|  | /* | 
|  | * Copyright (c) International Business Machines Corp., 2006 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
|  | * the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | * | 
|  | * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * UBI wear-leveling sub-system. | 
|  | * | 
|  | * This sub-system is responsible for wear-leveling. It works in terms of | 
|  | * physical* eraseblocks and erase counters and knows nothing about logical | 
|  | * eraseblocks, volumes, etc. From this sub-system's perspective all physical | 
|  | * eraseblocks are of two types - used and free. Used physical eraseblocks are | 
|  | * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical | 
|  | * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. | 
|  | * | 
|  | * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter | 
|  | * header. The rest of the physical eraseblock contains only %0xFF bytes. | 
|  | * | 
|  | * When physical eraseblocks are returned to the WL sub-system by means of the | 
|  | * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is | 
|  | * done asynchronously in context of the per-UBI device background thread, | 
|  | * which is also managed by the WL sub-system. | 
|  | * | 
|  | * The wear-leveling is ensured by means of moving the contents of used | 
|  | * physical eraseblocks with low erase counter to free physical eraseblocks | 
|  | * with high erase counter. | 
|  | * | 
|  | * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick | 
|  | * an "optimal" physical eraseblock. For example, when it is known that the | 
|  | * physical eraseblock will be "put" soon because it contains short-term data, | 
|  | * the WL sub-system may pick a free physical eraseblock with low erase | 
|  | * counter, and so forth. | 
|  | * | 
|  | * If the WL sub-system fails to erase a physical eraseblock, it marks it as | 
|  | * bad. | 
|  | * | 
|  | * This sub-system is also responsible for scrubbing. If a bit-flip is detected | 
|  | * in a physical eraseblock, it has to be moved. Technically this is the same | 
|  | * as moving it for wear-leveling reasons. | 
|  | * | 
|  | * As it was said, for the UBI sub-system all physical eraseblocks are either | 
|  | * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while | 
|  | * used eraseblocks are kept in a set of different RB-trees: @wl->used, | 
|  | * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. | 
|  | * | 
|  | * Note, in this implementation, we keep a small in-RAM object for each physical | 
|  | * eraseblock. This is surely not a scalable solution. But it appears to be good | 
|  | * enough for moderately large flashes and it is simple. In future, one may | 
|  | * re-work this sub-system and make it more scalable. | 
|  | * | 
|  | * At the moment this sub-system does not utilize the sequence number, which | 
|  | * was introduced relatively recently. But it would be wise to do this because | 
|  | * the sequence number of a logical eraseblock characterizes how old is it. For | 
|  | * example, when we move a PEB with low erase counter, and we need to pick the | 
|  | * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we | 
|  | * pick target PEB with an average EC if our PEB is not very "old". This is a | 
|  | * room for future re-works of the WL sub-system. | 
|  | * | 
|  | * Note: the stuff with protection trees looks too complex and is difficult to | 
|  | * understand. Should be fixed. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/kthread.h> | 
|  | #include "ubi.h" | 
|  |  | 
|  | /* Number of physical eraseblocks reserved for wear-leveling purposes */ | 
|  | #define WL_RESERVED_PEBS 1 | 
|  |  | 
|  | /* | 
|  | * How many erase cycles are short term, unknown, and long term physical | 
|  | * eraseblocks protected. | 
|  | */ | 
|  | #define ST_PROTECTION 16 | 
|  | #define U_PROTECTION  10 | 
|  | #define LT_PROTECTION 4 | 
|  |  | 
|  | /* | 
|  | * Maximum difference between two erase counters. If this threshold is | 
|  | * exceeded, the WL sub-system starts moving data from used physical | 
|  | * eraseblocks with low erase counter to free physical eraseblocks with high | 
|  | * erase counter. | 
|  | */ | 
|  | #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD | 
|  |  | 
|  | /* | 
|  | * When a physical eraseblock is moved, the WL sub-system has to pick the target | 
|  | * physical eraseblock to move to. The simplest way would be just to pick the | 
|  | * one with the highest erase counter. But in certain workloads this could lead | 
|  | * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a | 
|  | * situation when the picked physical eraseblock is constantly erased after the | 
|  | * data is written to it. So, we have a constant which limits the highest erase | 
|  | * counter of the free physical eraseblock to pick. Namely, the WL sub-system | 
|  | * does not pick eraseblocks with erase counter greater then the lowest erase | 
|  | * counter plus %WL_FREE_MAX_DIFF. | 
|  | */ | 
|  | #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) | 
|  |  | 
|  | /* | 
|  | * Maximum number of consecutive background thread failures which is enough to | 
|  | * switch to read-only mode. | 
|  | */ | 
|  | #define WL_MAX_FAILURES 32 | 
|  |  | 
|  | /** | 
|  | * struct ubi_wl_prot_entry - PEB protection entry. | 
|  | * @rb_pnum: link in the @wl->prot.pnum RB-tree | 
|  | * @rb_aec: link in the @wl->prot.aec RB-tree | 
|  | * @abs_ec: the absolute erase counter value when the protection ends | 
|  | * @e: the wear-leveling entry of the physical eraseblock under protection | 
|  | * | 
|  | * When the WL sub-system returns a physical eraseblock, the physical | 
|  | * eraseblock is protected from being moved for some "time". For this reason, | 
|  | * the physical eraseblock is not directly moved from the @wl->free tree to the | 
|  | * @wl->used tree. There is one more tree in between where this physical | 
|  | * eraseblock is temporarily stored (@wl->prot). | 
|  | * | 
|  | * All this protection stuff is needed because: | 
|  | *  o we don't want to move physical eraseblocks just after we have given them | 
|  | *    to the user; instead, we first want to let users fill them up with data; | 
|  | * | 
|  | *  o there is a chance that the user will put the physical eraseblock very | 
|  | *    soon, so it makes sense not to move it for some time, but wait; this is | 
|  | *    especially important in case of "short term" physical eraseblocks. | 
|  | * | 
|  | * Physical eraseblocks stay protected only for limited time. But the "time" is | 
|  | * measured in erase cycles in this case. This is implemented with help of the | 
|  | * absolute erase counter (@wl->abs_ec). When it reaches certain value, the | 
|  | * physical eraseblocks are moved from the protection trees (@wl->prot.*) to | 
|  | * the @wl->used tree. | 
|  | * | 
|  | * Protected physical eraseblocks are searched by physical eraseblock number | 
|  | * (when they are put) and by the absolute erase counter (to check if it is | 
|  | * time to move them to the @wl->used tree). So there are actually 2 RB-trees | 
|  | * storing the protected physical eraseblocks: @wl->prot.pnum and | 
|  | * @wl->prot.aec. They are referred to as the "protection" trees. The | 
|  | * first one is indexed by the physical eraseblock number. The second one is | 
|  | * indexed by the absolute erase counter. Both trees store | 
|  | * &struct ubi_wl_prot_entry objects. | 
|  | * | 
|  | * Each physical eraseblock has 2 main states: free and used. The former state | 
|  | * corresponds to the @wl->free tree. The latter state is split up on several | 
|  | * sub-states: | 
|  | * o the WL movement is allowed (@wl->used tree); | 
|  | * o the WL movement is temporarily prohibited (@wl->prot.pnum and | 
|  | * @wl->prot.aec trees); | 
|  | * o scrubbing is needed (@wl->scrub tree). | 
|  | * | 
|  | * Depending on the sub-state, wear-leveling entries of the used physical | 
|  | * eraseblocks may be kept in one of those trees. | 
|  | */ | 
|  | struct ubi_wl_prot_entry { | 
|  | struct rb_node rb_pnum; | 
|  | struct rb_node rb_aec; | 
|  | unsigned long long abs_ec; | 
|  | struct ubi_wl_entry *e; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct ubi_work - UBI work description data structure. | 
|  | * @list: a link in the list of pending works | 
|  | * @func: worker function | 
|  | * @priv: private data of the worker function | 
|  | * @e: physical eraseblock to erase | 
|  | * @torture: if the physical eraseblock has to be tortured | 
|  | * | 
|  | * The @func pointer points to the worker function. If the @cancel argument is | 
|  | * not zero, the worker has to free the resources and exit immediately. The | 
|  | * worker has to return zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | struct ubi_work { | 
|  | struct list_head list; | 
|  | int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); | 
|  | /* The below fields are only relevant to erasure works */ | 
|  | struct ubi_wl_entry *e; | 
|  | int torture; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | 
|  | static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); | 
|  | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, | 
|  | struct rb_root *root); | 
|  | #else | 
|  | #define paranoid_check_ec(ubi, pnum, ec) 0 | 
|  | #define paranoid_check_in_wl_tree(e, root) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * wl_tree_add - add a wear-leveling entry to a WL RB-tree. | 
|  | * @e: the wear-leveling entry to add | 
|  | * @root: the root of the tree | 
|  | * | 
|  | * Note, we use (erase counter, physical eraseblock number) pairs as keys in | 
|  | * the @ubi->used and @ubi->free RB-trees. | 
|  | */ | 
|  | static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) | 
|  | { | 
|  | struct rb_node **p, *parent = NULL; | 
|  |  | 
|  | p = &root->rb_node; | 
|  | while (*p) { | 
|  | struct ubi_wl_entry *e1; | 
|  |  | 
|  | parent = *p; | 
|  | e1 = rb_entry(parent, struct ubi_wl_entry, rb); | 
|  |  | 
|  | if (e->ec < e1->ec) | 
|  | p = &(*p)->rb_left; | 
|  | else if (e->ec > e1->ec) | 
|  | p = &(*p)->rb_right; | 
|  | else { | 
|  | ubi_assert(e->pnum != e1->pnum); | 
|  | if (e->pnum < e1->pnum) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&e->rb, parent, p); | 
|  | rb_insert_color(&e->rb, root); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_work - do one pending work. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | static int do_work(struct ubi_device *ubi) | 
|  | { | 
|  | int err; | 
|  | struct ubi_work *wrk; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * @ubi->work_sem is used to synchronize with the workers. Workers take | 
|  | * it in read mode, so many of them may be doing works at a time. But | 
|  | * the queue flush code has to be sure the whole queue of works is | 
|  | * done, and it takes the mutex in write mode. | 
|  | */ | 
|  | down_read(&ubi->work_sem); | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (list_empty(&ubi->works)) { | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | up_read(&ubi->work_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | wrk = list_entry(ubi->works.next, struct ubi_work, list); | 
|  | list_del(&wrk->list); | 
|  | ubi->works_count -= 1; | 
|  | ubi_assert(ubi->works_count >= 0); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | /* | 
|  | * Call the worker function. Do not touch the work structure | 
|  | * after this call as it will have been freed or reused by that | 
|  | * time by the worker function. | 
|  | */ | 
|  | err = wrk->func(ubi, wrk, 0); | 
|  | if (err) | 
|  | ubi_err("work failed with error code %d", err); | 
|  | up_read(&ubi->work_sem); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * produce_free_peb - produce a free physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function tries to make a free PEB by means of synchronous execution of | 
|  | * pending works. This may be needed if, for example the background thread is | 
|  | * disabled. Returns zero in case of success and a negative error code in case | 
|  | * of failure. | 
|  | */ | 
|  | static int produce_free_peb(struct ubi_device *ubi) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | while (!ubi->free.rb_node) { | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | dbg_wl("do one work synchronously"); | 
|  | err = do_work(ubi); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | } | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. | 
|  | * @e: the wear-leveling entry to check | 
|  | * @root: the root of the tree | 
|  | * | 
|  | * This function returns non-zero if @e is in the @root RB-tree and zero if it | 
|  | * is not. | 
|  | */ | 
|  | static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) | 
|  | { | 
|  | struct rb_node *p; | 
|  |  | 
|  | p = root->rb_node; | 
|  | while (p) { | 
|  | struct ubi_wl_entry *e1; | 
|  |  | 
|  | e1 = rb_entry(p, struct ubi_wl_entry, rb); | 
|  |  | 
|  | if (e->pnum == e1->pnum) { | 
|  | ubi_assert(e == e1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (e->ec < e1->ec) | 
|  | p = p->rb_left; | 
|  | else if (e->ec > e1->ec) | 
|  | p = p->rb_right; | 
|  | else { | 
|  | ubi_assert(e->pnum != e1->pnum); | 
|  | if (e->pnum < e1->pnum) | 
|  | p = p->rb_left; | 
|  | else | 
|  | p = p->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prot_tree_add - add physical eraseblock to protection trees. | 
|  | * @ubi: UBI device description object | 
|  | * @e: the physical eraseblock to add | 
|  | * @pe: protection entry object to use | 
|  | * @abs_ec: absolute erase counter value when this physical eraseblock has | 
|  | * to be removed from the protection trees. | 
|  | * | 
|  | * @wl->lock has to be locked. | 
|  | */ | 
|  | static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, | 
|  | struct ubi_wl_prot_entry *pe, int abs_ec) | 
|  | { | 
|  | struct rb_node **p, *parent = NULL; | 
|  | struct ubi_wl_prot_entry *pe1; | 
|  |  | 
|  | pe->e = e; | 
|  | pe->abs_ec = ubi->abs_ec + abs_ec; | 
|  |  | 
|  | p = &ubi->prot.pnum.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); | 
|  |  | 
|  | if (e->pnum < pe1->e->pnum) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | rb_link_node(&pe->rb_pnum, parent, p); | 
|  | rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); | 
|  |  | 
|  | p = &ubi->prot.aec.rb_node; | 
|  | parent = NULL; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); | 
|  |  | 
|  | if (pe->abs_ec < pe1->abs_ec) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | rb_link_node(&pe->rb_aec, parent, p); | 
|  | rb_insert_color(&pe->rb_aec, &ubi->prot.aec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_wl_entry - find wear-leveling entry closest to certain erase counter. | 
|  | * @root: the RB-tree where to look for | 
|  | * @max: highest possible erase counter | 
|  | * | 
|  | * This function looks for a wear leveling entry with erase counter closest to | 
|  | * @max and less then @max. | 
|  | */ | 
|  | static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct ubi_wl_entry *e; | 
|  |  | 
|  | e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); | 
|  | max += e->ec; | 
|  |  | 
|  | p = root->rb_node; | 
|  | while (p) { | 
|  | struct ubi_wl_entry *e1; | 
|  |  | 
|  | e1 = rb_entry(p, struct ubi_wl_entry, rb); | 
|  | if (e1->ec >= max) | 
|  | p = p->rb_left; | 
|  | else { | 
|  | p = p->rb_right; | 
|  | e = e1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_get_peb - get a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @dtype: type of data which will be stored in this physical eraseblock | 
|  | * | 
|  | * This function returns a physical eraseblock in case of success and a | 
|  | * negative error code in case of failure. Might sleep. | 
|  | */ | 
|  | int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) | 
|  | { | 
|  | int err, protect, medium_ec; | 
|  | struct ubi_wl_entry *e, *first, *last; | 
|  | struct ubi_wl_prot_entry *pe; | 
|  |  | 
|  | ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || | 
|  | dtype == UBI_UNKNOWN); | 
|  |  | 
|  | pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); | 
|  | if (!pe) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retry: | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (!ubi->free.rb_node) { | 
|  | if (ubi->works_count == 0) { | 
|  | ubi_assert(list_empty(&ubi->works)); | 
|  | ubi_err("no free eraseblocks"); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | kfree(pe); | 
|  | return -ENOSPC; | 
|  | } | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | err = produce_free_peb(ubi); | 
|  | if (err < 0) { | 
|  | kfree(pe); | 
|  | return err; | 
|  | } | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | switch (dtype) { | 
|  | case UBI_LONGTERM: | 
|  | /* | 
|  | * For long term data we pick a physical eraseblock with high | 
|  | * erase counter. But the highest erase counter we can pick is | 
|  | * bounded by the the lowest erase counter plus | 
|  | * %WL_FREE_MAX_DIFF. | 
|  | */ | 
|  | e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | 
|  | protect = LT_PROTECTION; | 
|  | break; | 
|  | case UBI_UNKNOWN: | 
|  | /* | 
|  | * For unknown data we pick a physical eraseblock with medium | 
|  | * erase counter. But we by no means can pick a physical | 
|  | * eraseblock with erase counter greater or equivalent than the | 
|  | * lowest erase counter plus %WL_FREE_MAX_DIFF. | 
|  | */ | 
|  | first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); | 
|  | last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, rb); | 
|  |  | 
|  | if (last->ec - first->ec < WL_FREE_MAX_DIFF) | 
|  | e = rb_entry(ubi->free.rb_node, | 
|  | struct ubi_wl_entry, rb); | 
|  | else { | 
|  | medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; | 
|  | e = find_wl_entry(&ubi->free, medium_ec); | 
|  | } | 
|  | protect = U_PROTECTION; | 
|  | break; | 
|  | case UBI_SHORTTERM: | 
|  | /* | 
|  | * For short term data we pick a physical eraseblock with the | 
|  | * lowest erase counter as we expect it will be erased soon. | 
|  | */ | 
|  | e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, rb); | 
|  | protect = ST_PROTECTION; | 
|  | break; | 
|  | default: | 
|  | protect = 0; | 
|  | e = NULL; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the physical eraseblock to the protection trees where it will | 
|  | * be protected from being moved for some time. | 
|  | */ | 
|  | paranoid_check_in_wl_tree(e, &ubi->free); | 
|  | rb_erase(&e->rb, &ubi->free); | 
|  | prot_tree_add(ubi, e, pe, protect); | 
|  |  | 
|  | dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | return e->pnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prot_tree_del - remove a physical eraseblock from the protection trees | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock to remove | 
|  | * | 
|  | * This function returns PEB @pnum from the protection trees and returns zero | 
|  | * in case of success and %-ENODEV if the PEB was not found in the protection | 
|  | * trees. | 
|  | */ | 
|  | static int prot_tree_del(struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | struct rb_node *p; | 
|  | struct ubi_wl_prot_entry *pe = NULL; | 
|  |  | 
|  | p = ubi->prot.pnum.rb_node; | 
|  | while (p) { | 
|  |  | 
|  | pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); | 
|  |  | 
|  | if (pnum == pe->e->pnum) | 
|  | goto found; | 
|  |  | 
|  | if (pnum < pe->e->pnum) | 
|  | p = p->rb_left; | 
|  | else | 
|  | p = p->rb_right; | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  |  | 
|  | found: | 
|  | ubi_assert(pe->e->pnum == pnum); | 
|  | rb_erase(&pe->rb_aec, &ubi->prot.aec); | 
|  | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); | 
|  | kfree(pe); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sync_erase - synchronously erase a physical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @e: the the physical eraseblock to erase | 
|  | * @torture: if the physical eraseblock has to be tortured | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, | 
|  | int torture) | 
|  | { | 
|  | int err; | 
|  | struct ubi_ec_hdr *ec_hdr; | 
|  | unsigned long long ec = e->ec; | 
|  |  | 
|  | dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); | 
|  |  | 
|  | err = paranoid_check_ec(ubi, e->pnum, e->ec); | 
|  | if (err > 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); | 
|  | if (!ec_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubi_io_sync_erase(ubi, e->pnum, torture); | 
|  | if (err < 0) | 
|  | goto out_free; | 
|  |  | 
|  | ec += err; | 
|  | if (ec > UBI_MAX_ERASECOUNTER) { | 
|  | /* | 
|  | * Erase counter overflow. Upgrade UBI and use 64-bit | 
|  | * erase counters internally. | 
|  | */ | 
|  | ubi_err("erase counter overflow at PEB %d, EC %llu", | 
|  | e->pnum, ec); | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); | 
|  |  | 
|  | ec_hdr->ec = cpu_to_be64(ec); | 
|  |  | 
|  | err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | e->ec = ec; | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (e->ec > ubi->max_ec) | 
|  | ubi->max_ec = e->ec; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | out_free: | 
|  | kfree(ec_hdr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_protection_over - check if it is time to stop protecting some PEBs. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function is called after each erase operation, when the absolute erase | 
|  | * counter is incremented, to check if some physical eraseblock  have not to be | 
|  | * protected any longer. These physical eraseblocks are moved from the | 
|  | * protection trees to the used tree. | 
|  | */ | 
|  | static void check_protection_over(struct ubi_device *ubi) | 
|  | { | 
|  | struct ubi_wl_prot_entry *pe; | 
|  |  | 
|  | /* | 
|  | * There may be several protected physical eraseblock to remove, | 
|  | * process them all. | 
|  | */ | 
|  | while (1) { | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (!ubi->prot.aec.rb_node) { | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pe = rb_entry(rb_first(&ubi->prot.aec), | 
|  | struct ubi_wl_prot_entry, rb_aec); | 
|  |  | 
|  | if (pe->abs_ec > ubi->abs_ec) { | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", | 
|  | pe->e->pnum, ubi->abs_ec, pe->abs_ec); | 
|  | rb_erase(&pe->rb_aec, &ubi->prot.aec); | 
|  | rb_erase(&pe->rb_pnum, &ubi->prot.pnum); | 
|  | wl_tree_add(pe->e, &ubi->used); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | kfree(pe); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_ubi_work - schedule a work. | 
|  | * @ubi: UBI device description object | 
|  | * @wrk: the work to schedule | 
|  | * | 
|  | * This function enqueues a work defined by @wrk to the tail of the pending | 
|  | * works list. | 
|  | */ | 
|  | static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) | 
|  | { | 
|  | spin_lock(&ubi->wl_lock); | 
|  | list_add_tail(&wrk->list, &ubi->works); | 
|  | ubi_assert(ubi->works_count >= 0); | 
|  | ubi->works_count += 1; | 
|  | if (ubi->thread_enabled) | 
|  | wake_up_process(ubi->bgt_thread); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | } | 
|  |  | 
|  | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, | 
|  | int cancel); | 
|  |  | 
|  | /** | 
|  | * schedule_erase - schedule an erase work. | 
|  | * @ubi: UBI device description object | 
|  | * @e: the WL entry of the physical eraseblock to erase | 
|  | * @torture: if the physical eraseblock has to be tortured | 
|  | * | 
|  | * This function returns zero in case of success and a %-ENOMEM in case of | 
|  | * failure. | 
|  | */ | 
|  | static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, | 
|  | int torture) | 
|  | { | 
|  | struct ubi_work *wl_wrk; | 
|  |  | 
|  | dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", | 
|  | e->pnum, e->ec, torture); | 
|  |  | 
|  | wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); | 
|  | if (!wl_wrk) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wl_wrk->func = &erase_worker; | 
|  | wl_wrk->e = e; | 
|  | wl_wrk->torture = torture; | 
|  |  | 
|  | schedule_ubi_work(ubi, wl_wrk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wear_leveling_worker - wear-leveling worker function. | 
|  | * @ubi: UBI device description object | 
|  | * @wrk: the work object | 
|  | * @cancel: non-zero if the worker has to free memory and exit | 
|  | * | 
|  | * This function copies a more worn out physical eraseblock to a less worn out | 
|  | * one. Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, | 
|  | int cancel) | 
|  | { | 
|  | int err, put = 0, scrubbing = 0, protect = 0; | 
|  | struct ubi_wl_prot_entry *uninitialized_var(pe); | 
|  | struct ubi_wl_entry *e1, *e2; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  |  | 
|  | kfree(wrk); | 
|  |  | 
|  | if (cancel) | 
|  | return 0; | 
|  |  | 
|  | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); | 
|  | if (!vid_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&ubi->move_mutex); | 
|  | spin_lock(&ubi->wl_lock); | 
|  | ubi_assert(!ubi->move_from && !ubi->move_to); | 
|  | ubi_assert(!ubi->move_to_put); | 
|  |  | 
|  | if (!ubi->free.rb_node || | 
|  | (!ubi->used.rb_node && !ubi->scrub.rb_node)) { | 
|  | /* | 
|  | * No free physical eraseblocks? Well, they must be waiting in | 
|  | * the queue to be erased. Cancel movement - it will be | 
|  | * triggered again when a free physical eraseblock appears. | 
|  | * | 
|  | * No used physical eraseblocks? They must be temporarily | 
|  | * protected from being moved. They will be moved to the | 
|  | * @ubi->used tree later and the wear-leveling will be | 
|  | * triggered again. | 
|  | */ | 
|  | dbg_wl("cancel WL, a list is empty: free %d, used %d", | 
|  | !ubi->free.rb_node, !ubi->used.rb_node); | 
|  | goto out_cancel; | 
|  | } | 
|  |  | 
|  | if (!ubi->scrub.rb_node) { | 
|  | /* | 
|  | * Now pick the least worn-out used physical eraseblock and a | 
|  | * highly worn-out free physical eraseblock. If the erase | 
|  | * counters differ much enough, start wear-leveling. | 
|  | */ | 
|  | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); | 
|  | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | 
|  |  | 
|  | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { | 
|  | dbg_wl("no WL needed: min used EC %d, max free EC %d", | 
|  | e1->ec, e2->ec); | 
|  | goto out_cancel; | 
|  | } | 
|  | paranoid_check_in_wl_tree(e1, &ubi->used); | 
|  | rb_erase(&e1->rb, &ubi->used); | 
|  | dbg_wl("move PEB %d EC %d to PEB %d EC %d", | 
|  | e1->pnum, e1->ec, e2->pnum, e2->ec); | 
|  | } else { | 
|  | /* Perform scrubbing */ | 
|  | scrubbing = 1; | 
|  | e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); | 
|  | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | 
|  | paranoid_check_in_wl_tree(e1, &ubi->scrub); | 
|  | rb_erase(&e1->rb, &ubi->scrub); | 
|  | dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); | 
|  | } | 
|  |  | 
|  | paranoid_check_in_wl_tree(e2, &ubi->free); | 
|  | rb_erase(&e2->rb, &ubi->free); | 
|  | ubi->move_from = e1; | 
|  | ubi->move_to = e2; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | /* | 
|  | * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. | 
|  | * We so far do not know which logical eraseblock our physical | 
|  | * eraseblock (@e1) belongs to. We have to read the volume identifier | 
|  | * header first. | 
|  | * | 
|  | * Note, we are protected from this PEB being unmapped and erased. The | 
|  | * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB | 
|  | * which is being moved was unmapped. | 
|  | */ | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | if (err == UBI_IO_PEB_FREE) { | 
|  | /* | 
|  | * We are trying to move PEB without a VID header. UBI | 
|  | * always write VID headers shortly after the PEB was | 
|  | * given, so we have a situation when it did not have | 
|  | * chance to write it down because it was preempted. | 
|  | * Just re-schedule the work, so that next time it will | 
|  | * likely have the VID header in place. | 
|  | */ | 
|  | dbg_wl("PEB %d has no VID header", e1->pnum); | 
|  | goto out_not_moved; | 
|  | } | 
|  |  | 
|  | ubi_err("error %d while reading VID header from PEB %d", | 
|  | err, e1->pnum); | 
|  | if (err > 0) | 
|  | err = -EIO; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); | 
|  | if (err) { | 
|  |  | 
|  | if (err < 0) | 
|  | goto out_error; | 
|  | if (err == 1) | 
|  | goto out_not_moved; | 
|  |  | 
|  | /* | 
|  | * For some reason the LEB was not moved - it might be because | 
|  | * the volume is being deleted. We should prevent this PEB from | 
|  | * being selected for wear-levelling movement for some "time", | 
|  | * so put it to the protection tree. | 
|  | */ | 
|  |  | 
|  | dbg_wl("cancelled moving PEB %d", e1->pnum); | 
|  | pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); | 
|  | if (!pe) { | 
|  | err = -ENOMEM; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | protect = 1; | 
|  | } | 
|  |  | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | if (scrubbing && !protect) | 
|  | ubi_msg("scrubbed PEB %d, data moved to PEB %d", | 
|  | e1->pnum, e2->pnum); | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (protect) | 
|  | prot_tree_add(ubi, e1, pe, protect); | 
|  | if (!ubi->move_to_put) | 
|  | wl_tree_add(e2, &ubi->used); | 
|  | else | 
|  | put = 1; | 
|  | ubi->move_from = ubi->move_to = NULL; | 
|  | ubi->move_to_put = ubi->wl_scheduled = 0; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | if (put) { | 
|  | /* | 
|  | * Well, the target PEB was put meanwhile, schedule it for | 
|  | * erasure. | 
|  | */ | 
|  | dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); | 
|  | err = schedule_erase(ubi, e2, 0); | 
|  | if (err) | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | if (!protect) { | 
|  | err = schedule_erase(ubi, e1, 0); | 
|  | if (err) | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  |  | 
|  | dbg_wl("done"); | 
|  | mutex_unlock(&ubi->move_mutex); | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For some reasons the LEB was not moved, might be an error, might be | 
|  | * something else. @e1 was not changed, so return it back. @e2 might | 
|  | * be changed, schedule it for erasure. | 
|  | */ | 
|  | out_not_moved: | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (scrubbing) | 
|  | wl_tree_add(e1, &ubi->scrub); | 
|  | else | 
|  | wl_tree_add(e1, &ubi->used); | 
|  | ubi->move_from = ubi->move_to = NULL; | 
|  | ubi->move_to_put = ubi->wl_scheduled = 0; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | err = schedule_erase(ubi, e2, 0); | 
|  | if (err) | 
|  | goto out_error; | 
|  |  | 
|  | mutex_unlock(&ubi->move_mutex); | 
|  | return 0; | 
|  |  | 
|  | out_error: | 
|  | ubi_err("error %d while moving PEB %d to PEB %d", | 
|  | err, e1->pnum, e2->pnum); | 
|  |  | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | spin_lock(&ubi->wl_lock); | 
|  | ubi->move_from = ubi->move_to = NULL; | 
|  | ubi->move_to_put = ubi->wl_scheduled = 0; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | kmem_cache_free(ubi_wl_entry_slab, e1); | 
|  | kmem_cache_free(ubi_wl_entry_slab, e2); | 
|  | ubi_ro_mode(ubi); | 
|  |  | 
|  | mutex_unlock(&ubi->move_mutex); | 
|  | return err; | 
|  |  | 
|  | out_cancel: | 
|  | ubi->wl_scheduled = 0; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | mutex_unlock(&ubi->move_mutex); | 
|  | ubi_free_vid_hdr(ubi, vid_hdr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ensure_wear_leveling - schedule wear-leveling if it is needed. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function checks if it is time to start wear-leveling and schedules it | 
|  | * if yes. This function returns zero in case of success and a negative error | 
|  | * code in case of failure. | 
|  | */ | 
|  | static int ensure_wear_leveling(struct ubi_device *ubi) | 
|  | { | 
|  | int err = 0; | 
|  | struct ubi_wl_entry *e1; | 
|  | struct ubi_wl_entry *e2; | 
|  | struct ubi_work *wrk; | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (ubi->wl_scheduled) | 
|  | /* Wear-leveling is already in the work queue */ | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If the ubi->scrub tree is not empty, scrubbing is needed, and the | 
|  | * the WL worker has to be scheduled anyway. | 
|  | */ | 
|  | if (!ubi->scrub.rb_node) { | 
|  | if (!ubi->used.rb_node || !ubi->free.rb_node) | 
|  | /* No physical eraseblocks - no deal */ | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * We schedule wear-leveling only if the difference between the | 
|  | * lowest erase counter of used physical eraseblocks and a high | 
|  | * erase counter of free physical eraseblocks is greater then | 
|  | * %UBI_WL_THRESHOLD. | 
|  | */ | 
|  | e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); | 
|  | e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); | 
|  |  | 
|  | if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) | 
|  | goto out_unlock; | 
|  | dbg_wl("schedule wear-leveling"); | 
|  | } else | 
|  | dbg_wl("schedule scrubbing"); | 
|  |  | 
|  | ubi->wl_scheduled = 1; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); | 
|  | if (!wrk) { | 
|  | err = -ENOMEM; | 
|  | goto out_cancel; | 
|  | } | 
|  |  | 
|  | wrk->func = &wear_leveling_worker; | 
|  | schedule_ubi_work(ubi, wrk); | 
|  | return err; | 
|  |  | 
|  | out_cancel: | 
|  | spin_lock(&ubi->wl_lock); | 
|  | ubi->wl_scheduled = 0; | 
|  | out_unlock: | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * erase_worker - physical eraseblock erase worker function. | 
|  | * @ubi: UBI device description object | 
|  | * @wl_wrk: the work object | 
|  | * @cancel: non-zero if the worker has to free memory and exit | 
|  | * | 
|  | * This function erases a physical eraseblock and perform torture testing if | 
|  | * needed. It also takes care about marking the physical eraseblock bad if | 
|  | * needed. Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, | 
|  | int cancel) | 
|  | { | 
|  | struct ubi_wl_entry *e = wl_wrk->e; | 
|  | int pnum = e->pnum, err, need; | 
|  |  | 
|  | if (cancel) { | 
|  | dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); | 
|  | kfree(wl_wrk); | 
|  | kmem_cache_free(ubi_wl_entry_slab, e); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dbg_wl("erase PEB %d EC %d", pnum, e->ec); | 
|  |  | 
|  | err = sync_erase(ubi, e, wl_wrk->torture); | 
|  | if (!err) { | 
|  | /* Fine, we've erased it successfully */ | 
|  | kfree(wl_wrk); | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | ubi->abs_ec += 1; | 
|  | wl_tree_add(e, &ubi->free); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | /* | 
|  | * One more erase operation has happened, take care about | 
|  | * protected physical eraseblocks. | 
|  | */ | 
|  | check_protection_over(ubi); | 
|  |  | 
|  | /* And take care about wear-leveling */ | 
|  | err = ensure_wear_leveling(ubi); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ubi_err("failed to erase PEB %d, error %d", pnum, err); | 
|  | kfree(wl_wrk); | 
|  | kmem_cache_free(ubi_wl_entry_slab, e); | 
|  |  | 
|  | if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || | 
|  | err == -EBUSY) { | 
|  | int err1; | 
|  |  | 
|  | /* Re-schedule the LEB for erasure */ | 
|  | err1 = schedule_erase(ubi, e, 0); | 
|  | if (err1) { | 
|  | err = err1; | 
|  | goto out_ro; | 
|  | } | 
|  | return err; | 
|  | } else if (err != -EIO) { | 
|  | /* | 
|  | * If this is not %-EIO, we have no idea what to do. Scheduling | 
|  | * this physical eraseblock for erasure again would cause | 
|  | * errors again and again. Well, lets switch to RO mode. | 
|  | */ | 
|  | goto out_ro; | 
|  | } | 
|  |  | 
|  | /* It is %-EIO, the PEB went bad */ | 
|  |  | 
|  | if (!ubi->bad_allowed) { | 
|  | ubi_err("bad physical eraseblock %d detected", pnum); | 
|  | goto out_ro; | 
|  | } | 
|  |  | 
|  | spin_lock(&ubi->volumes_lock); | 
|  | need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; | 
|  | if (need > 0) { | 
|  | need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; | 
|  | ubi->avail_pebs -= need; | 
|  | ubi->rsvd_pebs += need; | 
|  | ubi->beb_rsvd_pebs += need; | 
|  | if (need > 0) | 
|  | ubi_msg("reserve more %d PEBs", need); | 
|  | } | 
|  |  | 
|  | if (ubi->beb_rsvd_pebs == 0) { | 
|  | spin_unlock(&ubi->volumes_lock); | 
|  | ubi_err("no reserved physical eraseblocks"); | 
|  | goto out_ro; | 
|  | } | 
|  |  | 
|  | spin_unlock(&ubi->volumes_lock); | 
|  | ubi_msg("mark PEB %d as bad", pnum); | 
|  |  | 
|  | err = ubi_io_mark_bad(ubi, pnum); | 
|  | if (err) | 
|  | goto out_ro; | 
|  |  | 
|  | spin_lock(&ubi->volumes_lock); | 
|  | ubi->beb_rsvd_pebs -= 1; | 
|  | ubi->bad_peb_count += 1; | 
|  | ubi->good_peb_count -= 1; | 
|  | ubi_calculate_reserved(ubi); | 
|  | if (ubi->beb_rsvd_pebs == 0) | 
|  | ubi_warn("last PEB from the reserved pool was used"); | 
|  | spin_unlock(&ubi->volumes_lock); | 
|  |  | 
|  | return err; | 
|  |  | 
|  | out_ro: | 
|  | ubi_ro_mode(ubi); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: physical eraseblock to return | 
|  | * @torture: if this physical eraseblock has to be tortured | 
|  | * | 
|  | * This function is called to return physical eraseblock @pnum to the pool of | 
|  | * free physical eraseblocks. The @torture flag has to be set if an I/O error | 
|  | * occurred to this @pnum and it has to be tested. This function returns zero | 
|  | * in case of success, and a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) | 
|  | { | 
|  | int err; | 
|  | struct ubi_wl_entry *e; | 
|  |  | 
|  | dbg_wl("PEB %d", pnum); | 
|  | ubi_assert(pnum >= 0); | 
|  | ubi_assert(pnum < ubi->peb_count); | 
|  |  | 
|  | retry: | 
|  | spin_lock(&ubi->wl_lock); | 
|  | e = ubi->lookuptbl[pnum]; | 
|  | if (e == ubi->move_from) { | 
|  | /* | 
|  | * User is putting the physical eraseblock which was selected to | 
|  | * be moved. It will be scheduled for erasure in the | 
|  | * wear-leveling worker. | 
|  | */ | 
|  | dbg_wl("PEB %d is being moved, wait", pnum); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | /* Wait for the WL worker by taking the @ubi->move_mutex */ | 
|  | mutex_lock(&ubi->move_mutex); | 
|  | mutex_unlock(&ubi->move_mutex); | 
|  | goto retry; | 
|  | } else if (e == ubi->move_to) { | 
|  | /* | 
|  | * User is putting the physical eraseblock which was selected | 
|  | * as the target the data is moved to. It may happen if the EBA | 
|  | * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' | 
|  | * but the WL sub-system has not put the PEB to the "used" tree | 
|  | * yet, but it is about to do this. So we just set a flag which | 
|  | * will tell the WL worker that the PEB is not needed anymore | 
|  | * and should be scheduled for erasure. | 
|  | */ | 
|  | dbg_wl("PEB %d is the target of data moving", pnum); | 
|  | ubi_assert(!ubi->move_to_put); | 
|  | ubi->move_to_put = 1; | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | return 0; | 
|  | } else { | 
|  | if (in_wl_tree(e, &ubi->used)) { | 
|  | paranoid_check_in_wl_tree(e, &ubi->used); | 
|  | rb_erase(&e->rb, &ubi->used); | 
|  | } else if (in_wl_tree(e, &ubi->scrub)) { | 
|  | paranoid_check_in_wl_tree(e, &ubi->scrub); | 
|  | rb_erase(&e->rb, &ubi->scrub); | 
|  | } else { | 
|  | err = prot_tree_del(ubi, e->pnum); | 
|  | if (err) { | 
|  | ubi_err("PEB %d not found", pnum); | 
|  | ubi_ro_mode(ubi); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | err = schedule_erase(ubi, e, torture); | 
|  | if (err) { | 
|  | spin_lock(&ubi->wl_lock); | 
|  | wl_tree_add(e, &ubi->used); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock to schedule | 
|  | * | 
|  | * If a bit-flip in a physical eraseblock is detected, this physical eraseblock | 
|  | * needs scrubbing. This function schedules a physical eraseblock for | 
|  | * scrubbing which is done in background. This function returns zero in case of | 
|  | * success and a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) | 
|  | { | 
|  | struct ubi_wl_entry *e; | 
|  |  | 
|  | dbg_msg("schedule PEB %d for scrubbing", pnum); | 
|  |  | 
|  | retry: | 
|  | spin_lock(&ubi->wl_lock); | 
|  | e = ubi->lookuptbl[pnum]; | 
|  | if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (e == ubi->move_to) { | 
|  | /* | 
|  | * This physical eraseblock was used to move data to. The data | 
|  | * was moved but the PEB was not yet inserted to the proper | 
|  | * tree. We should just wait a little and let the WL worker | 
|  | * proceed. | 
|  | */ | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | dbg_wl("the PEB %d is not in proper tree, retry", pnum); | 
|  | yield(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (in_wl_tree(e, &ubi->used)) { | 
|  | paranoid_check_in_wl_tree(e, &ubi->used); | 
|  | rb_erase(&e->rb, &ubi->used); | 
|  | } else { | 
|  | int err; | 
|  |  | 
|  | err = prot_tree_del(ubi, e->pnum); | 
|  | if (err) { | 
|  | ubi_err("PEB %d not found", pnum); | 
|  | ubi_ro_mode(ubi); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | wl_tree_add(e, &ubi->scrub); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | /* | 
|  | * Technically scrubbing is the same as wear-leveling, so it is done | 
|  | * by the WL worker. | 
|  | */ | 
|  | return ensure_wear_leveling(ubi); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_flush - flush all pending works. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int ubi_wl_flush(struct ubi_device *ubi) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Erase while the pending works queue is not empty, but not more then | 
|  | * the number of currently pending works. | 
|  | */ | 
|  | dbg_wl("flush (%d pending works)", ubi->works_count); | 
|  | while (ubi->works_count) { | 
|  | err = do_work(ubi); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure all the works which have been done in parallel are | 
|  | * finished. | 
|  | */ | 
|  | down_write(&ubi->work_sem); | 
|  | up_write(&ubi->work_sem); | 
|  |  | 
|  | /* | 
|  | * And in case last was the WL worker and it cancelled the LEB | 
|  | * movement, flush again. | 
|  | */ | 
|  | while (ubi->works_count) { | 
|  | dbg_wl("flush more (%d pending works)", ubi->works_count); | 
|  | err = do_work(ubi); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tree_destroy - destroy an RB-tree. | 
|  | * @root: the root of the tree to destroy | 
|  | */ | 
|  | static void tree_destroy(struct rb_root *root) | 
|  | { | 
|  | struct rb_node *rb; | 
|  | struct ubi_wl_entry *e; | 
|  |  | 
|  | rb = root->rb_node; | 
|  | while (rb) { | 
|  | if (rb->rb_left) | 
|  | rb = rb->rb_left; | 
|  | else if (rb->rb_right) | 
|  | rb = rb->rb_right; | 
|  | else { | 
|  | e = rb_entry(rb, struct ubi_wl_entry, rb); | 
|  |  | 
|  | rb = rb_parent(rb); | 
|  | if (rb) { | 
|  | if (rb->rb_left == &e->rb) | 
|  | rb->rb_left = NULL; | 
|  | else | 
|  | rb->rb_right = NULL; | 
|  | } | 
|  |  | 
|  | kmem_cache_free(ubi_wl_entry_slab, e); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_thread - UBI background thread. | 
|  | * @u: the UBI device description object pointer | 
|  | */ | 
|  | int ubi_thread(void *u) | 
|  | { | 
|  | int failures = 0; | 
|  | struct ubi_device *ubi = u; | 
|  |  | 
|  | ubi_msg("background thread \"%s\" started, PID %d", | 
|  | ubi->bgt_name, task_pid_nr(current)); | 
|  |  | 
|  | set_freezable(); | 
|  | for (;;) { | 
|  | int err; | 
|  |  | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  |  | 
|  | if (try_to_freeze()) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&ubi->wl_lock); | 
|  | if (list_empty(&ubi->works) || ubi->ro_mode || | 
|  | !ubi->thread_enabled) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock(&ubi->wl_lock); | 
|  | schedule(); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&ubi->wl_lock); | 
|  |  | 
|  | err = do_work(ubi); | 
|  | if (err) { | 
|  | ubi_err("%s: work failed with error code %d", | 
|  | ubi->bgt_name, err); | 
|  | if (failures++ > WL_MAX_FAILURES) { | 
|  | /* | 
|  | * Too many failures, disable the thread and | 
|  | * switch to read-only mode. | 
|  | */ | 
|  | ubi_msg("%s: %d consecutive failures", | 
|  | ubi->bgt_name, WL_MAX_FAILURES); | 
|  | ubi_ro_mode(ubi); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | failures = 0; | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cancel_pending - cancel all pending works. | 
|  | * @ubi: UBI device description object | 
|  | */ | 
|  | static void cancel_pending(struct ubi_device *ubi) | 
|  | { | 
|  | while (!list_empty(&ubi->works)) { | 
|  | struct ubi_work *wrk; | 
|  |  | 
|  | wrk = list_entry(ubi->works.next, struct ubi_work, list); | 
|  | list_del(&wrk->list); | 
|  | wrk->func(ubi, wrk, 1); | 
|  | ubi->works_count -= 1; | 
|  | ubi_assert(ubi->works_count >= 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_init_scan - initialize the WL sub-system using scanning information. | 
|  | * @ubi: UBI device description object | 
|  | * @si: scanning information | 
|  | * | 
|  | * This function returns zero in case of success, and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) | 
|  | { | 
|  | int err; | 
|  | struct rb_node *rb1, *rb2; | 
|  | struct ubi_scan_volume *sv; | 
|  | struct ubi_scan_leb *seb, *tmp; | 
|  | struct ubi_wl_entry *e; | 
|  |  | 
|  |  | 
|  | ubi->used = ubi->free = ubi->scrub = RB_ROOT; | 
|  | ubi->prot.pnum = ubi->prot.aec = RB_ROOT; | 
|  | spin_lock_init(&ubi->wl_lock); | 
|  | mutex_init(&ubi->move_mutex); | 
|  | init_rwsem(&ubi->work_sem); | 
|  | ubi->max_ec = si->max_ec; | 
|  | INIT_LIST_HEAD(&ubi->works); | 
|  |  | 
|  | sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); | 
|  |  | 
|  | err = -ENOMEM; | 
|  | ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); | 
|  | if (!ubi->lookuptbl) | 
|  | return err; | 
|  |  | 
|  | list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { | 
|  | cond_resched(); | 
|  |  | 
|  | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); | 
|  | if (!e) | 
|  | goto out_free; | 
|  |  | 
|  | e->pnum = seb->pnum; | 
|  | e->ec = seb->ec; | 
|  | ubi->lookuptbl[e->pnum] = e; | 
|  | if (schedule_erase(ubi, e, 0)) { | 
|  | kmem_cache_free(ubi_wl_entry_slab, e); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seb, &si->free, u.list) { | 
|  | cond_resched(); | 
|  |  | 
|  | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); | 
|  | if (!e) | 
|  | goto out_free; | 
|  |  | 
|  | e->pnum = seb->pnum; | 
|  | e->ec = seb->ec; | 
|  | ubi_assert(e->ec >= 0); | 
|  | wl_tree_add(e, &ubi->free); | 
|  | ubi->lookuptbl[e->pnum] = e; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(seb, &si->corr, u.list) { | 
|  | cond_resched(); | 
|  |  | 
|  | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); | 
|  | if (!e) | 
|  | goto out_free; | 
|  |  | 
|  | e->pnum = seb->pnum; | 
|  | e->ec = seb->ec; | 
|  | ubi->lookuptbl[e->pnum] = e; | 
|  | if (schedule_erase(ubi, e, 0)) { | 
|  | kmem_cache_free(ubi_wl_entry_slab, e); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | 
|  | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | 
|  | cond_resched(); | 
|  |  | 
|  | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); | 
|  | if (!e) | 
|  | goto out_free; | 
|  |  | 
|  | e->pnum = seb->pnum; | 
|  | e->ec = seb->ec; | 
|  | ubi->lookuptbl[e->pnum] = e; | 
|  | if (!seb->scrub) { | 
|  | dbg_wl("add PEB %d EC %d to the used tree", | 
|  | e->pnum, e->ec); | 
|  | wl_tree_add(e, &ubi->used); | 
|  | } else { | 
|  | dbg_wl("add PEB %d EC %d to the scrub tree", | 
|  | e->pnum, e->ec); | 
|  | wl_tree_add(e, &ubi->scrub); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ubi->avail_pebs < WL_RESERVED_PEBS) { | 
|  | ubi_err("no enough physical eraseblocks (%d, need %d)", | 
|  | ubi->avail_pebs, WL_RESERVED_PEBS); | 
|  | goto out_free; | 
|  | } | 
|  | ubi->avail_pebs -= WL_RESERVED_PEBS; | 
|  | ubi->rsvd_pebs += WL_RESERVED_PEBS; | 
|  |  | 
|  | /* Schedule wear-leveling if needed */ | 
|  | err = ensure_wear_leveling(ubi); | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | cancel_pending(ubi); | 
|  | tree_destroy(&ubi->used); | 
|  | tree_destroy(&ubi->free); | 
|  | tree_destroy(&ubi->scrub); | 
|  | kfree(ubi->lookuptbl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * protection_trees_destroy - destroy the protection RB-trees. | 
|  | * @ubi: UBI device description object | 
|  | */ | 
|  | static void protection_trees_destroy(struct ubi_device *ubi) | 
|  | { | 
|  | struct rb_node *rb; | 
|  | struct ubi_wl_prot_entry *pe; | 
|  |  | 
|  | rb = ubi->prot.aec.rb_node; | 
|  | while (rb) { | 
|  | if (rb->rb_left) | 
|  | rb = rb->rb_left; | 
|  | else if (rb->rb_right) | 
|  | rb = rb->rb_right; | 
|  | else { | 
|  | pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); | 
|  |  | 
|  | rb = rb_parent(rb); | 
|  | if (rb) { | 
|  | if (rb->rb_left == &pe->rb_aec) | 
|  | rb->rb_left = NULL; | 
|  | else | 
|  | rb->rb_right = NULL; | 
|  | } | 
|  |  | 
|  | kmem_cache_free(ubi_wl_entry_slab, pe->e); | 
|  | kfree(pe); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_wl_close - close the wear-leveling sub-system. | 
|  | * @ubi: UBI device description object | 
|  | */ | 
|  | void ubi_wl_close(struct ubi_device *ubi) | 
|  | { | 
|  | dbg_wl("close the WL sub-system"); | 
|  | cancel_pending(ubi); | 
|  | protection_trees_destroy(ubi); | 
|  | tree_destroy(&ubi->used); | 
|  | tree_destroy(&ubi->free); | 
|  | tree_destroy(&ubi->scrub); | 
|  | kfree(ubi->lookuptbl); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | 
|  |  | 
|  | /** | 
|  | * paranoid_check_ec - make sure that the erase counter of a PEB is correct. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock number to check | 
|  | * @ec: the erase counter to check | 
|  | * | 
|  | * This function returns zero if the erase counter of physical eraseblock @pnum | 
|  | * is equivalent to @ec, %1 if not, and a negative error code if an error | 
|  | * occurred. | 
|  | */ | 
|  | static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) | 
|  | { | 
|  | int err; | 
|  | long long read_ec; | 
|  | struct ubi_ec_hdr *ec_hdr; | 
|  |  | 
|  | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); | 
|  | if (!ec_hdr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | /* The header does not have to exist */ | 
|  | err = 0; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | read_ec = be64_to_cpu(ec_hdr->ec); | 
|  | if (ec != read_ec) { | 
|  | ubi_err("paranoid check failed for PEB %d", pnum); | 
|  | ubi_err("read EC is %lld, should be %d", read_ec, ec); | 
|  | ubi_dbg_dump_stack(); | 
|  | err = 1; | 
|  | } else | 
|  | err = 0; | 
|  |  | 
|  | out_free: | 
|  | kfree(ec_hdr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. | 
|  | * @e: the wear-leveling entry to check | 
|  | * @root: the root of the tree | 
|  | * | 
|  | * This function returns zero if @e is in the @root RB-tree and %1 if it is | 
|  | * not. | 
|  | */ | 
|  | static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, | 
|  | struct rb_root *root) | 
|  | { | 
|  | if (in_wl_tree(e, root)) | 
|  | return 0; | 
|  |  | 
|  | ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", | 
|  | e->pnum, e->ec, root); | 
|  | ubi_dbg_dump_stack(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |