|  | /* | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 'Traps.c' handles hardware traps and faults after we have saved some | 
|  | * state in 'entry.S'. | 
|  | */ | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/unwind.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #if defined(CONFIG_EDAC) | 
|  | #include <linux/edac.h> | 
|  | #endif | 
|  |  | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/unwind.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/pda.h> | 
|  | #include <asm/traps.h> | 
|  |  | 
|  | #include <mach_traps.h> | 
|  |  | 
|  | int panic_on_unrecovered_nmi; | 
|  | int kstack_depth_to_print = 12; | 
|  | static unsigned int code_bytes = 64; | 
|  | static int ignore_nmis; | 
|  | static int die_counter; | 
|  |  | 
|  | static inline void conditional_sti(struct pt_regs *regs) | 
|  | { | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static inline void preempt_conditional_sti(struct pt_regs *regs) | 
|  | { | 
|  | inc_preempt_count(); | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static inline void preempt_conditional_cli(struct pt_regs *regs) | 
|  | { | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_disable(); | 
|  | /* Make sure to not schedule here because we could be running | 
|  | on an exception stack. */ | 
|  | dec_preempt_count(); | 
|  | } | 
|  |  | 
|  | void printk_address(unsigned long address, int reliable) | 
|  | { | 
|  | printk(" [<%016lx>] %s%pS\n", address, reliable ? "": "? ", (void *) address); | 
|  | } | 
|  |  | 
|  | static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack, | 
|  | unsigned *usedp, char **idp) | 
|  | { | 
|  | static char ids[][8] = { | 
|  | [DEBUG_STACK - 1] = "#DB", | 
|  | [NMI_STACK - 1] = "NMI", | 
|  | [DOUBLEFAULT_STACK - 1] = "#DF", | 
|  | [STACKFAULT_STACK - 1] = "#SS", | 
|  | [MCE_STACK - 1] = "#MC", | 
|  | #if DEBUG_STKSZ > EXCEPTION_STKSZ | 
|  | [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]" | 
|  | #endif | 
|  | }; | 
|  | unsigned k; | 
|  |  | 
|  | /* | 
|  | * Iterate over all exception stacks, and figure out whether | 
|  | * 'stack' is in one of them: | 
|  | */ | 
|  | for (k = 0; k < N_EXCEPTION_STACKS; k++) { | 
|  | unsigned long end = per_cpu(orig_ist, cpu).ist[k]; | 
|  | /* | 
|  | * Is 'stack' above this exception frame's end? | 
|  | * If yes then skip to the next frame. | 
|  | */ | 
|  | if (stack >= end) | 
|  | continue; | 
|  | /* | 
|  | * Is 'stack' above this exception frame's start address? | 
|  | * If yes then we found the right frame. | 
|  | */ | 
|  | if (stack >= end - EXCEPTION_STKSZ) { | 
|  | /* | 
|  | * Make sure we only iterate through an exception | 
|  | * stack once. If it comes up for the second time | 
|  | * then there's something wrong going on - just | 
|  | * break out and return NULL: | 
|  | */ | 
|  | if (*usedp & (1U << k)) | 
|  | break; | 
|  | *usedp |= 1U << k; | 
|  | *idp = ids[k]; | 
|  | return (unsigned long *)end; | 
|  | } | 
|  | /* | 
|  | * If this is a debug stack, and if it has a larger size than | 
|  | * the usual exception stacks, then 'stack' might still | 
|  | * be within the lower portion of the debug stack: | 
|  | */ | 
|  | #if DEBUG_STKSZ > EXCEPTION_STKSZ | 
|  | if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) { | 
|  | unsigned j = N_EXCEPTION_STACKS - 1; | 
|  |  | 
|  | /* | 
|  | * Black magic. A large debug stack is composed of | 
|  | * multiple exception stack entries, which we | 
|  | * iterate through now. Dont look: | 
|  | */ | 
|  | do { | 
|  | ++j; | 
|  | end -= EXCEPTION_STKSZ; | 
|  | ids[j][4] = '1' + (j - N_EXCEPTION_STACKS); | 
|  | } while (stack < end - EXCEPTION_STKSZ); | 
|  | if (*usedp & (1U << j)) | 
|  | break; | 
|  | *usedp |= 1U << j; | 
|  | *idp = ids[j]; | 
|  | return (unsigned long *)end; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * x86-64 can have up to three kernel stacks: | 
|  | * process stack | 
|  | * interrupt stack | 
|  | * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack | 
|  | */ | 
|  |  | 
|  | static inline int valid_stack_ptr(struct thread_info *tinfo, | 
|  | void *p, unsigned int size, void *end) | 
|  | { | 
|  | void *t = tinfo; | 
|  | if (end) { | 
|  | if (p < end && p >= (end-THREAD_SIZE)) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | return p > t && p < t + THREAD_SIZE - size; | 
|  | } | 
|  |  | 
|  | /* The form of the top of the frame on the stack */ | 
|  | struct stack_frame { | 
|  | struct stack_frame *next_frame; | 
|  | unsigned long return_address; | 
|  | }; | 
|  |  | 
|  | static inline unsigned long | 
|  | print_context_stack(struct thread_info *tinfo, | 
|  | unsigned long *stack, unsigned long bp, | 
|  | const struct stacktrace_ops *ops, void *data, | 
|  | unsigned long *end) | 
|  | { | 
|  | struct stack_frame *frame = (struct stack_frame *)bp; | 
|  |  | 
|  | while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = *stack; | 
|  | if (__kernel_text_address(addr)) { | 
|  | if ((unsigned long) stack == bp + 8) { | 
|  | ops->address(data, addr, 1); | 
|  | frame = frame->next_frame; | 
|  | bp = (unsigned long) frame; | 
|  | } else { | 
|  | ops->address(data, addr, bp == 0); | 
|  | } | 
|  | } | 
|  | stack++; | 
|  | } | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | void dump_trace(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp, | 
|  | const struct stacktrace_ops *ops, void *data) | 
|  | { | 
|  | const unsigned cpu = get_cpu(); | 
|  | unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr; | 
|  | unsigned used = 0; | 
|  | struct thread_info *tinfo; | 
|  |  | 
|  | if (!task) | 
|  | task = current; | 
|  |  | 
|  | if (!stack) { | 
|  | unsigned long dummy; | 
|  | stack = &dummy; | 
|  | if (task && task != current) | 
|  | stack = (unsigned long *)task->thread.sp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | if (!bp) { | 
|  | if (task == current) { | 
|  | /* Grab bp right from our regs */ | 
|  | asm("movq %%rbp, %0" : "=r" (bp) :); | 
|  | } else { | 
|  | /* bp is the last reg pushed by switch_to */ | 
|  | bp = *(unsigned long *) task->thread.sp; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Print function call entries in all stacks, starting at the | 
|  | * current stack address. If the stacks consist of nested | 
|  | * exceptions | 
|  | */ | 
|  | tinfo = task_thread_info(task); | 
|  | for (;;) { | 
|  | char *id; | 
|  | unsigned long *estack_end; | 
|  | estack_end = in_exception_stack(cpu, (unsigned long)stack, | 
|  | &used, &id); | 
|  |  | 
|  | if (estack_end) { | 
|  | if (ops->stack(data, id) < 0) | 
|  | break; | 
|  |  | 
|  | bp = print_context_stack(tinfo, stack, bp, ops, | 
|  | data, estack_end); | 
|  | ops->stack(data, "<EOE>"); | 
|  | /* | 
|  | * We link to the next stack via the | 
|  | * second-to-last pointer (index -2 to end) in the | 
|  | * exception stack: | 
|  | */ | 
|  | stack = (unsigned long *) estack_end[-2]; | 
|  | continue; | 
|  | } | 
|  | if (irqstack_end) { | 
|  | unsigned long *irqstack; | 
|  | irqstack = irqstack_end - | 
|  | (IRQSTACKSIZE - 64) / sizeof(*irqstack); | 
|  |  | 
|  | if (stack >= irqstack && stack < irqstack_end) { | 
|  | if (ops->stack(data, "IRQ") < 0) | 
|  | break; | 
|  | bp = print_context_stack(tinfo, stack, bp, | 
|  | ops, data, irqstack_end); | 
|  | /* | 
|  | * We link to the next stack (which would be | 
|  | * the process stack normally) the last | 
|  | * pointer (index -1 to end) in the IRQ stack: | 
|  | */ | 
|  | stack = (unsigned long *) (irqstack_end[-1]); | 
|  | irqstack_end = NULL; | 
|  | ops->stack(data, "EOI"); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This handles the process stack: | 
|  | */ | 
|  | bp = print_context_stack(tinfo, stack, bp, ops, data, NULL); | 
|  | put_cpu(); | 
|  | } | 
|  | EXPORT_SYMBOL(dump_trace); | 
|  |  | 
|  | static void | 
|  | print_trace_warning_symbol(void *data, char *msg, unsigned long symbol) | 
|  | { | 
|  | print_symbol(msg, symbol); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | static void print_trace_warning(void *data, char *msg) | 
|  | { | 
|  | printk("%s\n", msg); | 
|  | } | 
|  |  | 
|  | static int print_trace_stack(void *data, char *name) | 
|  | { | 
|  | printk(" <%s> ", name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void print_trace_address(void *data, unsigned long addr, int reliable) | 
|  | { | 
|  | touch_nmi_watchdog(); | 
|  | printk_address(addr, reliable); | 
|  | } | 
|  |  | 
|  | static const struct stacktrace_ops print_trace_ops = { | 
|  | .warning = print_trace_warning, | 
|  | .warning_symbol = print_trace_warning_symbol, | 
|  | .stack = print_trace_stack, | 
|  | .address = print_trace_address, | 
|  | }; | 
|  |  | 
|  | static void | 
|  | show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp, char *log_lvl) | 
|  | { | 
|  | printk("\nCall Trace:\n"); | 
|  | dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | void show_trace(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp) | 
|  | { | 
|  | show_trace_log_lvl(task, regs, stack, bp, ""); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *sp, unsigned long bp, char *log_lvl) | 
|  | { | 
|  | unsigned long *stack; | 
|  | int i; | 
|  | const int cpu = smp_processor_id(); | 
|  | unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr); | 
|  | unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE); | 
|  |  | 
|  | // debugging aid: "show_stack(NULL, NULL);" prints the | 
|  | // back trace for this cpu. | 
|  |  | 
|  | if (sp == NULL) { | 
|  | if (task) | 
|  | sp = (unsigned long *)task->thread.sp; | 
|  | else | 
|  | sp = (unsigned long *)&sp; | 
|  | } | 
|  |  | 
|  | stack = sp; | 
|  | for (i = 0; i < kstack_depth_to_print; i++) { | 
|  | if (stack >= irqstack && stack <= irqstack_end) { | 
|  | if (stack == irqstack_end) { | 
|  | stack = (unsigned long *) (irqstack_end[-1]); | 
|  | printk(" <EOI> "); | 
|  | } | 
|  | } else { | 
|  | if (((long) stack & (THREAD_SIZE-1)) == 0) | 
|  | break; | 
|  | } | 
|  | if (i && ((i % 4) == 0)) | 
|  | printk("\n"); | 
|  | printk(" %016lx", *stack++); | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  | show_trace_log_lvl(task, regs, sp, bp, log_lvl); | 
|  | } | 
|  |  | 
|  | void show_stack(struct task_struct *task, unsigned long *sp) | 
|  | { | 
|  | show_stack_log_lvl(task, NULL, sp, 0, ""); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The architecture-independent dump_stack generator | 
|  | */ | 
|  | void dump_stack(void) | 
|  | { | 
|  | unsigned long bp = 0; | 
|  | unsigned long stack; | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | if (!bp) | 
|  | asm("movq %%rbp, %0" : "=r" (bp):); | 
|  | #endif | 
|  |  | 
|  | printk("Pid: %d, comm: %.20s %s %s %.*s\n", | 
|  | current->pid, current->comm, print_tainted(), | 
|  | init_utsname()->release, | 
|  | (int)strcspn(init_utsname()->version, " "), | 
|  | init_utsname()->version); | 
|  | show_trace(NULL, NULL, &stack, bp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | void show_registers(struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | unsigned long sp; | 
|  | const int cpu = smp_processor_id(); | 
|  | struct task_struct *cur = cpu_pda(cpu)->pcurrent; | 
|  |  | 
|  | sp = regs->sp; | 
|  | printk("CPU %d ", cpu); | 
|  | __show_regs(regs); | 
|  | printk("Process %s (pid: %d, threadinfo %p, task %p)\n", | 
|  | cur->comm, cur->pid, task_thread_info(cur), cur); | 
|  |  | 
|  | /* | 
|  | * When in-kernel, we also print out the stack and code at the | 
|  | * time of the fault.. | 
|  | */ | 
|  | if (!user_mode(regs)) { | 
|  | unsigned int code_prologue = code_bytes * 43 / 64; | 
|  | unsigned int code_len = code_bytes; | 
|  | unsigned char c; | 
|  | u8 *ip; | 
|  |  | 
|  | printk("Stack: "); | 
|  | show_stack_log_lvl(NULL, regs, (unsigned long *)sp, | 
|  | regs->bp, ""); | 
|  | printk("\n"); | 
|  |  | 
|  | printk(KERN_EMERG "Code: "); | 
|  |  | 
|  | ip = (u8 *)regs->ip - code_prologue; | 
|  | if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) { | 
|  | /* try starting at RIP */ | 
|  | ip = (u8 *)regs->ip; | 
|  | code_len = code_len - code_prologue + 1; | 
|  | } | 
|  | for (i = 0; i < code_len; i++, ip++) { | 
|  | if (ip < (u8 *)PAGE_OFFSET || | 
|  | probe_kernel_address(ip, c)) { | 
|  | printk(" Bad RIP value."); | 
|  | break; | 
|  | } | 
|  | if (ip == (u8 *)regs->ip) | 
|  | printk("<%02x> ", c); | 
|  | else | 
|  | printk("%02x ", c); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | int is_valid_bugaddr(unsigned long ip) | 
|  | { | 
|  | unsigned short ud2; | 
|  |  | 
|  | if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2))) | 
|  | return 0; | 
|  |  | 
|  | return ud2 == 0x0b0f; | 
|  | } | 
|  |  | 
|  | static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED; | 
|  | static int die_owner = -1; | 
|  | static unsigned int die_nest_count; | 
|  |  | 
|  | unsigned __kprobes long oops_begin(void) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long flags; | 
|  |  | 
|  | oops_enter(); | 
|  |  | 
|  | /* racy, but better than risking deadlock. */ | 
|  | raw_local_irq_save(flags); | 
|  | cpu = smp_processor_id(); | 
|  | if (!__raw_spin_trylock(&die_lock)) { | 
|  | if (cpu == die_owner) | 
|  | /* nested oops. should stop eventually */; | 
|  | else | 
|  | __raw_spin_lock(&die_lock); | 
|  | } | 
|  | die_nest_count++; | 
|  | die_owner = cpu; | 
|  | console_verbose(); | 
|  | bust_spinlocks(1); | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr) | 
|  | { | 
|  | die_owner = -1; | 
|  | bust_spinlocks(0); | 
|  | die_nest_count--; | 
|  | if (!die_nest_count) | 
|  | /* Nest count reaches zero, release the lock. */ | 
|  | __raw_spin_unlock(&die_lock); | 
|  | raw_local_irq_restore(flags); | 
|  | if (!regs) { | 
|  | oops_exit(); | 
|  | return; | 
|  | } | 
|  | if (panic_on_oops) | 
|  | panic("Fatal exception"); | 
|  | oops_exit(); | 
|  | do_exit(signr); | 
|  | } | 
|  |  | 
|  | int __kprobes __die(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff, ++die_counter); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | printk("PREEMPT "); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | printk("SMP "); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk("DEBUG_PAGEALLOC"); | 
|  | #endif | 
|  | printk("\n"); | 
|  | if (notify_die(DIE_OOPS, str, regs, err, | 
|  | current->thread.trap_no, SIGSEGV) == NOTIFY_STOP) | 
|  | return 1; | 
|  |  | 
|  | show_registers(regs); | 
|  | add_taint(TAINT_DIE); | 
|  | /* Executive summary in case the oops scrolled away */ | 
|  | printk(KERN_ALERT "RIP "); | 
|  | printk_address(regs->ip, 1); | 
|  | printk(" RSP <%016lx>\n", regs->sp); | 
|  | if (kexec_should_crash(current)) | 
|  | crash_kexec(regs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void die(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | unsigned long flags = oops_begin(); | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | report_bug(regs->ip, regs); | 
|  |  | 
|  | if (__die(str, regs, err)) | 
|  | regs = NULL; | 
|  | oops_end(flags, regs, SIGSEGV); | 
|  | } | 
|  |  | 
|  | notrace __kprobes void | 
|  | die_nmi(char *str, struct pt_regs *regs, int do_panic) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | flags = oops_begin(); | 
|  | /* | 
|  | * We are in trouble anyway, lets at least try | 
|  | * to get a message out. | 
|  | */ | 
|  | printk(KERN_EMERG "%s", str); | 
|  | printk(" on CPU%d, ip %08lx, registers:\n", | 
|  | smp_processor_id(), regs->ip); | 
|  | show_registers(regs); | 
|  | if (kexec_should_crash(current)) | 
|  | crash_kexec(regs); | 
|  | if (do_panic || panic_on_oops) | 
|  | panic("Non maskable interrupt"); | 
|  | oops_end(flags, NULL, SIGBUS); | 
|  | nmi_exit(); | 
|  | local_irq_enable(); | 
|  | do_exit(SIGBUS); | 
|  | } | 
|  |  | 
|  | static void __kprobes | 
|  | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, | 
|  | long error_code, siginfo_t *info) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | goto kernel_trap; | 
|  |  | 
|  | /* | 
|  | * We want error_code and trap_no set for userspace faults and | 
|  | * kernelspace faults which result in die(), but not | 
|  | * kernelspace faults which are fixed up.  die() gives the | 
|  | * process no chance to handle the signal and notice the | 
|  | * kernel fault information, so that won't result in polluting | 
|  | * the information about previously queued, but not yet | 
|  | * delivered, faults.  See also do_general_protection below. | 
|  | */ | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = trapnr; | 
|  |  | 
|  | if (show_unhandled_signals && unhandled_signal(tsk, signr) && | 
|  | printk_ratelimit()) { | 
|  | printk(KERN_INFO | 
|  | "%s[%d] trap %s ip:%lx sp:%lx error:%lx", | 
|  | tsk->comm, tsk->pid, str, | 
|  | regs->ip, regs->sp, error_code); | 
|  | print_vma_addr(" in ", regs->ip); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | if (info) | 
|  | force_sig_info(signr, info, tsk); | 
|  | else | 
|  | force_sig(signr, tsk); | 
|  | return; | 
|  |  | 
|  | kernel_trap: | 
|  | if (!fixup_exception(regs)) { | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = trapnr; | 
|  | die(str, regs, error_code); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define DO_ERROR(trapnr, signr, str, name) \ | 
|  | asmlinkage void do_##name(struct pt_regs * regs, long error_code)	\ | 
|  | {									\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)	\ | 
|  | return;							\ | 
|  | conditional_sti(regs);						\ | 
|  | do_trap(trapnr, signr, str, regs, error_code, NULL);		\ | 
|  | } | 
|  |  | 
|  | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\ | 
|  | asmlinkage void do_##name(struct pt_regs * regs, long error_code)	\ | 
|  | {									\ | 
|  | siginfo_t info;							\ | 
|  | info.si_signo = signr;						\ | 
|  | info.si_errno = 0;						\ | 
|  | info.si_code = sicode;						\ | 
|  | info.si_addr = (void __user *)siaddr;				\ | 
|  | trace_hardirqs_fixup();						\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)	\ | 
|  | return;							\ | 
|  | conditional_sti(regs);						\ | 
|  | do_trap(trapnr, signr, str, regs, error_code, &info);		\ | 
|  | } | 
|  |  | 
|  | DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) | 
|  | DO_ERROR(4, SIGSEGV, "overflow", overflow) | 
|  | DO_ERROR(5, SIGSEGV, "bounds", bounds) | 
|  | DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) | 
|  | DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) | 
|  | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) | 
|  | DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) | 
|  | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) | 
|  |  | 
|  | /* Runs on IST stack */ | 
|  | asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | if (notify_die(DIE_TRAP, "stack segment", regs, error_code, | 
|  | 12, SIGBUS) == NOTIFY_STOP) | 
|  | return; | 
|  | preempt_conditional_sti(regs); | 
|  | do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); | 
|  | preempt_conditional_cli(regs); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_double_fault(struct pt_regs * regs, long error_code) | 
|  | { | 
|  | static const char str[] = "double fault"; | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | /* Return not checked because double check cannot be ignored */ | 
|  | notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = 8; | 
|  |  | 
|  | /* This is always a kernel trap and never fixable (and thus must | 
|  | never return). */ | 
|  | for (;;) | 
|  | die(str, regs, error_code); | 
|  | } | 
|  |  | 
|  | asmlinkage void __kprobes | 
|  | do_general_protection(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | conditional_sti(regs); | 
|  |  | 
|  | tsk = current; | 
|  | if (!user_mode(regs)) | 
|  | goto gp_in_kernel; | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = 13; | 
|  |  | 
|  | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | 
|  | printk_ratelimit()) { | 
|  | printk(KERN_INFO | 
|  | "%s[%d] general protection ip:%lx sp:%lx error:%lx", | 
|  | tsk->comm, tsk->pid, | 
|  | regs->ip, regs->sp, error_code); | 
|  | print_vma_addr(" in ", regs->ip); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | force_sig(SIGSEGV, tsk); | 
|  | return; | 
|  |  | 
|  | gp_in_kernel: | 
|  | if (fixup_exception(regs)) | 
|  | return; | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = 13; | 
|  | if (notify_die(DIE_GPF, "general protection fault", regs, | 
|  | error_code, 13, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  | die("general protection fault", regs, error_code); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | mem_parity_error(unsigned char reason, struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", | 
|  | reason); | 
|  | printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n"); | 
|  |  | 
|  | #if defined(CONFIG_EDAC) | 
|  | if (edac_handler_set()) { | 
|  | edac_atomic_assert_error(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (panic_on_unrecovered_nmi) | 
|  | panic("NMI: Not continuing"); | 
|  |  | 
|  | printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
|  |  | 
|  | /* Clear and disable the memory parity error line. */ | 
|  | reason = (reason & 0xf) | 4; | 
|  | outb(reason, 0x61); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | io_check_error(unsigned char reason, struct pt_regs *regs) | 
|  | { | 
|  | printk("NMI: IOCK error (debug interrupt?)\n"); | 
|  | show_registers(regs); | 
|  |  | 
|  | /* Re-enable the IOCK line, wait for a few seconds */ | 
|  | reason = (reason & 0xf) | 8; | 
|  | outb(reason, 0x61); | 
|  | mdelay(2000); | 
|  | reason &= ~8; | 
|  | outb(reason, 0x61); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | unknown_nmi_error(unsigned char reason, struct pt_regs * regs) | 
|  | { | 
|  | if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  | printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", | 
|  | reason); | 
|  | printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); | 
|  |  | 
|  | if (panic_on_unrecovered_nmi) | 
|  | panic("NMI: Not continuing"); | 
|  |  | 
|  | printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
|  | } | 
|  |  | 
|  | /* Runs on IST stack. This code must keep interrupts off all the time. | 
|  | Nested NMIs are prevented by the CPU. */ | 
|  | asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs) | 
|  | { | 
|  | unsigned char reason = 0; | 
|  | int cpu; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | /* Only the BSP gets external NMIs from the system. */ | 
|  | if (!cpu) | 
|  | reason = get_nmi_reason(); | 
|  |  | 
|  | if (!(reason & 0xc0)) { | 
|  | if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | /* | 
|  | * Ok, so this is none of the documented NMI sources, | 
|  | * so it must be the NMI watchdog. | 
|  | */ | 
|  | if (nmi_watchdog_tick(regs, reason)) | 
|  | return; | 
|  | if (!do_nmi_callback(regs, cpu)) | 
|  | unknown_nmi_error(reason, regs); | 
|  |  | 
|  | return; | 
|  | } | 
|  | if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | /* AK: following checks seem to be broken on modern chipsets. FIXME */ | 
|  | if (reason & 0x80) | 
|  | mem_parity_error(reason, regs); | 
|  | if (reason & 0x40) | 
|  | io_check_error(reason, regs); | 
|  | } | 
|  |  | 
|  | asmlinkage notrace __kprobes void | 
|  | do_nmi(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | nmi_enter(); | 
|  |  | 
|  | add_pda(__nmi_count, 1); | 
|  |  | 
|  | if (!ignore_nmis) | 
|  | default_do_nmi(regs); | 
|  |  | 
|  | nmi_exit(); | 
|  | } | 
|  |  | 
|  | void stop_nmi(void) | 
|  | { | 
|  | acpi_nmi_disable(); | 
|  | ignore_nmis++; | 
|  | } | 
|  |  | 
|  | void restart_nmi(void) | 
|  | { | 
|  | ignore_nmis--; | 
|  | acpi_nmi_enable(); | 
|  | } | 
|  |  | 
|  | /* runs on IST stack. */ | 
|  | asmlinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | trace_hardirqs_fixup(); | 
|  |  | 
|  | if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | preempt_conditional_sti(regs); | 
|  | do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); | 
|  | preempt_conditional_cli(regs); | 
|  | } | 
|  |  | 
|  | /* Help handler running on IST stack to switch back to user stack | 
|  | for scheduling or signal handling. The actual stack switch is done in | 
|  | entry.S */ | 
|  | asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) | 
|  | { | 
|  | struct pt_regs *regs = eregs; | 
|  | /* Did already sync */ | 
|  | if (eregs == (struct pt_regs *)eregs->sp) | 
|  | ; | 
|  | /* Exception from user space */ | 
|  | else if (user_mode(eregs)) | 
|  | regs = task_pt_regs(current); | 
|  | /* Exception from kernel and interrupts are enabled. Move to | 
|  | kernel process stack. */ | 
|  | else if (eregs->flags & X86_EFLAGS_IF) | 
|  | regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); | 
|  | if (eregs != regs) | 
|  | *regs = *eregs; | 
|  | return regs; | 
|  | } | 
|  |  | 
|  | /* runs on IST stack. */ | 
|  | asmlinkage void __kprobes do_debug(struct pt_regs * regs, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned long condition; | 
|  | siginfo_t info; | 
|  |  | 
|  | trace_hardirqs_fixup(); | 
|  |  | 
|  | get_debugreg(condition, 6); | 
|  |  | 
|  | /* | 
|  | * The processor cleared BTF, so don't mark that we need it set. | 
|  | */ | 
|  | clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR); | 
|  | tsk->thread.debugctlmsr = 0; | 
|  |  | 
|  | if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | preempt_conditional_sti(regs); | 
|  |  | 
|  | /* Mask out spurious debug traps due to lazy DR7 setting */ | 
|  | if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { | 
|  | if (!tsk->thread.debugreg7) | 
|  | goto clear_dr7; | 
|  | } | 
|  |  | 
|  | tsk->thread.debugreg6 = condition; | 
|  |  | 
|  | /* | 
|  | * Single-stepping through TF: make sure we ignore any events in | 
|  | * kernel space (but re-enable TF when returning to user mode). | 
|  | */ | 
|  | if (condition & DR_STEP) { | 
|  | if (!user_mode(regs)) | 
|  | goto clear_TF_reenable; | 
|  | } | 
|  |  | 
|  | /* Ok, finally something we can handle */ | 
|  | tsk->thread.trap_no = 1; | 
|  | tsk->thread.error_code = error_code; | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_errno = 0; | 
|  | info.si_code = TRAP_BRKPT; | 
|  | info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL; | 
|  | force_sig_info(SIGTRAP, &info, tsk); | 
|  |  | 
|  | clear_dr7: | 
|  | set_debugreg(0, 7); | 
|  | preempt_conditional_cli(regs); | 
|  | return; | 
|  |  | 
|  | clear_TF_reenable: | 
|  | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | preempt_conditional_cli(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr) | 
|  | { | 
|  | if (fixup_exception(regs)) | 
|  | return 1; | 
|  |  | 
|  | notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE); | 
|  | /* Illegal floating point operation in the kernel */ | 
|  | current->thread.trap_no = trapnr; | 
|  | die(str, regs, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that we play around with the 'TS' bit in an attempt to get | 
|  | * the correct behaviour even in the presence of the asynchronous | 
|  | * IRQ13 behaviour | 
|  | */ | 
|  | asmlinkage void do_coprocessor_error(struct pt_regs *regs) | 
|  | { | 
|  | void __user *ip = (void __user *)(regs->ip); | 
|  | struct task_struct *task; | 
|  | siginfo_t info; | 
|  | unsigned short cwd, swd; | 
|  |  | 
|  | conditional_sti(regs); | 
|  | if (!user_mode(regs) && | 
|  | kernel_math_error(regs, "kernel x87 math error", 16)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 16; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = ip; | 
|  | /* | 
|  | * (~cwd & swd) will mask out exceptions that are not set to unmasked | 
|  | * status.  0x3f is the exception bits in these regs, 0x200 is the | 
|  | * C1 reg you need in case of a stack fault, 0x040 is the stack | 
|  | * fault bit.  We should only be taking one exception at a time, | 
|  | * so if this combination doesn't produce any single exception, | 
|  | * then we have a bad program that isn't synchronizing its FPU usage | 
|  | * and it will suffer the consequences since we won't be able to | 
|  | * fully reproduce the context of the exception | 
|  | */ | 
|  | cwd = get_fpu_cwd(task); | 
|  | swd = get_fpu_swd(task); | 
|  | switch (swd & ~cwd & 0x3f) { | 
|  | case 0x000: /* No unmasked exception */ | 
|  | default: /* Multiple exceptions */ | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | /* | 
|  | * swd & 0x240 == 0x040: Stack Underflow | 
|  | * swd & 0x240 == 0x240: Stack Overflow | 
|  | * User must clear the SF bit (0x40) if set | 
|  | */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | asmlinkage void bad_intr(void) | 
|  | { | 
|  | printk("bad interrupt"); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs) | 
|  | { | 
|  | void __user *ip = (void __user *)(regs->ip); | 
|  | struct task_struct *task; | 
|  | siginfo_t info; | 
|  | unsigned short mxcsr; | 
|  |  | 
|  | conditional_sti(regs); | 
|  | if (!user_mode(regs) && | 
|  | kernel_math_error(regs, "kernel simd math error", 19)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 19; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = ip; | 
|  | /* | 
|  | * The SIMD FPU exceptions are handled a little differently, as there | 
|  | * is only a single status/control register.  Thus, to determine which | 
|  | * unmasked exception was caught we must mask the exception mask bits | 
|  | * at 0x1f80, and then use these to mask the exception bits at 0x3f. | 
|  | */ | 
|  | mxcsr = get_fpu_mxcsr(task); | 
|  | switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { | 
|  | case 0x000: | 
|  | default: | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs) | 
|  | { | 
|  | } | 
|  |  | 
|  | asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'math_state_restore()' saves the current math information in the | 
|  | * old math state array, and gets the new ones from the current task | 
|  | * | 
|  | * Careful.. There are problems with IBM-designed IRQ13 behaviour. | 
|  | * Don't touch unless you *really* know how it works. | 
|  | */ | 
|  | asmlinkage void math_state_restore(void) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  |  | 
|  | if (!used_math()) { | 
|  | local_irq_enable(); | 
|  | /* | 
|  | * does a slab alloc which can sleep | 
|  | */ | 
|  | if (init_fpu(me)) { | 
|  | /* | 
|  | * ran out of memory! | 
|  | */ | 
|  | do_group_exit(SIGKILL); | 
|  | return; | 
|  | } | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | clts();				/* Allow maths ops (or we recurse) */ | 
|  | /* | 
|  | * Paranoid restore. send a SIGSEGV if we fail to restore the state. | 
|  | */ | 
|  | if (unlikely(restore_fpu_checking(&me->thread.xstate->fxsave))) { | 
|  | stts(); | 
|  | force_sig(SIGSEGV, me); | 
|  | return; | 
|  | } | 
|  | task_thread_info(me)->status |= TS_USEDFPU; | 
|  | me->fpu_counter++; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(math_state_restore); | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | set_intr_gate(0, ÷_error); | 
|  | set_intr_gate_ist(1, &debug, DEBUG_STACK); | 
|  | set_intr_gate_ist(2, &nmi, NMI_STACK); | 
|  | set_system_gate_ist(3, &int3, DEBUG_STACK); /* int3 can be called from all */ | 
|  | set_system_gate(4, &overflow); /* int4 can be called from all */ | 
|  | set_intr_gate(5, &bounds); | 
|  | set_intr_gate(6, &invalid_op); | 
|  | set_intr_gate(7, &device_not_available); | 
|  | set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); | 
|  | set_intr_gate(9, &coprocessor_segment_overrun); | 
|  | set_intr_gate(10, &invalid_TSS); | 
|  | set_intr_gate(11, &segment_not_present); | 
|  | set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); | 
|  | set_intr_gate(13, &general_protection); | 
|  | set_intr_gate(14, &page_fault); | 
|  | set_intr_gate(15, &spurious_interrupt_bug); | 
|  | set_intr_gate(16, &coprocessor_error); | 
|  | set_intr_gate(17, &alignment_check); | 
|  | #ifdef CONFIG_X86_MCE | 
|  | set_intr_gate_ist(18, &machine_check, MCE_STACK); | 
|  | #endif | 
|  | set_intr_gate(19, &simd_coprocessor_error); | 
|  |  | 
|  | #ifdef CONFIG_IA32_EMULATION | 
|  | set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall); | 
|  | #endif | 
|  | /* | 
|  | * initialize the per thread extended state: | 
|  | */ | 
|  | init_thread_xstate(); | 
|  | /* | 
|  | * Should be a barrier for any external CPU state: | 
|  | */ | 
|  | cpu_init(); | 
|  | } | 
|  |  | 
|  | static int __init oops_setup(char *s) | 
|  | { | 
|  | if (!s) | 
|  | return -EINVAL; | 
|  | if (!strcmp(s, "panic")) | 
|  | panic_on_oops = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("oops", oops_setup); | 
|  |  | 
|  | static int __init kstack_setup(char *s) | 
|  | { | 
|  | if (!s) | 
|  | return -EINVAL; | 
|  | kstack_depth_to_print = simple_strtoul(s, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  | early_param("kstack", kstack_setup); | 
|  |  | 
|  | static int __init code_bytes_setup(char *s) | 
|  | { | 
|  | code_bytes = simple_strtoul(s, NULL, 0); | 
|  | if (code_bytes > 8192) | 
|  | code_bytes = 8192; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("code_bytes=", code_bytes_setup); |