|  | /* | 
|  | * MTD SPI driver for ST M25Pxx (and similar) serial flash chips | 
|  | * | 
|  | * Author: Mike Lavender, mike@steroidmicros.com | 
|  | * | 
|  | * Copyright (c) 2005, Intec Automation Inc. | 
|  | * | 
|  | * Some parts are based on lart.c by Abraham Van Der Merwe | 
|  | * | 
|  | * Cleaned up and generalized based on mtd_dataflash.c | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  |  | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/flash.h> | 
|  |  | 
|  |  | 
|  | #define FLASH_PAGESIZE		256 | 
|  |  | 
|  | /* Flash opcodes. */ | 
|  | #define	OPCODE_WREN		0x06	/* Write enable */ | 
|  | #define	OPCODE_RDSR		0x05	/* Read status register */ | 
|  | #define	OPCODE_WRSR		0x01	/* Write status register 1 byte */ | 
|  | #define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */ | 
|  | #define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */ | 
|  | #define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */ | 
|  | #define	OPCODE_BE_4K 		0x20	/* Erase 4KiB block */ | 
|  | #define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */ | 
|  | #define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */ | 
|  | #define	OPCODE_RDID		0x9f	/* Read JEDEC ID */ | 
|  |  | 
|  | /* Status Register bits. */ | 
|  | #define	SR_WIP			1	/* Write in progress */ | 
|  | #define	SR_WEL			2	/* Write enable latch */ | 
|  | /* meaning of other SR_* bits may differ between vendors */ | 
|  | #define	SR_BP0			4	/* Block protect 0 */ | 
|  | #define	SR_BP1			8	/* Block protect 1 */ | 
|  | #define	SR_BP2			0x10	/* Block protect 2 */ | 
|  | #define	SR_SRWD			0x80	/* SR write protect */ | 
|  |  | 
|  | /* Define max times to check status register before we give up. */ | 
|  | #define	MAX_READY_WAIT_COUNT	100000 | 
|  | #define	CMD_SIZE		4 | 
|  |  | 
|  | #ifdef CONFIG_M25PXX_USE_FAST_READ | 
|  | #define OPCODE_READ 	OPCODE_FAST_READ | 
|  | #define FAST_READ_DUMMY_BYTE 1 | 
|  | #else | 
|  | #define OPCODE_READ 	OPCODE_NORM_READ | 
|  | #define FAST_READ_DUMMY_BYTE 0 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | #define	mtd_has_partitions()	(1) | 
|  | #else | 
|  | #define	mtd_has_partitions()	(0) | 
|  | #endif | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | struct m25p { | 
|  | struct spi_device	*spi; | 
|  | struct mutex		lock; | 
|  | struct mtd_info		mtd; | 
|  | unsigned		partitioned:1; | 
|  | u8			erase_opcode; | 
|  | u8			command[CMD_SIZE + FAST_READ_DUMMY_BYTE]; | 
|  | }; | 
|  |  | 
|  | static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd, struct m25p, mtd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Internal helper functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Read the status register, returning its value in the location | 
|  | * Return the status register value. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static int read_sr(struct m25p *flash) | 
|  | { | 
|  | ssize_t retval; | 
|  | u8 code = OPCODE_RDSR; | 
|  | u8 val; | 
|  |  | 
|  | retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); | 
|  |  | 
|  | if (retval < 0) { | 
|  | dev_err(&flash->spi->dev, "error %d reading SR\n", | 
|  | (int) retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write status register 1 byte | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static int write_sr(struct m25p *flash, u8 val) | 
|  | { | 
|  | flash->command[0] = OPCODE_WRSR; | 
|  | flash->command[1] = val; | 
|  |  | 
|  | return spi_write(flash->spi, flash->command, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set write enable latch with Write Enable command. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static inline int write_enable(struct m25p *flash) | 
|  | { | 
|  | u8	code = OPCODE_WREN; | 
|  |  | 
|  | return spi_write_then_read(flash->spi, &code, 1, NULL, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Service routine to read status register until ready, or timeout occurs. | 
|  | * Returns non-zero if error. | 
|  | */ | 
|  | static int wait_till_ready(struct m25p *flash) | 
|  | { | 
|  | int count; | 
|  | int sr; | 
|  |  | 
|  | /* one chip guarantees max 5 msec wait here after page writes, | 
|  | * but potentially three seconds (!) after page erase. | 
|  | */ | 
|  | for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { | 
|  | if ((sr = read_sr(flash)) < 0) | 
|  | break; | 
|  | else if (!(sr & SR_WIP)) | 
|  | return 0; | 
|  |  | 
|  | /* REVISIT sometimes sleeping would be best */ | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Erase one sector of flash memory at offset ``offset'' which is any | 
|  | * address within the sector which should be erased. | 
|  | * | 
|  | * Returns 0 if successful, non-zero otherwise. | 
|  | */ | 
|  | static int erase_sector(struct m25p *flash, u32 offset) | 
|  | { | 
|  | DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n", | 
|  | flash->spi->dev.bus_id, __func__, | 
|  | flash->mtd.erasesize / 1024, offset); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) | 
|  | return 1; | 
|  |  | 
|  | /* Send write enable, then erase commands. */ | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up command buffer. */ | 
|  | flash->command[0] = flash->erase_opcode; | 
|  | flash->command[1] = offset >> 16; | 
|  | flash->command[2] = offset >> 8; | 
|  | flash->command[3] = offset; | 
|  |  | 
|  | spi_write(flash->spi, flash->command, CMD_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * MTD implementation | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Erase an address range on the flash chip.  The address range may extend | 
|  | * one or more erase sectors.  Return an error is there is a problem erasing. | 
|  | */ | 
|  | static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 addr,len; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n", | 
|  | flash->spi->dev.bus_id, __func__, "at", | 
|  | (u32)instr->addr, instr->len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (instr->addr + instr->len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  | if ((instr->addr % mtd->erasesize) != 0 | 
|  | || (instr->len % mtd->erasesize) != 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | addr = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* REVISIT in some cases we could speed up erasing large regions | 
|  | * by using OPCODE_SE instead of OPCODE_BE_4K | 
|  | */ | 
|  |  | 
|  | /* now erase those sectors */ | 
|  | while (len) { | 
|  | if (erase_sector(flash, addr)) { | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | mutex_unlock(&flash->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | addr += mtd->erasesize; | 
|  | len -= mtd->erasesize; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an address range from the flash chip.  The address range | 
|  | * may be any size provided it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | flash->spi->dev.bus_id, __func__, "from", | 
|  | (u32)from, len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | if (from + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | /* NOTE: | 
|  | * OPCODE_FAST_READ (if available) is faster. | 
|  | * Should add 1 byte DUMMY_BYTE. | 
|  | */ | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE; | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].rx_buf = buf; | 
|  | t[1].len = len; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | /* Byte count starts at zero. */ | 
|  | if (retlen) | 
|  | *retlen = 0; | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* Wait till previous write/erase is done. */ | 
|  | if (wait_till_ready(flash)) { | 
|  | /* REVISIT status return?? */ | 
|  | mutex_unlock(&flash->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* FIXME switch to OPCODE_FAST_READ.  It's required for higher | 
|  | * clocks; and at this writing, every chip this driver handles | 
|  | * supports that opcode. | 
|  | */ | 
|  |  | 
|  | /* Set up the write data buffer. */ | 
|  | flash->command[0] = OPCODE_READ; | 
|  | flash->command[1] = from >> 16; | 
|  | flash->command[2] = from >> 8; | 
|  | flash->command[3] = from; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE; | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write an address range to the flash chip.  Data must be written in | 
|  | * FLASH_PAGESIZE chunks.  The address range may be any size provided | 
|  | * it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 page_offset, page_size; | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | flash->spi->dev.bus_id, __func__, "to", | 
|  | (u32)to, len); | 
|  |  | 
|  | if (retlen) | 
|  | *retlen = 0; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return(0); | 
|  |  | 
|  | if (to + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = CMD_SIZE; | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].tx_buf = buf; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | mutex_lock(&flash->lock); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) { | 
|  | mutex_unlock(&flash->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up the opcode in the write buffer. */ | 
|  | flash->command[0] = OPCODE_PP; | 
|  | flash->command[1] = to >> 16; | 
|  | flash->command[2] = to >> 8; | 
|  | flash->command[3] = to; | 
|  |  | 
|  | /* what page do we start with? */ | 
|  | page_offset = to % FLASH_PAGESIZE; | 
|  |  | 
|  | /* do all the bytes fit onto one page? */ | 
|  | if (page_offset + len <= FLASH_PAGESIZE) { | 
|  | t[1].len = len; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - CMD_SIZE; | 
|  | } else { | 
|  | u32 i; | 
|  |  | 
|  | /* the size of data remaining on the first page */ | 
|  | page_size = FLASH_PAGESIZE - page_offset; | 
|  |  | 
|  | t[1].len = page_size; | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - CMD_SIZE; | 
|  |  | 
|  | /* write everything in PAGESIZE chunks */ | 
|  | for (i = page_size; i < len; i += page_size) { | 
|  | page_size = len - i; | 
|  | if (page_size > FLASH_PAGESIZE) | 
|  | page_size = FLASH_PAGESIZE; | 
|  |  | 
|  | /* write the next page to flash */ | 
|  | flash->command[1] = (to + i) >> 16; | 
|  | flash->command[2] = (to + i) >> 8; | 
|  | flash->command[3] = (to + i); | 
|  |  | 
|  | t[1].tx_buf = buf + i; | 
|  | t[1].len = page_size; | 
|  |  | 
|  | wait_till_ready(flash); | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | if (retlen) | 
|  | *retlen += m.actual_length - CMD_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * SPI device driver setup and teardown | 
|  | */ | 
|  |  | 
|  | struct flash_info { | 
|  | char		*name; | 
|  |  | 
|  | /* JEDEC id zero means "no ID" (most older chips); otherwise it has | 
|  | * a high byte of zero plus three data bytes: the manufacturer id, | 
|  | * then a two byte device id. | 
|  | */ | 
|  | u32		jedec_id; | 
|  |  | 
|  | /* The size listed here is what works with OPCODE_SE, which isn't | 
|  | * necessarily called a "sector" by the vendor. | 
|  | */ | 
|  | unsigned	sector_size; | 
|  | u16		n_sectors; | 
|  |  | 
|  | u16		flags; | 
|  | #define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* NOTE: double check command sets and memory organization when you add | 
|  | * more flash chips.  This current list focusses on newer chips, which | 
|  | * have been converging on command sets which including JEDEC ID. | 
|  | */ | 
|  | static struct flash_info __devinitdata m25p_data [] = { | 
|  |  | 
|  | /* Atmel -- some are (confusingly) marketed as "DataFlash" */ | 
|  | { "at25fs010",  0x1f6601, 32 * 1024, 4, SECT_4K, }, | 
|  | { "at25fs040",  0x1f6604, 64 * 1024, 8, SECT_4K, }, | 
|  |  | 
|  | { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, | 
|  | { "at25df641",  0x1f4800, 64 * 1024, 128, SECT_4K, }, | 
|  |  | 
|  | { "at26f004",   0x1f0400, 64 * 1024, 8, SECT_4K, }, | 
|  | { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, | 
|  | { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, | 
|  | { "at26df321",  0x1f4701, 64 * 1024, 64, SECT_4K, }, | 
|  |  | 
|  | /* Spansion -- single (large) sector size only, at least | 
|  | * for the chips listed here (without boot sectors). | 
|  | */ | 
|  | { "s25sl004a", 0x010212, 64 * 1024, 8, }, | 
|  | { "s25sl008a", 0x010213, 64 * 1024, 16, }, | 
|  | { "s25sl016a", 0x010214, 64 * 1024, 32, }, | 
|  | { "s25sl032a", 0x010215, 64 * 1024, 64, }, | 
|  | { "s25sl064a", 0x010216, 64 * 1024, 128, }, | 
|  |  | 
|  | /* SST -- large erase sizes are "overlays", "sectors" are 4K */ | 
|  | { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, | 
|  | { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, | 
|  | { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, | 
|  | { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, | 
|  |  | 
|  | /* ST Microelectronics -- newer production may have feature updates */ | 
|  | { "m25p05",  0x202010,  32 * 1024, 2, }, | 
|  | { "m25p10",  0x202011,  32 * 1024, 4, }, | 
|  | { "m25p20",  0x202012,  64 * 1024, 4, }, | 
|  | { "m25p40",  0x202013,  64 * 1024, 8, }, | 
|  | { "m25p80",         0,  64 * 1024, 16, }, | 
|  | { "m25p16",  0x202015,  64 * 1024, 32, }, | 
|  | { "m25p32",  0x202016,  64 * 1024, 64, }, | 
|  | { "m25p64",  0x202017,  64 * 1024, 128, }, | 
|  | { "m25p128", 0x202018, 256 * 1024, 64, }, | 
|  |  | 
|  | { "m45pe80", 0x204014,  64 * 1024, 16, }, | 
|  | { "m45pe16", 0x204015,  64 * 1024, 32, }, | 
|  |  | 
|  | { "m25pe80", 0x208014,  64 * 1024, 16, }, | 
|  | { "m25pe16", 0x208015,  64 * 1024, 32, SECT_4K, }, | 
|  |  | 
|  | /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ | 
|  | { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, | 
|  | { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, | 
|  | { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, | 
|  | { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, | 
|  | { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, | 
|  | { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, | 
|  | { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, | 
|  | }; | 
|  |  | 
|  | static struct flash_info *__devinit jedec_probe(struct spi_device *spi) | 
|  | { | 
|  | int			tmp; | 
|  | u8			code = OPCODE_RDID; | 
|  | u8			id[3]; | 
|  | u32			jedec; | 
|  | struct flash_info	*info; | 
|  |  | 
|  | /* JEDEC also defines an optional "extended device information" | 
|  | * string for after vendor-specific data, after the three bytes | 
|  | * we use here.  Supporting some chips might require using it. | 
|  | */ | 
|  | tmp = spi_write_then_read(spi, &code, 1, id, 3); | 
|  | if (tmp < 0) { | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", | 
|  | spi->dev.bus_id, tmp); | 
|  | return NULL; | 
|  | } | 
|  | jedec = id[0]; | 
|  | jedec = jedec << 8; | 
|  | jedec |= id[1]; | 
|  | jedec = jedec << 8; | 
|  | jedec |= id[2]; | 
|  |  | 
|  | for (tmp = 0, info = m25p_data; | 
|  | tmp < ARRAY_SIZE(m25p_data); | 
|  | tmp++, info++) { | 
|  | if (info->jedec_id == jedec) | 
|  | return info; | 
|  | } | 
|  | dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * board specific setup should have ensured the SPI clock used here | 
|  | * matches what the READ command supports, at least until this driver | 
|  | * understands FAST_READ (for clocks over 25 MHz). | 
|  | */ | 
|  | static int __devinit m25p_probe(struct spi_device *spi) | 
|  | { | 
|  | struct flash_platform_data	*data; | 
|  | struct m25p			*flash; | 
|  | struct flash_info		*info; | 
|  | unsigned			i; | 
|  |  | 
|  | /* Platform data helps sort out which chip type we have, as | 
|  | * well as how this board partitions it.  If we don't have | 
|  | * a chip ID, try the JEDEC id commands; they'll work for most | 
|  | * newer chips, even if we don't recognize the particular chip. | 
|  | */ | 
|  | data = spi->dev.platform_data; | 
|  | if (data && data->type) { | 
|  | for (i = 0, info = m25p_data; | 
|  | i < ARRAY_SIZE(m25p_data); | 
|  | i++, info++) { | 
|  | if (strcmp(data->type, info->name) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* unrecognized chip? */ | 
|  | if (i == ARRAY_SIZE(m25p_data)) { | 
|  | DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n", | 
|  | spi->dev.bus_id, data->type); | 
|  | info = NULL; | 
|  |  | 
|  | /* recognized; is that chip really what's there? */ | 
|  | } else if (info->jedec_id) { | 
|  | struct flash_info	*chip = jedec_probe(spi); | 
|  |  | 
|  | if (!chip || chip != info) { | 
|  | dev_warn(&spi->dev, "found %s, expected %s\n", | 
|  | chip ? chip->name : "UNKNOWN", | 
|  | info->name); | 
|  | info = NULL; | 
|  | } | 
|  | } | 
|  | } else | 
|  | info = jedec_probe(spi); | 
|  |  | 
|  | if (!info) | 
|  | return -ENODEV; | 
|  |  | 
|  | flash = kzalloc(sizeof *flash, GFP_KERNEL); | 
|  | if (!flash) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flash->spi = spi; | 
|  | mutex_init(&flash->lock); | 
|  | dev_set_drvdata(&spi->dev, flash); | 
|  |  | 
|  | /* | 
|  | * Atmel serial flash tend to power up | 
|  | * with the software protection bits set | 
|  | */ | 
|  |  | 
|  | if (info->jedec_id >> 16 == 0x1f) { | 
|  | write_enable(flash); | 
|  | write_sr(flash, 0); | 
|  | } | 
|  |  | 
|  | if (data && data->name) | 
|  | flash->mtd.name = data->name; | 
|  | else | 
|  | flash->mtd.name = spi->dev.bus_id; | 
|  |  | 
|  | flash->mtd.type = MTD_NORFLASH; | 
|  | flash->mtd.writesize = 1; | 
|  | flash->mtd.flags = MTD_CAP_NORFLASH; | 
|  | flash->mtd.size = info->sector_size * info->n_sectors; | 
|  | flash->mtd.erase = m25p80_erase; | 
|  | flash->mtd.read = m25p80_read; | 
|  | flash->mtd.write = m25p80_write; | 
|  |  | 
|  | /* prefer "small sector" erase if possible */ | 
|  | if (info->flags & SECT_4K) { | 
|  | flash->erase_opcode = OPCODE_BE_4K; | 
|  | flash->mtd.erasesize = 4096; | 
|  | } else { | 
|  | flash->erase_opcode = OPCODE_SE; | 
|  | flash->mtd.erasesize = info->sector_size; | 
|  | } | 
|  |  | 
|  | dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name, | 
|  | flash->mtd.size / 1024); | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd .name = %s, .size = 0x%.8x (%uMiB) " | 
|  | ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", | 
|  | flash->mtd.name, | 
|  | flash->mtd.size, flash->mtd.size / (1024*1024), | 
|  | flash->mtd.erasesize, flash->mtd.erasesize / 1024, | 
|  | flash->mtd.numeraseregions); | 
|  |  | 
|  | if (flash->mtd.numeraseregions) | 
|  | for (i = 0; i < flash->mtd.numeraseregions; i++) | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd.eraseregions[%d] = { .offset = 0x%.8x, " | 
|  | ".erasesize = 0x%.8x (%uKiB), " | 
|  | ".numblocks = %d }\n", | 
|  | i, flash->mtd.eraseregions[i].offset, | 
|  | flash->mtd.eraseregions[i].erasesize, | 
|  | flash->mtd.eraseregions[i].erasesize / 1024, | 
|  | flash->mtd.eraseregions[i].numblocks); | 
|  |  | 
|  |  | 
|  | /* partitions should match sector boundaries; and it may be good to | 
|  | * use readonly partitions for writeprotected sectors (BP2..BP0). | 
|  | */ | 
|  | if (mtd_has_partitions()) { | 
|  | struct mtd_partition	*parts = NULL; | 
|  | int			nr_parts = 0; | 
|  |  | 
|  | #ifdef CONFIG_MTD_CMDLINE_PARTS | 
|  | static const char *part_probes[] = { "cmdlinepart", NULL, }; | 
|  |  | 
|  | nr_parts = parse_mtd_partitions(&flash->mtd, | 
|  | part_probes, &parts, 0); | 
|  | #endif | 
|  |  | 
|  | if (nr_parts <= 0 && data && data->parts) { | 
|  | parts = data->parts; | 
|  | nr_parts = data->nr_parts; | 
|  | } | 
|  |  | 
|  | if (nr_parts > 0) { | 
|  | for (i = 0; i < nr_parts; i++) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " | 
|  | "{.name = %s, .offset = 0x%.8x, " | 
|  | ".size = 0x%.8x (%uKiB) }\n", | 
|  | i, parts[i].name, | 
|  | parts[i].offset, | 
|  | parts[i].size, | 
|  | parts[i].size / 1024); | 
|  | } | 
|  | flash->partitioned = 1; | 
|  | return add_mtd_partitions(&flash->mtd, parts, nr_parts); | 
|  | } | 
|  | } else if (data->nr_parts) | 
|  | dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", | 
|  | data->nr_parts, data->name); | 
|  |  | 
|  | return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __devexit m25p_remove(struct spi_device *spi) | 
|  | { | 
|  | struct m25p	*flash = dev_get_drvdata(&spi->dev); | 
|  | int		status; | 
|  |  | 
|  | /* Clean up MTD stuff. */ | 
|  | if (mtd_has_partitions() && flash->partitioned) | 
|  | status = del_mtd_partitions(&flash->mtd); | 
|  | else | 
|  | status = del_mtd_device(&flash->mtd); | 
|  | if (status == 0) | 
|  | kfree(flash); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct spi_driver m25p80_driver = { | 
|  | .driver = { | 
|  | .name	= "m25p80", | 
|  | .bus	= &spi_bus_type, | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .probe	= m25p_probe, | 
|  | .remove	= __devexit_p(m25p_remove), | 
|  |  | 
|  | /* REVISIT: many of these chips have deep power-down modes, which | 
|  | * should clearly be entered on suspend() to minimize power use. | 
|  | * And also when they're otherwise idle... | 
|  | */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int m25p80_init(void) | 
|  | { | 
|  | return spi_register_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void m25p80_exit(void) | 
|  | { | 
|  | spi_unregister_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | module_init(m25p80_init); | 
|  | module_exit(m25p80_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mike Lavender"); | 
|  | MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |