|  | /* | 
|  | * Xen time implementation. | 
|  | * | 
|  | * This is implemented in terms of a clocksource driver which uses | 
|  | * the hypervisor clock as a nanosecond timebase, and a clockevent | 
|  | * driver which uses the hypervisor's timer mechanism. | 
|  | * | 
|  | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | #include <asm/pvclock.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  | #include <asm/xen/hypercall.h> | 
|  |  | 
|  | #include <xen/events.h> | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/vcpu.h> | 
|  |  | 
|  | #include "xen-ops.h" | 
|  |  | 
|  | #define XEN_SHIFT 22 | 
|  |  | 
|  | /* Xen may fire a timer up to this many ns early */ | 
|  | #define TIMER_SLOP	100000 | 
|  | #define NS_PER_TICK	(1000000000LL / HZ) | 
|  |  | 
|  | static cycle_t xen_clocksource_read(void); | 
|  |  | 
|  | /* runstate info updated by Xen */ | 
|  | static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); | 
|  |  | 
|  | /* snapshots of runstate info */ | 
|  | static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); | 
|  |  | 
|  | /* unused ns of stolen and blocked time */ | 
|  | static DEFINE_PER_CPU(u64, residual_stolen); | 
|  | static DEFINE_PER_CPU(u64, residual_blocked); | 
|  |  | 
|  | /* return an consistent snapshot of 64-bit time/counter value */ | 
|  | static u64 get64(const u64 *p) | 
|  | { | 
|  | u64 ret; | 
|  |  | 
|  | if (BITS_PER_LONG < 64) { | 
|  | u32 *p32 = (u32 *)p; | 
|  | u32 h, l; | 
|  |  | 
|  | /* | 
|  | * Read high then low, and then make sure high is | 
|  | * still the same; this will only loop if low wraps | 
|  | * and carries into high. | 
|  | * XXX some clean way to make this endian-proof? | 
|  | */ | 
|  | do { | 
|  | h = p32[1]; | 
|  | barrier(); | 
|  | l = p32[0]; | 
|  | barrier(); | 
|  | } while (p32[1] != h); | 
|  |  | 
|  | ret = (((u64)h) << 32) | l; | 
|  | } else | 
|  | ret = *p; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Runstate accounting | 
|  | */ | 
|  | static void get_runstate_snapshot(struct vcpu_runstate_info *res) | 
|  | { | 
|  | u64 state_time; | 
|  | struct vcpu_runstate_info *state; | 
|  |  | 
|  | BUG_ON(preemptible()); | 
|  |  | 
|  | state = &__get_cpu_var(runstate); | 
|  |  | 
|  | /* | 
|  | * The runstate info is always updated by the hypervisor on | 
|  | * the current CPU, so there's no need to use anything | 
|  | * stronger than a compiler barrier when fetching it. | 
|  | */ | 
|  | do { | 
|  | state_time = get64(&state->state_entry_time); | 
|  | barrier(); | 
|  | *res = *state; | 
|  | barrier(); | 
|  | } while (get64(&state->state_entry_time) != state_time); | 
|  | } | 
|  |  | 
|  | /* return true when a vcpu could run but has no real cpu to run on */ | 
|  | bool xen_vcpu_stolen(int vcpu) | 
|  | { | 
|  | return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; | 
|  | } | 
|  |  | 
|  | static void setup_runstate_info(int cpu) | 
|  | { | 
|  | struct vcpu_register_runstate_memory_area area; | 
|  |  | 
|  | area.addr.v = &per_cpu(runstate, cpu); | 
|  |  | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, | 
|  | cpu, &area)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void do_stolen_accounting(void) | 
|  | { | 
|  | struct vcpu_runstate_info state; | 
|  | struct vcpu_runstate_info *snap; | 
|  | s64 blocked, runnable, offline, stolen; | 
|  | cputime_t ticks; | 
|  |  | 
|  | get_runstate_snapshot(&state); | 
|  |  | 
|  | WARN_ON(state.state != RUNSTATE_running); | 
|  |  | 
|  | snap = &__get_cpu_var(runstate_snapshot); | 
|  |  | 
|  | /* work out how much time the VCPU has not been runn*ing*  */ | 
|  | blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; | 
|  | runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; | 
|  | offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; | 
|  |  | 
|  | *snap = state; | 
|  |  | 
|  | /* Add the appropriate number of ticks of stolen time, | 
|  | including any left-overs from last time.  Passing NULL to | 
|  | account_steal_time accounts the time as stolen. */ | 
|  | stolen = runnable + offline + __get_cpu_var(residual_stolen); | 
|  |  | 
|  | if (stolen < 0) | 
|  | stolen = 0; | 
|  |  | 
|  | ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); | 
|  | __get_cpu_var(residual_stolen) = stolen; | 
|  | account_steal_time(NULL, ticks); | 
|  |  | 
|  | /* Add the appropriate number of ticks of blocked time, | 
|  | including any left-overs from last time.  Passing idle to | 
|  | account_steal_time accounts the time as idle/wait. */ | 
|  | blocked += __get_cpu_var(residual_blocked); | 
|  |  | 
|  | if (blocked < 0) | 
|  | blocked = 0; | 
|  |  | 
|  | ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); | 
|  | __get_cpu_var(residual_blocked) = blocked; | 
|  | account_steal_time(idle_task(smp_processor_id()), ticks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Xen sched_clock implementation.  Returns the number of unstolen | 
|  | * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED | 
|  | * states. | 
|  | */ | 
|  | unsigned long long xen_sched_clock(void) | 
|  | { | 
|  | struct vcpu_runstate_info state; | 
|  | cycle_t now; | 
|  | u64 ret; | 
|  | s64 offset; | 
|  |  | 
|  | /* | 
|  | * Ideally sched_clock should be called on a per-cpu basis | 
|  | * anyway, so preempt should already be disabled, but that's | 
|  | * not current practice at the moment. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | now = xen_clocksource_read(); | 
|  |  | 
|  | get_runstate_snapshot(&state); | 
|  |  | 
|  | WARN_ON(state.state != RUNSTATE_running); | 
|  |  | 
|  | offset = now - state.state_entry_time; | 
|  | if (offset < 0) | 
|  | offset = 0; | 
|  |  | 
|  | ret = state.time[RUNSTATE_blocked] + | 
|  | state.time[RUNSTATE_running] + | 
|  | offset; | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Get the TSC speed from Xen */ | 
|  | unsigned long xen_tsc_khz(void) | 
|  | { | 
|  | u64 xen_khz = 1000000ULL << 32; | 
|  | const struct pvclock_vcpu_time_info *info = | 
|  | &HYPERVISOR_shared_info->vcpu_info[0].time; | 
|  |  | 
|  | do_div(xen_khz, info->tsc_to_system_mul); | 
|  | if (info->tsc_shift < 0) | 
|  | xen_khz <<= -info->tsc_shift; | 
|  | else | 
|  | xen_khz >>= info->tsc_shift; | 
|  |  | 
|  | return xen_khz; | 
|  | } | 
|  |  | 
|  | static cycle_t xen_clocksource_read(void) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *src; | 
|  | cycle_t ret; | 
|  |  | 
|  | src = &get_cpu_var(xen_vcpu)->time; | 
|  | ret = pvclock_clocksource_read(src); | 
|  | put_cpu_var(xen_vcpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xen_read_wallclock(struct timespec *ts) | 
|  | { | 
|  | struct shared_info *s = HYPERVISOR_shared_info; | 
|  | struct pvclock_wall_clock *wall_clock = &(s->wc); | 
|  | struct pvclock_vcpu_time_info *vcpu_time; | 
|  |  | 
|  | vcpu_time = &get_cpu_var(xen_vcpu)->time; | 
|  | pvclock_read_wallclock(wall_clock, vcpu_time, ts); | 
|  | put_cpu_var(xen_vcpu); | 
|  | } | 
|  |  | 
|  | unsigned long xen_get_wallclock(void) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | xen_read_wallclock(&ts); | 
|  | return ts.tv_sec; | 
|  | } | 
|  |  | 
|  | int xen_set_wallclock(unsigned long now) | 
|  | { | 
|  | /* do nothing for domU */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static struct clocksource xen_clocksource __read_mostly = { | 
|  | .name = "xen", | 
|  | .rating = 400, | 
|  | .read = xen_clocksource_read, | 
|  | .mask = ~0, | 
|  | .mult = 1<<XEN_SHIFT,		/* time directly in nanoseconds */ | 
|  | .shift = XEN_SHIFT, | 
|  | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | Xen clockevent implementation | 
|  |  | 
|  | Xen has two clockevent implementations: | 
|  |  | 
|  | The old timer_op one works with all released versions of Xen prior | 
|  | to version 3.0.4.  This version of the hypervisor provides a | 
|  | single-shot timer with nanosecond resolution.  However, sharing the | 
|  | same event channel is a 100Hz tick which is delivered while the | 
|  | vcpu is running.  We don't care about or use this tick, but it will | 
|  | cause the core time code to think the timer fired too soon, and | 
|  | will end up resetting it each time.  It could be filtered, but | 
|  | doing so has complications when the ktime clocksource is not yet | 
|  | the xen clocksource (ie, at boot time). | 
|  |  | 
|  | The new vcpu_op-based timer interface allows the tick timer period | 
|  | to be changed or turned off.  The tick timer is not useful as a | 
|  | periodic timer because events are only delivered to running vcpus. | 
|  | The one-shot timer can report when a timeout is in the past, so | 
|  | set_next_event is capable of returning -ETIME when appropriate. | 
|  | This interface is used when available. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | Get a hypervisor absolute time.  In theory we could maintain an | 
|  | offset between the kernel's time and the hypervisor's time, and | 
|  | apply that to a kernel's absolute timeout.  Unfortunately the | 
|  | hypervisor and kernel times can drift even if the kernel is using | 
|  | the Xen clocksource, because ntp can warp the kernel's clocksource. | 
|  | */ | 
|  | static s64 get_abs_timeout(unsigned long delta) | 
|  | { | 
|  | return xen_clocksource_read() + delta; | 
|  | } | 
|  |  | 
|  | static void xen_timerop_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | switch (mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | /* unsupported */ | 
|  | WARN_ON(1); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | case CLOCK_EVT_MODE_RESUME: | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_UNUSED: | 
|  | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | HYPERVISOR_set_timer_op(0);  /* cancel timeout */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xen_timerop_set_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | 
|  |  | 
|  | if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) | 
|  | BUG(); | 
|  |  | 
|  | /* We may have missed the deadline, but there's no real way of | 
|  | knowing for sure.  If the event was in the past, then we'll | 
|  | get an immediate interrupt. */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct clock_event_device xen_timerop_clockevent = { | 
|  | .name = "xen", | 
|  | .features = CLOCK_EVT_FEAT_ONESHOT, | 
|  |  | 
|  | .max_delta_ns = 0xffffffff, | 
|  | .min_delta_ns = TIMER_SLOP, | 
|  |  | 
|  | .mult = 1, | 
|  | .shift = 0, | 
|  | .rating = 500, | 
|  |  | 
|  | .set_mode = xen_timerop_set_mode, | 
|  | .set_next_event = xen_timerop_set_next_event, | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | static void xen_vcpuop_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | switch (mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | WARN_ON(1);	/* unsupported */ | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | 
|  | BUG(); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_UNUSED: | 
|  | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || | 
|  | HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | 
|  | BUG(); | 
|  | break; | 
|  | case CLOCK_EVT_MODE_RESUME: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xen_vcpuop_set_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct vcpu_set_singleshot_timer single; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); | 
|  |  | 
|  | single.timeout_abs_ns = get_abs_timeout(delta); | 
|  | single.flags = VCPU_SSHOTTMR_future; | 
|  |  | 
|  | ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); | 
|  |  | 
|  | BUG_ON(ret != 0 && ret != -ETIME); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct clock_event_device xen_vcpuop_clockevent = { | 
|  | .name = "xen", | 
|  | .features = CLOCK_EVT_FEAT_ONESHOT, | 
|  |  | 
|  | .max_delta_ns = 0xffffffff, | 
|  | .min_delta_ns = TIMER_SLOP, | 
|  |  | 
|  | .mult = 1, | 
|  | .shift = 0, | 
|  | .rating = 500, | 
|  |  | 
|  | .set_mode = xen_vcpuop_set_mode, | 
|  | .set_next_event = xen_vcpuop_set_next_event, | 
|  | }; | 
|  |  | 
|  | static const struct clock_event_device *xen_clockevent = | 
|  | &xen_timerop_clockevent; | 
|  | static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); | 
|  |  | 
|  | static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); | 
|  | irqreturn_t ret; | 
|  |  | 
|  | ret = IRQ_NONE; | 
|  | if (evt->event_handler) { | 
|  | evt->event_handler(evt); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | do_stolen_accounting(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void xen_setup_timer(int cpu) | 
|  | { | 
|  | const char *name; | 
|  | struct clock_event_device *evt; | 
|  | int irq; | 
|  |  | 
|  | printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); | 
|  |  | 
|  | name = kasprintf(GFP_KERNEL, "timer%d", cpu); | 
|  | if (!name) | 
|  | name = "<timer kasprintf failed>"; | 
|  |  | 
|  | irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, | 
|  | IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, | 
|  | name, NULL); | 
|  |  | 
|  | evt = &per_cpu(xen_clock_events, cpu); | 
|  | memcpy(evt, xen_clockevent, sizeof(*evt)); | 
|  |  | 
|  | evt->cpumask = cpumask_of_cpu(cpu); | 
|  | evt->irq = irq; | 
|  |  | 
|  | setup_runstate_info(cpu); | 
|  | } | 
|  |  | 
|  | void xen_setup_cpu_clockevents(void) | 
|  | { | 
|  | BUG_ON(preemptible()); | 
|  |  | 
|  | clockevents_register_device(&__get_cpu_var(xen_clock_events)); | 
|  | } | 
|  |  | 
|  | void xen_timer_resume(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (xen_clockevent != &xen_vcpuop_clockevent) | 
|  | return; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | __init void xen_time_init(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | clocksource_register(&xen_clocksource); | 
|  |  | 
|  | if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { | 
|  | /* Successfully turned off 100Hz tick, so we have the | 
|  | vcpuop-based timer interface */ | 
|  | printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); | 
|  | xen_clockevent = &xen_vcpuop_clockevent; | 
|  | } | 
|  |  | 
|  | /* Set initial system time with full resolution */ | 
|  | xen_read_wallclock(&xtime); | 
|  | set_normalized_timespec(&wall_to_monotonic, | 
|  | -xtime.tv_sec, -xtime.tv_nsec); | 
|  |  | 
|  | setup_force_cpu_cap(X86_FEATURE_TSC); | 
|  |  | 
|  | xen_setup_timer(cpu); | 
|  | xen_setup_cpu_clockevents(); | 
|  | } |