|  | // ------------------------------------------------------------------------- | 
|  | // Copyright (c) 2001, Dr Brian Gladman <                 >, Worcester, UK. | 
|  | // All rights reserved. | 
|  | // | 
|  | // LICENSE TERMS | 
|  | // | 
|  | // The free distribution and use of this software in both source and binary | 
|  | // form is allowed (with or without changes) provided that: | 
|  | // | 
|  | //   1. distributions of this source code include the above copyright | 
|  | //      notice, this list of conditions and the following disclaimer// | 
|  | // | 
|  | //   2. distributions in binary form include the above copyright | 
|  | //      notice, this list of conditions and the following disclaimer | 
|  | //      in the documentation and/or other associated materials// | 
|  | // | 
|  | //   3. the copyright holder's name is not used to endorse products | 
|  | //      built using this software without specific written permission. | 
|  | // | 
|  | // | 
|  | // ALTERNATIVELY, provided that this notice is retained in full, this product | 
|  | // may be distributed under the terms of the GNU General Public License (GPL), | 
|  | // in which case the provisions of the GPL apply INSTEAD OF those given above. | 
|  | // | 
|  | // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> | 
|  | // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
|  |  | 
|  | // DISCLAIMER | 
|  | // | 
|  | // This software is provided 'as is' with no explicit or implied warranties | 
|  | // in respect of its properties including, but not limited to, correctness | 
|  | // and fitness for purpose. | 
|  | // ------------------------------------------------------------------------- | 
|  | // Issue Date: 29/07/2002 | 
|  |  | 
|  | .file "aes-i586-asm.S" | 
|  | .text | 
|  |  | 
|  | #include <asm/asm-offsets.h> | 
|  |  | 
|  | #define tlen 1024   // length of each of 4 'xor' arrays (256 32-bit words) | 
|  |  | 
|  | /* offsets to parameters with one register pushed onto stack */ | 
|  | #define tfm 8 | 
|  | #define out_blk 12 | 
|  | #define in_blk 16 | 
|  |  | 
|  | /* offsets in crypto_tfm structure */ | 
|  | #define klen (crypto_tfm_ctx_offset + 0) | 
|  | #define ekey (crypto_tfm_ctx_offset + 4) | 
|  | #define dkey (crypto_tfm_ctx_offset + 244) | 
|  |  | 
|  | // register mapping for encrypt and decrypt subroutines | 
|  |  | 
|  | #define r0  eax | 
|  | #define r1  ebx | 
|  | #define r2  ecx | 
|  | #define r3  edx | 
|  | #define r4  esi | 
|  | #define r5  edi | 
|  |  | 
|  | #define eaxl  al | 
|  | #define eaxh  ah | 
|  | #define ebxl  bl | 
|  | #define ebxh  bh | 
|  | #define ecxl  cl | 
|  | #define ecxh  ch | 
|  | #define edxl  dl | 
|  | #define edxh  dh | 
|  |  | 
|  | #define _h(reg) reg##h | 
|  | #define h(reg) _h(reg) | 
|  |  | 
|  | #define _l(reg) reg##l | 
|  | #define l(reg) _l(reg) | 
|  |  | 
|  | // This macro takes a 32-bit word representing a column and uses | 
|  | // each of its four bytes to index into four tables of 256 32-bit | 
|  | // words to obtain values that are then xored into the appropriate | 
|  | // output registers r0, r1, r4 or r5. | 
|  |  | 
|  | // Parameters: | 
|  | // table table base address | 
|  | //   %1  out_state[0] | 
|  | //   %2  out_state[1] | 
|  | //   %3  out_state[2] | 
|  | //   %4  out_state[3] | 
|  | //   idx input register for the round (destroyed) | 
|  | //   tmp scratch register for the round | 
|  | // sched key schedule | 
|  |  | 
|  | #define do_col(table, a1,a2,a3,a4, idx, tmp)	\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | xor     table(,%tmp,4),%a1;		\ | 
|  | movzx   %h(idx),%tmp;			\ | 
|  | shr     $16,%idx;			\ | 
|  | xor     table+tlen(,%tmp,4),%a2;	\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | movzx   %h(idx),%idx;			\ | 
|  | xor     table+2*tlen(,%tmp,4),%a3;	\ | 
|  | xor     table+3*tlen(,%idx,4),%a4; | 
|  |  | 
|  | // initialise output registers from the key schedule | 
|  | // NB1: original value of a3 is in idx on exit | 
|  | // NB2: original values of a1,a2,a4 aren't used | 
|  | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ | 
|  | mov     0 sched,%a1;			\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | mov     12 sched,%a2;			\ | 
|  | xor     table(,%tmp,4),%a1;		\ | 
|  | mov     4 sched,%a4;			\ | 
|  | movzx   %h(idx),%tmp;			\ | 
|  | shr     $16,%idx;			\ | 
|  | xor     table+tlen(,%tmp,4),%a2;	\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | movzx   %h(idx),%idx;			\ | 
|  | xor     table+3*tlen(,%idx,4),%a4;	\ | 
|  | mov     %a3,%idx;			\ | 
|  | mov     8 sched,%a3;			\ | 
|  | xor     table+2*tlen(,%tmp,4),%a3; | 
|  |  | 
|  | // initialise output registers from the key schedule | 
|  | // NB1: original value of a3 is in idx on exit | 
|  | // NB2: original values of a1,a2,a4 aren't used | 
|  | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ | 
|  | mov     0 sched,%a1;			\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | mov     4 sched,%a2;			\ | 
|  | xor     table(,%tmp,4),%a1;		\ | 
|  | mov     12 sched,%a4;			\ | 
|  | movzx   %h(idx),%tmp;			\ | 
|  | shr     $16,%idx;			\ | 
|  | xor     table+tlen(,%tmp,4),%a2;	\ | 
|  | movzx   %l(idx),%tmp;			\ | 
|  | movzx   %h(idx),%idx;			\ | 
|  | xor     table+3*tlen(,%idx,4),%a4;	\ | 
|  | mov     %a3,%idx;			\ | 
|  | mov     8 sched,%a3;			\ | 
|  | xor     table+2*tlen(,%tmp,4),%a3; | 
|  |  | 
|  |  | 
|  | // original Gladman had conditional saves to MMX regs. | 
|  | #define save(a1, a2)		\ | 
|  | mov     %a2,4*a1(%esp) | 
|  |  | 
|  | #define restore(a1, a2)		\ | 
|  | mov     4*a2(%esp),%a1 | 
|  |  | 
|  | // These macros perform a forward encryption cycle. They are entered with | 
|  | // the first previous round column values in r0,r1,r4,r5 and | 
|  | // exit with the final values in the same registers, using stack | 
|  | // for temporary storage. | 
|  |  | 
|  | // round column values | 
|  | // on entry: r0,r1,r4,r5 | 
|  | // on exit:  r2,r1,r4,r5 | 
|  | #define fwd_rnd1(arg, table)						\ | 
|  | save   (0,r1);							\ | 
|  | save   (1,r5);							\ | 
|  | \ | 
|  | /* compute new column values */					\ | 
|  | do_fcol(table, r2,r5,r4,r1, r0,r3, arg);	/* idx=r0 */	\ | 
|  | do_col (table, r4,r1,r2,r5, r0,r3);		/* idx=r4 */	\ | 
|  | restore(r0,0);							\ | 
|  | do_col (table, r1,r2,r5,r4, r0,r3);		/* idx=r1 */	\ | 
|  | restore(r0,1);							\ | 
|  | do_col (table, r5,r4,r1,r2, r0,r3);		/* idx=r5 */ | 
|  |  | 
|  | // round column values | 
|  | // on entry: r2,r1,r4,r5 | 
|  | // on exit:  r0,r1,r4,r5 | 
|  | #define fwd_rnd2(arg, table)						\ | 
|  | save   (0,r1);							\ | 
|  | save   (1,r5);							\ | 
|  | \ | 
|  | /* compute new column values */					\ | 
|  | do_fcol(table, r0,r5,r4,r1, r2,r3, arg);	/* idx=r2 */	\ | 
|  | do_col (table, r4,r1,r0,r5, r2,r3);		/* idx=r4 */	\ | 
|  | restore(r2,0);							\ | 
|  | do_col (table, r1,r0,r5,r4, r2,r3);		/* idx=r1 */	\ | 
|  | restore(r2,1);							\ | 
|  | do_col (table, r5,r4,r1,r0, r2,r3);		/* idx=r5 */ | 
|  |  | 
|  | // These macros performs an inverse encryption cycle. They are entered with | 
|  | // the first previous round column values in r0,r1,r4,r5 and | 
|  | // exit with the final values in the same registers, using stack | 
|  | // for temporary storage | 
|  |  | 
|  | // round column values | 
|  | // on entry: r0,r1,r4,r5 | 
|  | // on exit:  r2,r1,r4,r5 | 
|  | #define inv_rnd1(arg, table)						\ | 
|  | save    (0,r1);							\ | 
|  | save    (1,r5);							\ | 
|  | \ | 
|  | /* compute new column values */					\ | 
|  | do_icol(table, r2,r1,r4,r5, r0,r3, arg);	/* idx=r0 */	\ | 
|  | do_col (table, r4,r5,r2,r1, r0,r3);		/* idx=r4 */	\ | 
|  | restore(r0,0);							\ | 
|  | do_col (table, r1,r4,r5,r2, r0,r3);		/* idx=r1 */	\ | 
|  | restore(r0,1);							\ | 
|  | do_col (table, r5,r2,r1,r4, r0,r3);		/* idx=r5 */ | 
|  |  | 
|  | // round column values | 
|  | // on entry: r2,r1,r4,r5 | 
|  | // on exit:  r0,r1,r4,r5 | 
|  | #define inv_rnd2(arg, table)						\ | 
|  | save    (0,r1);							\ | 
|  | save    (1,r5);							\ | 
|  | \ | 
|  | /* compute new column values */					\ | 
|  | do_icol(table, r0,r1,r4,r5, r2,r3, arg);	/* idx=r2 */	\ | 
|  | do_col (table, r4,r5,r0,r1, r2,r3);		/* idx=r4 */	\ | 
|  | restore(r2,0);							\ | 
|  | do_col (table, r1,r4,r5,r0, r2,r3);		/* idx=r1 */	\ | 
|  | restore(r2,1);							\ | 
|  | do_col (table, r5,r0,r1,r4, r2,r3);		/* idx=r5 */ | 
|  |  | 
|  | // AES (Rijndael) Encryption Subroutine | 
|  | /* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ | 
|  |  | 
|  | .global  aes_enc_blk | 
|  |  | 
|  | .extern  crypto_ft_tab | 
|  | .extern  crypto_fl_tab | 
|  |  | 
|  | .align 4 | 
|  |  | 
|  | aes_enc_blk: | 
|  | push    %ebp | 
|  | mov     tfm(%esp),%ebp | 
|  |  | 
|  | // CAUTION: the order and the values used in these assigns | 
|  | // rely on the register mappings | 
|  |  | 
|  | 1:	push    %ebx | 
|  | mov     in_blk+4(%esp),%r2 | 
|  | push    %esi | 
|  | mov     klen(%ebp),%r3   // key size | 
|  | push    %edi | 
|  | #if ekey != 0 | 
|  | lea     ekey(%ebp),%ebp  // key pointer | 
|  | #endif | 
|  |  | 
|  | // input four columns and xor in first round key | 
|  |  | 
|  | mov     (%r2),%r0 | 
|  | mov     4(%r2),%r1 | 
|  | mov     8(%r2),%r4 | 
|  | mov     12(%r2),%r5 | 
|  | xor     (%ebp),%r0 | 
|  | xor     4(%ebp),%r1 | 
|  | xor     8(%ebp),%r4 | 
|  | xor     12(%ebp),%r5 | 
|  |  | 
|  | sub     $8,%esp		// space for register saves on stack | 
|  | add     $16,%ebp	// increment to next round key | 
|  | cmp     $24,%r3 | 
|  | jb      4f		// 10 rounds for 128-bit key | 
|  | lea     32(%ebp),%ebp | 
|  | je      3f		// 12 rounds for 192-bit key | 
|  | lea     32(%ebp),%ebp | 
|  |  | 
|  | 2:	fwd_rnd1( -64(%ebp), crypto_ft_tab)	// 14 rounds for 256-bit key | 
|  | fwd_rnd2( -48(%ebp), crypto_ft_tab) | 
|  | 3:	fwd_rnd1( -32(%ebp), crypto_ft_tab)	// 12 rounds for 192-bit key | 
|  | fwd_rnd2( -16(%ebp), crypto_ft_tab) | 
|  | 4:	fwd_rnd1(    (%ebp), crypto_ft_tab)	// 10 rounds for 128-bit key | 
|  | fwd_rnd2( +16(%ebp), crypto_ft_tab) | 
|  | fwd_rnd1( +32(%ebp), crypto_ft_tab) | 
|  | fwd_rnd2( +48(%ebp), crypto_ft_tab) | 
|  | fwd_rnd1( +64(%ebp), crypto_ft_tab) | 
|  | fwd_rnd2( +80(%ebp), crypto_ft_tab) | 
|  | fwd_rnd1( +96(%ebp), crypto_ft_tab) | 
|  | fwd_rnd2(+112(%ebp), crypto_ft_tab) | 
|  | fwd_rnd1(+128(%ebp), crypto_ft_tab) | 
|  | fwd_rnd2(+144(%ebp), crypto_fl_tab)	// last round uses a different table | 
|  |  | 
|  | // move final values to the output array.  CAUTION: the | 
|  | // order of these assigns rely on the register mappings | 
|  |  | 
|  | add     $8,%esp | 
|  | mov     out_blk+12(%esp),%ebp | 
|  | mov     %r5,12(%ebp) | 
|  | pop     %edi | 
|  | mov     %r4,8(%ebp) | 
|  | pop     %esi | 
|  | mov     %r1,4(%ebp) | 
|  | pop     %ebx | 
|  | mov     %r0,(%ebp) | 
|  | pop     %ebp | 
|  | ret | 
|  |  | 
|  | // AES (Rijndael) Decryption Subroutine | 
|  | /* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ | 
|  |  | 
|  | .global  aes_dec_blk | 
|  |  | 
|  | .extern  crypto_it_tab | 
|  | .extern  crypto_il_tab | 
|  |  | 
|  | .align 4 | 
|  |  | 
|  | aes_dec_blk: | 
|  | push    %ebp | 
|  | mov     tfm(%esp),%ebp | 
|  |  | 
|  | // CAUTION: the order and the values used in these assigns | 
|  | // rely on the register mappings | 
|  |  | 
|  | 1:	push    %ebx | 
|  | mov     in_blk+4(%esp),%r2 | 
|  | push    %esi | 
|  | mov     klen(%ebp),%r3   // key size | 
|  | push    %edi | 
|  | #if dkey != 0 | 
|  | lea     dkey(%ebp),%ebp  // key pointer | 
|  | #endif | 
|  |  | 
|  | // input four columns and xor in first round key | 
|  |  | 
|  | mov     (%r2),%r0 | 
|  | mov     4(%r2),%r1 | 
|  | mov     8(%r2),%r4 | 
|  | mov     12(%r2),%r5 | 
|  | xor     (%ebp),%r0 | 
|  | xor     4(%ebp),%r1 | 
|  | xor     8(%ebp),%r4 | 
|  | xor     12(%ebp),%r5 | 
|  |  | 
|  | sub     $8,%esp		// space for register saves on stack | 
|  | add     $16,%ebp	// increment to next round key | 
|  | cmp     $24,%r3 | 
|  | jb      4f		// 10 rounds for 128-bit key | 
|  | lea     32(%ebp),%ebp | 
|  | je      3f		// 12 rounds for 192-bit key | 
|  | lea     32(%ebp),%ebp | 
|  |  | 
|  | 2:	inv_rnd1( -64(%ebp), crypto_it_tab)	// 14 rounds for 256-bit key | 
|  | inv_rnd2( -48(%ebp), crypto_it_tab) | 
|  | 3:	inv_rnd1( -32(%ebp), crypto_it_tab)	// 12 rounds for 192-bit key | 
|  | inv_rnd2( -16(%ebp), crypto_it_tab) | 
|  | 4:	inv_rnd1(    (%ebp), crypto_it_tab)	// 10 rounds for 128-bit key | 
|  | inv_rnd2( +16(%ebp), crypto_it_tab) | 
|  | inv_rnd1( +32(%ebp), crypto_it_tab) | 
|  | inv_rnd2( +48(%ebp), crypto_it_tab) | 
|  | inv_rnd1( +64(%ebp), crypto_it_tab) | 
|  | inv_rnd2( +80(%ebp), crypto_it_tab) | 
|  | inv_rnd1( +96(%ebp), crypto_it_tab) | 
|  | inv_rnd2(+112(%ebp), crypto_it_tab) | 
|  | inv_rnd1(+128(%ebp), crypto_it_tab) | 
|  | inv_rnd2(+144(%ebp), crypto_il_tab)	// last round uses a different table | 
|  |  | 
|  | // move final values to the output array.  CAUTION: the | 
|  | // order of these assigns rely on the register mappings | 
|  |  | 
|  | add     $8,%esp | 
|  | mov     out_blk+12(%esp),%ebp | 
|  | mov     %r5,12(%ebp) | 
|  | pop     %edi | 
|  | mov     %r4,8(%ebp) | 
|  | pop     %esi | 
|  | mov     %r1,4(%ebp) | 
|  | pop     %ebx | 
|  | mov     %r0,(%ebp) | 
|  | pop     %ebp | 
|  | ret |