | if (once != 0) { | 
|  | prom_printf("SABRE: Multiple controllers unsupported.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | once++; | 
|  |  | 
|  | pbm->pci_bus = pci_scan_one_pbm(pbm); | 
|  | if (!pbm->pci_bus) | 
|  | return; | 
|  |  | 
|  | sabre_root_bus = pbm->pci_bus; | 
|  |  | 
|  | apb_init(pbm->pci_bus); | 
|  |  | 
|  | sabre_register_error_handlers(pbm); | 
|  | } | 
|  |  | 
|  | static int sabre_iommu_init(struct pci_pbm_info *pbm, | 
|  | int tsbsize, unsigned long dvma_offset, | 
|  | u32 dma_mask) | 
|  | { | 
|  | struct iommu *iommu = pbm->iommu; | 
|  | unsigned long i; | 
|  | u64 control; | 
|  | int err; | 
|  |  | 
|  | /* Register addresses. */ | 
|  | iommu->iommu_control  = pbm->controller_regs + SABRE_IOMMU_CONTROL; | 
|  | iommu->iommu_tsbbase  = pbm->controller_regs + SABRE_IOMMU_TSBBASE; | 
|  | iommu->iommu_flush    = pbm->controller_regs + SABRE_IOMMU_FLUSH; | 
|  | iommu->iommu_tags     = iommu->iommu_flush + (0xa580UL - 0x0210UL); | 
|  | iommu->write_complete_reg = pbm->controller_regs + SABRE_WRSYNC; | 
|  | /* Sabre's IOMMU lacks ctx flushing. */ | 
|  | iommu->iommu_ctxflush = 0; | 
|  |  | 
|  | /* Invalidate TLB Entries. */ | 
|  | control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL); | 
|  | control |= SABRE_IOMMUCTRL_DENAB; | 
|  | sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control); | 
|  |  | 
|  | for(i = 0; i < 16; i++) { | 
|  | sabre_write(pbm->controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); | 
|  | sabre_write(pbm->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); | 
|  | } | 
|  |  | 
|  | /* Leave diag mode enabled for full-flushing done | 
|  | * in pci_iommu.c | 
|  | */ | 
|  | err = iommu_table_init(iommu, tsbsize * 1024 * 8, | 
|  | dvma_offset, dma_mask, pbm->numa_node); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | sabre_write(pbm->controller_regs + SABRE_IOMMU_TSBBASE, | 
|  | __pa(iommu->page_table)); | 
|  |  | 
|  | control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL); | 
|  | control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); | 
|  | control |= SABRE_IOMMUCTRL_ENAB; | 
|  | switch(tsbsize) { | 
|  | case 64: | 
|  | control |= SABRE_IOMMU_TSBSZ_64K; | 
|  | break; | 
|  | case 128: | 
|  | control |= SABRE_IOMMU_TSBSZ_128K; | 
|  | break; | 
|  | default: | 
|  | prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); | 
|  | prom_halt(); | 
|  | break; | 
|  | } | 
|  | sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init sabre_pbm_init(struct pci_controller_info *p, | 
|  | struct pci_pbm_info *pbm, struct device_node *dp) | 
|  | { | 
|  | pbm->name = dp->full_name; | 
|  | printk("%s: SABRE PCI Bus Module\n", pbm->name); | 
|  |  | 
|  | pbm->numa_node = -1; | 
|  |  | 
|  | pbm->scan_bus = sabre_scan_bus; | 
|  | pbm->pci_ops = &sun4u_pci_ops; | 
|  | pbm->config_space_reg_bits = 8; | 
|  |  | 
|  | pbm->index = pci_num_pbms++; | 
|  |  | 
|  | pbm->chip_type = PBM_CHIP_TYPE_SABRE; | 
|  | pbm->parent = p; | 
|  | pbm->prom_node = dp; | 
|  | pci_get_pbm_props(pbm); | 
|  |  | 
|  | pci_determine_mem_io_space(pbm); | 
|  | } | 
|  |  | 
|  | void __init sabre_init(struct device_node *dp, char *model_name) | 
|  | { | 
|  | const struct linux_prom64_registers *pr_regs; | 
|  | struct pci_controller_info *p; | 
|  | struct pci_pbm_info *pbm; | 
|  | struct iommu *iommu; | 
|  | int tsbsize; | 
|  | const u32 *vdma; | 
|  | u32 upa_portid, dma_mask; | 
|  | u64 clear_irq; | 
|  |  | 
|  | hummingbird_p = 0; | 
|  | if (!strcmp(model_name, "pci108e,a001")) | 
|  | hummingbird_p = 1; | 
|  | else if (!strcmp(model_name, "SUNW,sabre")) { | 
|  | const char *compat = of_get_property(dp, "compatible", NULL); | 
|  | if (compat && !strcmp(compat, "pci108e,a001")) | 
|  | hummingbird_p = 1; | 
|  | if (!hummingbird_p) { | 
|  | struct device_node *dp; | 
|  |  | 
|  | /* Of course, Sun has to encode things a thousand | 
|  | * different ways, inconsistently. | 
|  | */ | 
|  | for_each_node_by_type(dp, "cpu") { | 
|  | if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe")) | 
|  | hummingbird_p = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | p = kzalloc(sizeof(*p), GFP_ATOMIC); | 
|  | if (!p) | 
|  | goto fatal_memory_error; | 
|  |  | 
|  | iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC); | 
|  | if (!iommu) | 
|  | goto fatal_memory_error; | 
|  | pbm = &p->pbm_A; | 
|  | pbm->iommu = iommu; | 
|  |  | 
|  | upa_portid = of_getintprop_default(dp, "upa-portid", 0xff); | 
|  |  | 
|  | pbm->next = pci_pbm_root; | 
|  | pci_pbm_root = pbm; | 
|  |  | 
|  | pbm->portid = upa_portid; | 
|  |  | 
|  | /* | 
|  | * Map in SABRE register set and report the presence of this SABRE. | 
|  | */ | 
|  |  | 
|  | pr_regs = of_get_property(dp, "reg", NULL); | 
|  |  | 
|  | /* | 
|  | * First REG in property is base of entire SABRE register space. | 
|  | */ | 
|  | pbm->controller_regs = pr_regs[0].phys_addr; | 
|  |  | 
|  | /* Clear interrupts */ | 
|  |  | 
|  | /* PCI first */ | 
|  | for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) | 
|  | sabre_write(pbm->controller_regs + clear_irq, 0x0UL); | 
|  |  | 
|  | /* Then OBIO */ | 
|  | for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) | 
|  | sabre_write(pbm->controller_regs + clear_irq, 0x0UL); | 
|  |  | 
|  | /* Error interrupts are enabled later after the bus scan. */ | 
|  | sabre_write(pbm->controller_regs + SABRE_PCICTRL, | 
|  | (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR | | 
|  | SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); | 
|  |  | 
|  | /* Now map in PCI config space for entire SABRE. */ | 
|  | pbm->config_space = | 
|  | (pbm->controller_regs + SABRE_CONFIGSPACE); | 
|  |  | 
|  | vdma = of_get_property(dp, "virtual-dma", NULL); | 
|  |  | 
|  | dma_mask = vdma[0]; | 
|  | switch(vdma[1]) { | 
|  | case 0x20000000: | 
|  | dma_mask |= 0x1fffffff; | 
|  | tsbsize = 64; | 
|  | break; | 
|  | case 0x40000000: | 
|  | dma_mask |= 0x3fffffff; | 
|  | tsbsize = 128; | 
|  | break; | 
|  |  | 
|  | case 0x80000000: | 
|  | dma_mask |= 0x7fffffff; | 
|  | tsbsize = 128; | 
|  | break; | 
|  | default: | 
|  | prom_printf("SABRE: strange virtual-dma size.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | if (sabre_iommu_init(pbm, tsbsize, vdma[0], dma_mask)) | 
|  | goto fatal_memory_error; | 
|  |  | 
|  | /* | 
|  | * Look for APB underneath. | 
|  | */ | 
|  | sabre_pbm_init(p, pbm, dp); | 
|  | return; | 
|  |  | 
|  | fatal_memory_error: | 
|  | prom_printf("SABRE: Fatal memory allocation error.\n"); | 
|  | prom_halt(); | 
|  | } |