|  | /* | 
|  | * linux/fs/mbcache.c | 
|  | * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Filesystem Meta Information Block Cache (mbcache) | 
|  | * | 
|  | * The mbcache caches blocks of block devices that need to be located | 
|  | * by their device/block number, as well as by other criteria (such | 
|  | * as the block's contents). | 
|  | * | 
|  | * There can only be one cache entry in a cache per device and block number. | 
|  | * Additional indexes need not be unique in this sense. The number of | 
|  | * additional indexes (=other criteria) can be hardwired at compile time | 
|  | * or specified at cache create time. | 
|  | * | 
|  | * Each cache entry is of fixed size. An entry may be `valid' or `invalid' | 
|  | * in the cache. A valid entry is in the main hash tables of the cache, | 
|  | * and may also be in the lru list. An invalid entry is not in any hashes | 
|  | * or lists. | 
|  | * | 
|  | * A valid cache entry is only in the lru list if no handles refer to it. | 
|  | * Invalid cache entries will be freed when the last handle to the cache | 
|  | * entry is released. Entries that cannot be freed immediately are put | 
|  | * back on the lru list. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/hash.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mbcache.h> | 
|  |  | 
|  |  | 
|  | #ifdef MB_CACHE_DEBUG | 
|  | # define mb_debug(f...) do { \ | 
|  | printk(KERN_DEBUG f); \ | 
|  | printk("\n"); \ | 
|  | } while (0) | 
|  | #define mb_assert(c) do { if (!(c)) \ | 
|  | printk(KERN_ERR "assertion " #c " failed\n"); \ | 
|  | } while(0) | 
|  | #else | 
|  | # define mb_debug(f...) do { } while(0) | 
|  | # define mb_assert(c) do { } while(0) | 
|  | #endif | 
|  | #define mb_error(f...) do { \ | 
|  | printk(KERN_ERR f); \ | 
|  | printk("\n"); \ | 
|  | } while(0) | 
|  |  | 
|  | #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); | 
|  |  | 
|  | MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); | 
|  | MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | EXPORT_SYMBOL(mb_cache_create); | 
|  | EXPORT_SYMBOL(mb_cache_shrink); | 
|  | EXPORT_SYMBOL(mb_cache_destroy); | 
|  | EXPORT_SYMBOL(mb_cache_entry_alloc); | 
|  | EXPORT_SYMBOL(mb_cache_entry_insert); | 
|  | EXPORT_SYMBOL(mb_cache_entry_release); | 
|  | EXPORT_SYMBOL(mb_cache_entry_free); | 
|  | EXPORT_SYMBOL(mb_cache_entry_get); | 
|  | #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) | 
|  | EXPORT_SYMBOL(mb_cache_entry_find_first); | 
|  | EXPORT_SYMBOL(mb_cache_entry_find_next); | 
|  | #endif | 
|  |  | 
|  | struct mb_cache { | 
|  | struct list_head		c_cache_list; | 
|  | const char			*c_name; | 
|  | struct mb_cache_op		c_op; | 
|  | atomic_t			c_entry_count; | 
|  | int				c_bucket_bits; | 
|  | #ifndef MB_CACHE_INDEXES_COUNT | 
|  | int				c_indexes_count; | 
|  | #endif | 
|  | struct kmem_cache			*c_entry_cache; | 
|  | struct list_head		*c_block_hash; | 
|  | struct list_head		*c_indexes_hash[0]; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Global data: list of all mbcache's, lru list, and a spinlock for | 
|  | * accessing cache data structures on SMP machines. The lru list is | 
|  | * global across all mbcaches. | 
|  | */ | 
|  |  | 
|  | static LIST_HEAD(mb_cache_list); | 
|  | static LIST_HEAD(mb_cache_lru_list); | 
|  | static DEFINE_SPINLOCK(mb_cache_spinlock); | 
|  |  | 
|  | static inline int | 
|  | mb_cache_indexes(struct mb_cache *cache) | 
|  | { | 
|  | #ifdef MB_CACHE_INDEXES_COUNT | 
|  | return MB_CACHE_INDEXES_COUNT; | 
|  | #else | 
|  | return cache->c_indexes_count; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * What the mbcache registers as to get shrunk dynamically. | 
|  | */ | 
|  |  | 
|  | static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask); | 
|  |  | 
|  | static struct shrinker mb_cache_shrinker = { | 
|  | .shrink = mb_cache_shrink_fn, | 
|  | .seeks = DEFAULT_SEEKS, | 
|  | }; | 
|  |  | 
|  | static inline int | 
|  | __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) | 
|  | { | 
|  | return !list_empty(&ce->e_block_list); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | __mb_cache_entry_unhash(struct mb_cache_entry *ce) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | if (__mb_cache_entry_is_hashed(ce)) { | 
|  | list_del_init(&ce->e_block_list); | 
|  | for (n=0; n<mb_cache_indexes(ce->e_cache); n++) | 
|  | list_del(&ce->e_indexes[n].o_list); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) | 
|  | { | 
|  | struct mb_cache *cache = ce->e_cache; | 
|  |  | 
|  | mb_assert(!(ce->e_used || ce->e_queued)); | 
|  | if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { | 
|  | /* free failed -- put back on the lru list | 
|  | for freeing later. */ | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_add(&ce->e_lru_list, &mb_cache_lru_list); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | } else { | 
|  | kmem_cache_free(cache->c_entry_cache, ce); | 
|  | atomic_dec(&cache->c_entry_count); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) | 
|  | __releases(mb_cache_spinlock) | 
|  | { | 
|  | /* Wake up all processes queuing for this cache entry. */ | 
|  | if (ce->e_queued) | 
|  | wake_up_all(&mb_cache_queue); | 
|  | if (ce->e_used >= MB_CACHE_WRITER) | 
|  | ce->e_used -= MB_CACHE_WRITER; | 
|  | ce->e_used--; | 
|  | if (!(ce->e_used || ce->e_queued)) { | 
|  | if (!__mb_cache_entry_is_hashed(ce)) | 
|  | goto forget; | 
|  | mb_assert(list_empty(&ce->e_lru_list)); | 
|  | list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); | 
|  | } | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | return; | 
|  | forget: | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | __mb_cache_entry_forget(ce, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_shrink_fn()  memory pressure callback | 
|  | * | 
|  | * This function is called by the kernel memory management when memory | 
|  | * gets low. | 
|  | * | 
|  | * @nr_to_scan: Number of objects to scan | 
|  | * @gfp_mask: (ignored) | 
|  | * | 
|  | * Returns the number of objects which are present in the cache. | 
|  | */ | 
|  | static int | 
|  | mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask) | 
|  | { | 
|  | LIST_HEAD(free_list); | 
|  | struct list_head *l, *ltmp; | 
|  | int count = 0; | 
|  |  | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_for_each(l, &mb_cache_list) { | 
|  | struct mb_cache *cache = | 
|  | list_entry(l, struct mb_cache, c_cache_list); | 
|  | mb_debug("cache %s (%d)", cache->c_name, | 
|  | atomic_read(&cache->c_entry_count)); | 
|  | count += atomic_read(&cache->c_entry_count); | 
|  | } | 
|  | mb_debug("trying to free %d entries", nr_to_scan); | 
|  | if (nr_to_scan == 0) { | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | goto out; | 
|  | } | 
|  | while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { | 
|  | struct mb_cache_entry *ce = | 
|  | list_entry(mb_cache_lru_list.next, | 
|  | struct mb_cache_entry, e_lru_list); | 
|  | list_move_tail(&ce->e_lru_list, &free_list); | 
|  | __mb_cache_entry_unhash(ce); | 
|  | } | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | list_for_each_safe(l, ltmp, &free_list) { | 
|  | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, | 
|  | e_lru_list), gfp_mask); | 
|  | } | 
|  | out: | 
|  | return (count / 100) * sysctl_vfs_cache_pressure; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_create()  create a new cache | 
|  | * | 
|  | * All entries in one cache are equal size. Cache entries may be from | 
|  | * multiple devices. If this is the first mbcache created, registers | 
|  | * the cache with kernel memory management. Returns NULL if no more | 
|  | * memory was available. | 
|  | * | 
|  | * @name: name of the cache (informal) | 
|  | * @cache_op: contains the callback called when freeing a cache entry | 
|  | * @entry_size: The size of a cache entry, including | 
|  | *              struct mb_cache_entry | 
|  | * @indexes_count: number of additional indexes in the cache. Must equal | 
|  | *                 MB_CACHE_INDEXES_COUNT if the number of indexes is | 
|  | *                 hardwired. | 
|  | * @bucket_bits: log2(number of hash buckets) | 
|  | */ | 
|  | struct mb_cache * | 
|  | mb_cache_create(const char *name, struct mb_cache_op *cache_op, | 
|  | size_t entry_size, int indexes_count, int bucket_bits) | 
|  | { | 
|  | int m=0, n, bucket_count = 1 << bucket_bits; | 
|  | struct mb_cache *cache = NULL; | 
|  |  | 
|  | if(entry_size < sizeof(struct mb_cache_entry) + | 
|  | indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) | 
|  | return NULL; | 
|  |  | 
|  | cache = kmalloc(sizeof(struct mb_cache) + | 
|  | indexes_count * sizeof(struct list_head), GFP_KERNEL); | 
|  | if (!cache) | 
|  | goto fail; | 
|  | cache->c_name = name; | 
|  | cache->c_op.free = NULL; | 
|  | if (cache_op) | 
|  | cache->c_op.free = cache_op->free; | 
|  | atomic_set(&cache->c_entry_count, 0); | 
|  | cache->c_bucket_bits = bucket_bits; | 
|  | #ifdef MB_CACHE_INDEXES_COUNT | 
|  | mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); | 
|  | #else | 
|  | cache->c_indexes_count = indexes_count; | 
|  | #endif | 
|  | cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), | 
|  | GFP_KERNEL); | 
|  | if (!cache->c_block_hash) | 
|  | goto fail; | 
|  | for (n=0; n<bucket_count; n++) | 
|  | INIT_LIST_HEAD(&cache->c_block_hash[n]); | 
|  | for (m=0; m<indexes_count; m++) { | 
|  | cache->c_indexes_hash[m] = kmalloc(bucket_count * | 
|  | sizeof(struct list_head), | 
|  | GFP_KERNEL); | 
|  | if (!cache->c_indexes_hash[m]) | 
|  | goto fail; | 
|  | for (n=0; n<bucket_count; n++) | 
|  | INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); | 
|  | } | 
|  | cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, | 
|  | SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); | 
|  | if (!cache->c_entry_cache) | 
|  | goto fail; | 
|  |  | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_add(&cache->c_cache_list, &mb_cache_list); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | return cache; | 
|  |  | 
|  | fail: | 
|  | if (cache) { | 
|  | while (--m >= 0) | 
|  | kfree(cache->c_indexes_hash[m]); | 
|  | kfree(cache->c_block_hash); | 
|  | kfree(cache); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_shrink() | 
|  | * | 
|  | * Removes all cache entries of a device from the cache. All cache entries | 
|  | * currently in use cannot be freed, and thus remain in the cache. All others | 
|  | * are freed. | 
|  | * | 
|  | * @bdev: which device's cache entries to shrink | 
|  | */ | 
|  | void | 
|  | mb_cache_shrink(struct block_device *bdev) | 
|  | { | 
|  | LIST_HEAD(free_list); | 
|  | struct list_head *l, *ltmp; | 
|  |  | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_for_each_safe(l, ltmp, &mb_cache_lru_list) { | 
|  | struct mb_cache_entry *ce = | 
|  | list_entry(l, struct mb_cache_entry, e_lru_list); | 
|  | if (ce->e_bdev == bdev) { | 
|  | list_move_tail(&ce->e_lru_list, &free_list); | 
|  | __mb_cache_entry_unhash(ce); | 
|  | } | 
|  | } | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | list_for_each_safe(l, ltmp, &free_list) { | 
|  | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, | 
|  | e_lru_list), GFP_KERNEL); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_destroy() | 
|  | * | 
|  | * Shrinks the cache to its minimum possible size (hopefully 0 entries), | 
|  | * and then destroys it. If this was the last mbcache, un-registers the | 
|  | * mbcache from kernel memory management. | 
|  | */ | 
|  | void | 
|  | mb_cache_destroy(struct mb_cache *cache) | 
|  | { | 
|  | LIST_HEAD(free_list); | 
|  | struct list_head *l, *ltmp; | 
|  | int n; | 
|  |  | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_for_each_safe(l, ltmp, &mb_cache_lru_list) { | 
|  | struct mb_cache_entry *ce = | 
|  | list_entry(l, struct mb_cache_entry, e_lru_list); | 
|  | if (ce->e_cache == cache) { | 
|  | list_move_tail(&ce->e_lru_list, &free_list); | 
|  | __mb_cache_entry_unhash(ce); | 
|  | } | 
|  | } | 
|  | list_del(&cache->c_cache_list); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  |  | 
|  | list_for_each_safe(l, ltmp, &free_list) { | 
|  | __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, | 
|  | e_lru_list), GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | if (atomic_read(&cache->c_entry_count) > 0) { | 
|  | mb_error("cache %s: %d orphaned entries", | 
|  | cache->c_name, | 
|  | atomic_read(&cache->c_entry_count)); | 
|  | } | 
|  |  | 
|  | kmem_cache_destroy(cache->c_entry_cache); | 
|  |  | 
|  | for (n=0; n < mb_cache_indexes(cache); n++) | 
|  | kfree(cache->c_indexes_hash[n]); | 
|  | kfree(cache->c_block_hash); | 
|  | kfree(cache); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_alloc() | 
|  | * | 
|  | * Allocates a new cache entry. The new entry will not be valid initially, | 
|  | * and thus cannot be looked up yet. It should be filled with data, and | 
|  | * then inserted into the cache using mb_cache_entry_insert(). Returns NULL | 
|  | * if no more memory was available. | 
|  | */ | 
|  | struct mb_cache_entry * | 
|  | mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) | 
|  | { | 
|  | struct mb_cache_entry *ce; | 
|  |  | 
|  | ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); | 
|  | if (ce) { | 
|  | atomic_inc(&cache->c_entry_count); | 
|  | INIT_LIST_HEAD(&ce->e_lru_list); | 
|  | INIT_LIST_HEAD(&ce->e_block_list); | 
|  | ce->e_cache = cache; | 
|  | ce->e_used = 1 + MB_CACHE_WRITER; | 
|  | ce->e_queued = 0; | 
|  | } | 
|  | return ce; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_insert() | 
|  | * | 
|  | * Inserts an entry that was allocated using mb_cache_entry_alloc() into | 
|  | * the cache. After this, the cache entry can be looked up, but is not yet | 
|  | * in the lru list as the caller still holds a handle to it. Returns 0 on | 
|  | * success, or -EBUSY if a cache entry for that device + inode exists | 
|  | * already (this may happen after a failed lookup, but when another process | 
|  | * has inserted the same cache entry in the meantime). | 
|  | * | 
|  | * @bdev: device the cache entry belongs to | 
|  | * @block: block number | 
|  | * @keys: array of additional keys. There must be indexes_count entries | 
|  | *        in the array (as specified when creating the cache). | 
|  | */ | 
|  | int | 
|  | mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, | 
|  | sector_t block, unsigned int keys[]) | 
|  | { | 
|  | struct mb_cache *cache = ce->e_cache; | 
|  | unsigned int bucket; | 
|  | struct list_head *l; | 
|  | int error = -EBUSY, n; | 
|  |  | 
|  | bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), | 
|  | cache->c_bucket_bits); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_for_each_prev(l, &cache->c_block_hash[bucket]) { | 
|  | struct mb_cache_entry *ce = | 
|  | list_entry(l, struct mb_cache_entry, e_block_list); | 
|  | if (ce->e_bdev == bdev && ce->e_block == block) | 
|  | goto out; | 
|  | } | 
|  | __mb_cache_entry_unhash(ce); | 
|  | ce->e_bdev = bdev; | 
|  | ce->e_block = block; | 
|  | list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); | 
|  | for (n=0; n<mb_cache_indexes(cache); n++) { | 
|  | ce->e_indexes[n].o_key = keys[n]; | 
|  | bucket = hash_long(keys[n], cache->c_bucket_bits); | 
|  | list_add(&ce->e_indexes[n].o_list, | 
|  | &cache->c_indexes_hash[n][bucket]); | 
|  | } | 
|  | error = 0; | 
|  | out: | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_release() | 
|  | * | 
|  | * Release a handle to a cache entry. When the last handle to a cache entry | 
|  | * is released it is either freed (if it is invalid) or otherwise inserted | 
|  | * in to the lru list. | 
|  | */ | 
|  | void | 
|  | mb_cache_entry_release(struct mb_cache_entry *ce) | 
|  | { | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | __mb_cache_entry_release_unlock(ce); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_free() | 
|  | * | 
|  | * This is equivalent to the sequence mb_cache_entry_takeout() -- | 
|  | * mb_cache_entry_release(). | 
|  | */ | 
|  | void | 
|  | mb_cache_entry_free(struct mb_cache_entry *ce) | 
|  | { | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | mb_assert(list_empty(&ce->e_lru_list)); | 
|  | __mb_cache_entry_unhash(ce); | 
|  | __mb_cache_entry_release_unlock(ce); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_get() | 
|  | * | 
|  | * Get a cache entry  by device / block number. (There can only be one entry | 
|  | * in the cache per device and block.) Returns NULL if no such cache entry | 
|  | * exists. The returned cache entry is locked for exclusive access ("single | 
|  | * writer"). | 
|  | */ | 
|  | struct mb_cache_entry * | 
|  | mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, | 
|  | sector_t block) | 
|  | { | 
|  | unsigned int bucket; | 
|  | struct list_head *l; | 
|  | struct mb_cache_entry *ce; | 
|  |  | 
|  | bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), | 
|  | cache->c_bucket_bits); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | list_for_each(l, &cache->c_block_hash[bucket]) { | 
|  | ce = list_entry(l, struct mb_cache_entry, e_block_list); | 
|  | if (ce->e_bdev == bdev && ce->e_block == block) { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | if (!list_empty(&ce->e_lru_list)) | 
|  | list_del_init(&ce->e_lru_list); | 
|  |  | 
|  | while (ce->e_used > 0) { | 
|  | ce->e_queued++; | 
|  | prepare_to_wait(&mb_cache_queue, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | schedule(); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | ce->e_queued--; | 
|  | } | 
|  | finish_wait(&mb_cache_queue, &wait); | 
|  | ce->e_used += 1 + MB_CACHE_WRITER; | 
|  |  | 
|  | if (!__mb_cache_entry_is_hashed(ce)) { | 
|  | __mb_cache_entry_release_unlock(ce); | 
|  | return NULL; | 
|  | } | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  | ce = NULL; | 
|  |  | 
|  | cleanup: | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | return ce; | 
|  | } | 
|  |  | 
|  | #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) | 
|  |  | 
|  | static struct mb_cache_entry * | 
|  | __mb_cache_entry_find(struct list_head *l, struct list_head *head, | 
|  | int index, struct block_device *bdev, unsigned int key) | 
|  | { | 
|  | while (l != head) { | 
|  | struct mb_cache_entry *ce = | 
|  | list_entry(l, struct mb_cache_entry, | 
|  | e_indexes[index].o_list); | 
|  | if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | if (!list_empty(&ce->e_lru_list)) | 
|  | list_del_init(&ce->e_lru_list); | 
|  |  | 
|  | /* Incrementing before holding the lock gives readers | 
|  | priority over writers. */ | 
|  | ce->e_used++; | 
|  | while (ce->e_used >= MB_CACHE_WRITER) { | 
|  | ce->e_queued++; | 
|  | prepare_to_wait(&mb_cache_queue, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | schedule(); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | ce->e_queued--; | 
|  | } | 
|  | finish_wait(&mb_cache_queue, &wait); | 
|  |  | 
|  | if (!__mb_cache_entry_is_hashed(ce)) { | 
|  | __mb_cache_entry_release_unlock(ce); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  | return ce; | 
|  | } | 
|  | l = l->next; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_find_first() | 
|  | * | 
|  | * Find the first cache entry on a given device with a certain key in | 
|  | * an additional index. Additonal matches can be found with | 
|  | * mb_cache_entry_find_next(). Returns NULL if no match was found. The | 
|  | * returned cache entry is locked for shared access ("multiple readers"). | 
|  | * | 
|  | * @cache: the cache to search | 
|  | * @index: the number of the additonal index to search (0<=index<indexes_count) | 
|  | * @bdev: the device the cache entry should belong to | 
|  | * @key: the key in the index | 
|  | */ | 
|  | struct mb_cache_entry * | 
|  | mb_cache_entry_find_first(struct mb_cache *cache, int index, | 
|  | struct block_device *bdev, unsigned int key) | 
|  | { | 
|  | unsigned int bucket = hash_long(key, cache->c_bucket_bits); | 
|  | struct list_head *l; | 
|  | struct mb_cache_entry *ce; | 
|  |  | 
|  | mb_assert(index < mb_cache_indexes(cache)); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | l = cache->c_indexes_hash[index][bucket].next; | 
|  | ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], | 
|  | index, bdev, key); | 
|  | spin_unlock(&mb_cache_spinlock); | 
|  | return ce; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mb_cache_entry_find_next() | 
|  | * | 
|  | * Find the next cache entry on a given device with a certain key in an | 
|  | * additional index. Returns NULL if no match could be found. The previous | 
|  | * entry is atomatically released, so that mb_cache_entry_find_next() can | 
|  | * be called like this: | 
|  | * | 
|  | * entry = mb_cache_entry_find_first(); | 
|  | * while (entry) { | 
|  | * 	... | 
|  | *	entry = mb_cache_entry_find_next(entry, ...); | 
|  | * } | 
|  | * | 
|  | * @prev: The previous match | 
|  | * @index: the number of the additonal index to search (0<=index<indexes_count) | 
|  | * @bdev: the device the cache entry should belong to | 
|  | * @key: the key in the index | 
|  | */ | 
|  | struct mb_cache_entry * | 
|  | mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, | 
|  | struct block_device *bdev, unsigned int key) | 
|  | { | 
|  | struct mb_cache *cache = prev->e_cache; | 
|  | unsigned int bucket = hash_long(key, cache->c_bucket_bits); | 
|  | struct list_head *l; | 
|  | struct mb_cache_entry *ce; | 
|  |  | 
|  | mb_assert(index < mb_cache_indexes(cache)); | 
|  | spin_lock(&mb_cache_spinlock); | 
|  | l = prev->e_indexes[index].o_list.next; | 
|  | ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], | 
|  | index, bdev, key); | 
|  | __mb_cache_entry_release_unlock(prev); | 
|  | return ce; | 
|  | } | 
|  |  | 
|  | #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ | 
|  |  | 
|  | static int __init init_mbcache(void) | 
|  | { | 
|  | register_shrinker(&mb_cache_shrinker); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit exit_mbcache(void) | 
|  | { | 
|  | unregister_shrinker(&mb_cache_shrinker); | 
|  | } | 
|  |  | 
|  | module_init(init_mbcache) | 
|  | module_exit(exit_mbcache) | 
|  |  |