|  | /* | 
|  | *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar | 
|  | * | 
|  | * This file contains the lowest level x86-specific interrupt | 
|  | * entry, irq-stacks and irq statistics code. All the remaining | 
|  | * irq logic is done by the generic kernel/irq/ code and | 
|  | * by the x86-specific irq controller code. (e.g. i8259.c and | 
|  | * io_apic.c.) | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <asm/apic.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); | 
|  | EXPORT_PER_CPU_SYMBOL(irq_stat); | 
|  |  | 
|  | DEFINE_PER_CPU(struct pt_regs *, irq_regs); | 
|  | EXPORT_PER_CPU_SYMBOL(irq_regs); | 
|  |  | 
|  | /* | 
|  | * 'what should we do if we get a hw irq event on an illegal vector'. | 
|  | * each architecture has to answer this themselves. | 
|  | */ | 
|  | void ack_bad_irq(unsigned int irq) | 
|  | { | 
|  | printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * Currently unexpected vectors happen only on SMP and APIC. | 
|  | * We _must_ ack these because every local APIC has only N | 
|  | * irq slots per priority level, and a 'hanging, unacked' IRQ | 
|  | * holds up an irq slot - in excessive cases (when multiple | 
|  | * unexpected vectors occur) that might lock up the APIC | 
|  | * completely. | 
|  | * But only ack when the APIC is enabled -AK | 
|  | */ | 
|  | if (cpu_has_apic) | 
|  | ack_APIC_irq(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_STACKOVERFLOW | 
|  | /* Debugging check for stack overflow: is there less than 1KB free? */ | 
|  | static int check_stack_overflow(void) | 
|  | { | 
|  | long sp; | 
|  |  | 
|  | __asm__ __volatile__("andl %%esp,%0" : | 
|  | "=r" (sp) : "0" (THREAD_SIZE - 1)); | 
|  |  | 
|  | return sp < (sizeof(struct thread_info) + STACK_WARN); | 
|  | } | 
|  |  | 
|  | static void print_stack_overflow(void) | 
|  | { | 
|  | printk(KERN_WARNING "low stack detected by irq handler\n"); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int check_stack_overflow(void) { return 0; } | 
|  | static inline void print_stack_overflow(void) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_4KSTACKS | 
|  | /* | 
|  | * per-CPU IRQ handling contexts (thread information and stack) | 
|  | */ | 
|  | union irq_ctx { | 
|  | struct thread_info      tinfo; | 
|  | u32                     stack[THREAD_SIZE/sizeof(u32)]; | 
|  | }; | 
|  |  | 
|  | static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly; | 
|  | static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly; | 
|  |  | 
|  | static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; | 
|  | static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss; | 
|  |  | 
|  | static void call_on_stack(void *func, void *stack) | 
|  | { | 
|  | asm volatile("xchgl	%%ebx,%%esp	\n" | 
|  | "call	*%%edi		\n" | 
|  | "movl	%%ebx,%%esp	\n" | 
|  | : "=b" (stack) | 
|  | : "0" (stack), | 
|  | "D"(func) | 
|  | : "memory", "cc", "edx", "ecx", "eax"); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) | 
|  | { | 
|  | union irq_ctx *curctx, *irqctx; | 
|  | u32 *isp, arg1, arg2; | 
|  |  | 
|  | curctx = (union irq_ctx *) current_thread_info(); | 
|  | irqctx = hardirq_ctx[smp_processor_id()]; | 
|  |  | 
|  | /* | 
|  | * this is where we switch to the IRQ stack. However, if we are | 
|  | * already using the IRQ stack (because we interrupted a hardirq | 
|  | * handler) we can't do that and just have to keep using the | 
|  | * current stack (which is the irq stack already after all) | 
|  | */ | 
|  | if (unlikely(curctx == irqctx)) | 
|  | return 0; | 
|  |  | 
|  | /* build the stack frame on the IRQ stack */ | 
|  | isp = (u32 *) ((char*)irqctx + sizeof(*irqctx)); | 
|  | irqctx->tinfo.task = curctx->tinfo.task; | 
|  | irqctx->tinfo.previous_esp = current_stack_pointer; | 
|  |  | 
|  | /* | 
|  | * Copy the softirq bits in preempt_count so that the | 
|  | * softirq checks work in the hardirq context. | 
|  | */ | 
|  | irqctx->tinfo.preempt_count = | 
|  | (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) | | 
|  | (curctx->tinfo.preempt_count & SOFTIRQ_MASK); | 
|  |  | 
|  | if (unlikely(overflow)) | 
|  | call_on_stack(print_stack_overflow, isp); | 
|  |  | 
|  | asm volatile("xchgl	%%ebx,%%esp	\n" | 
|  | "call	*%%edi		\n" | 
|  | "movl	%%ebx,%%esp	\n" | 
|  | : "=a" (arg1), "=d" (arg2), "=b" (isp) | 
|  | :  "0" (irq),   "1" (desc),  "2" (isp), | 
|  | "D" (desc->handle_irq) | 
|  | : "memory", "cc", "ecx"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate per-cpu stacks for hardirq and for softirq processing | 
|  | */ | 
|  | void __cpuinit irq_ctx_init(int cpu) | 
|  | { | 
|  | union irq_ctx *irqctx; | 
|  |  | 
|  | if (hardirq_ctx[cpu]) | 
|  | return; | 
|  |  | 
|  | irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE]; | 
|  | irqctx->tinfo.task		= NULL; | 
|  | irqctx->tinfo.exec_domain	= NULL; | 
|  | irqctx->tinfo.cpu		= cpu; | 
|  | irqctx->tinfo.preempt_count	= HARDIRQ_OFFSET; | 
|  | irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0); | 
|  |  | 
|  | hardirq_ctx[cpu] = irqctx; | 
|  |  | 
|  | irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE]; | 
|  | irqctx->tinfo.task		= NULL; | 
|  | irqctx->tinfo.exec_domain	= NULL; | 
|  | irqctx->tinfo.cpu		= cpu; | 
|  | irqctx->tinfo.preempt_count	= 0; | 
|  | irqctx->tinfo.addr_limit	= MAKE_MM_SEG(0); | 
|  |  | 
|  | softirq_ctx[cpu] = irqctx; | 
|  |  | 
|  | printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n", | 
|  | cpu,hardirq_ctx[cpu],softirq_ctx[cpu]); | 
|  | } | 
|  |  | 
|  | void irq_ctx_exit(int cpu) | 
|  | { | 
|  | hardirq_ctx[cpu] = NULL; | 
|  | } | 
|  |  | 
|  | asmlinkage void do_softirq(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct thread_info *curctx; | 
|  | union irq_ctx *irqctx; | 
|  | u32 *isp; | 
|  |  | 
|  | if (in_interrupt()) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (local_softirq_pending()) { | 
|  | curctx = current_thread_info(); | 
|  | irqctx = softirq_ctx[smp_processor_id()]; | 
|  | irqctx->tinfo.task = curctx->task; | 
|  | irqctx->tinfo.previous_esp = current_stack_pointer; | 
|  |  | 
|  | /* build the stack frame on the softirq stack */ | 
|  | isp = (u32*) ((char*)irqctx + sizeof(*irqctx)); | 
|  |  | 
|  | call_on_stack(__do_softirq, isp); | 
|  | /* | 
|  | * Shouldnt happen, we returned above if in_interrupt(): | 
|  | */ | 
|  | WARN_ON_ONCE(softirq_count()); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int | 
|  | execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * do_IRQ handles all normal device IRQ's (the special | 
|  | * SMP cross-CPU interrupts have their own specific | 
|  | * handlers). | 
|  | */ | 
|  | unsigned int do_IRQ(struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs; | 
|  | /* high bit used in ret_from_ code */ | 
|  | int overflow, irq = ~regs->orig_ax; | 
|  | struct irq_desc *desc = irq_desc + irq; | 
|  |  | 
|  | if (unlikely((unsigned)irq >= NR_IRQS)) { | 
|  | printk(KERN_EMERG "%s: cannot handle IRQ %d\n", | 
|  | __func__, irq); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | old_regs = set_irq_regs(regs); | 
|  | irq_enter(); | 
|  |  | 
|  | overflow = check_stack_overflow(); | 
|  |  | 
|  | if (!execute_on_irq_stack(overflow, desc, irq)) { | 
|  | if (unlikely(overflow)) | 
|  | print_stack_overflow(); | 
|  | desc->handle_irq(irq, desc); | 
|  | } | 
|  |  | 
|  | irq_exit(); | 
|  | set_irq_regs(old_regs); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt statistics: | 
|  | */ | 
|  |  | 
|  | atomic_t irq_err_count; | 
|  |  | 
|  | /* | 
|  | * /proc/interrupts printing: | 
|  | */ | 
|  |  | 
|  | int show_interrupts(struct seq_file *p, void *v) | 
|  | { | 
|  | int i = *(loff_t *) v, j; | 
|  | struct irqaction * action; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (i == 0) { | 
|  | seq_printf(p, "           "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "CPU%-8d",j); | 
|  | seq_putc(p, '\n'); | 
|  | } | 
|  |  | 
|  | if (i < NR_IRQS) { | 
|  | unsigned any_count = 0; | 
|  |  | 
|  | spin_lock_irqsave(&irq_desc[i].lock, flags); | 
|  | #ifndef CONFIG_SMP | 
|  | any_count = kstat_irqs(i); | 
|  | #else | 
|  | for_each_online_cpu(j) | 
|  | any_count |= kstat_cpu(j).irqs[i]; | 
|  | #endif | 
|  | action = irq_desc[i].action; | 
|  | if (!action && !any_count) | 
|  | goto skip; | 
|  | seq_printf(p, "%3d: ",i); | 
|  | #ifndef CONFIG_SMP | 
|  | seq_printf(p, "%10u ", kstat_irqs(i)); | 
|  | #else | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); | 
|  | #endif | 
|  | seq_printf(p, " %8s", irq_desc[i].chip->name); | 
|  | seq_printf(p, "-%-8s", irq_desc[i].name); | 
|  |  | 
|  | if (action) { | 
|  | seq_printf(p, "  %s", action->name); | 
|  | while ((action = action->next) != NULL) | 
|  | seq_printf(p, ", %s", action->name); | 
|  | } | 
|  |  | 
|  | seq_putc(p, '\n'); | 
|  | skip: | 
|  | spin_unlock_irqrestore(&irq_desc[i].lock, flags); | 
|  | } else if (i == NR_IRQS) { | 
|  | seq_printf(p, "NMI: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", nmi_count(j)); | 
|  | seq_printf(p, "  Non-maskable interrupts\n"); | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | seq_printf(p, "LOC: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).apic_timer_irqs); | 
|  | seq_printf(p, "  Local timer interrupts\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | seq_printf(p, "RES: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).irq_resched_count); | 
|  | seq_printf(p, "  Rescheduling interrupts\n"); | 
|  | seq_printf(p, "CAL: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).irq_call_count); | 
|  | seq_printf(p, "  function call interrupts\n"); | 
|  | seq_printf(p, "TLB: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).irq_tlb_count); | 
|  | seq_printf(p, "  TLB shootdowns\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_MCE | 
|  | seq_printf(p, "TRM: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).irq_thermal_count); | 
|  | seq_printf(p, "  Thermal event interrupts\n"); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | seq_printf(p, "SPU: "); | 
|  | for_each_online_cpu(j) | 
|  | seq_printf(p, "%10u ", | 
|  | per_cpu(irq_stat,j).irq_spurious_count); | 
|  | seq_printf(p, "  Spurious interrupts\n"); | 
|  | #endif | 
|  | seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); | 
|  | #if defined(CONFIG_X86_IO_APIC) | 
|  | seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count)); | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * /proc/stat helpers | 
|  | */ | 
|  | u64 arch_irq_stat_cpu(unsigned int cpu) | 
|  | { | 
|  | u64 sum = nmi_count(cpu); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | sum += per_cpu(irq_stat, cpu).apic_timer_irqs; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | sum += per_cpu(irq_stat, cpu).irq_resched_count; | 
|  | sum += per_cpu(irq_stat, cpu).irq_call_count; | 
|  | sum += per_cpu(irq_stat, cpu).irq_tlb_count; | 
|  | #endif | 
|  | #ifdef CONFIG_X86_MCE | 
|  | sum += per_cpu(irq_stat, cpu).irq_thermal_count; | 
|  | #endif | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | sum += per_cpu(irq_stat, cpu).irq_spurious_count; | 
|  | #endif | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | u64 arch_irq_stat(void) | 
|  | { | 
|  | u64 sum = atomic_read(&irq_err_count); | 
|  |  | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | sum += atomic_read(&irq_mis_count); | 
|  | #endif | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | #include <mach_apic.h> | 
|  |  | 
|  | void fixup_irqs(cpumask_t map) | 
|  | { | 
|  | unsigned int irq; | 
|  | static int warned; | 
|  |  | 
|  | for (irq = 0; irq < NR_IRQS; irq++) { | 
|  | cpumask_t mask; | 
|  | if (irq == 2) | 
|  | continue; | 
|  |  | 
|  | cpus_and(mask, irq_desc[irq].affinity, map); | 
|  | if (any_online_cpu(mask) == NR_CPUS) { | 
|  | printk("Breaking affinity for irq %i\n", irq); | 
|  | mask = map; | 
|  | } | 
|  | if (irq_desc[irq].chip->set_affinity) | 
|  | irq_desc[irq].chip->set_affinity(irq, mask); | 
|  | else if (irq_desc[irq].action && !(warned++)) | 
|  | printk("Cannot set affinity for irq %i\n", irq); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | barrier(); | 
|  | /* Ingo Molnar says: "after the IO-APIC masks have been redirected | 
|  | [note the nop - the interrupt-enable boundary on x86 is two | 
|  | instructions from sti] - to flush out pending hardirqs and | 
|  | IPIs. After this point nothing is supposed to reach this CPU." */ | 
|  | __asm__ __volatile__("sti; nop; cli"); | 
|  | barrier(); | 
|  | #else | 
|  | /* That doesn't seem sufficient.  Give it 1ms. */ | 
|  | local_irq_enable(); | 
|  | mdelay(1); | 
|  | local_irq_disable(); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  |