| /* | 
 |  * linux/include/asm-xtensa/page.h | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * Copyright (C) 2001 - 2005 Tensilica Inc. | 
 |  */ | 
 |  | 
 | #ifndef _XTENSA_PGTABLE_H | 
 | #define _XTENSA_PGTABLE_H | 
 |  | 
 | #include <asm-generic/pgtable-nopmd.h> | 
 | #include <asm/page.h> | 
 |  | 
 | /* Assertions. */ | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 |  | 
 | #if (XCHAL_MMU_RINGS < 2) | 
 | # error Linux build assumes at least 2 ring levels. | 
 | #endif | 
 |  | 
 | #if (XCHAL_MMU_CA_BITS != 4) | 
 | # error We assume exactly four bits for CA. | 
 | #endif | 
 |  | 
 | #if (XCHAL_MMU_SR_BITS != 0) | 
 | # error We have no room for SR bits. | 
 | #endif | 
 |  | 
 | /* | 
 |  * Use the first min-wired way for mapping page-table pages. | 
 |  * Page coloring requires a second min-wired way. | 
 |  */ | 
 |  | 
 | #if (XCHAL_DTLB_MINWIRED_SETS == 0) | 
 | # error Need a min-wired way for mapping page-table pages | 
 | #endif | 
 |  | 
 | #define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY) | 
 |  | 
 | #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK | 
 | # if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2 | 
 | #  define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1) | 
 | #  define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2) | 
 | # else | 
 | #  error Page coloring requires its own wired dtlb way! | 
 | # endif | 
 | #endif | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * We only use two ring levels, user and kernel space. | 
 |  */ | 
 |  | 
 | #define USER_RING		1	/* user ring level */ | 
 | #define KERNEL_RING		0	/* kernel ring level */ | 
 |  | 
 | /* | 
 |  * The Xtensa architecture port of Linux has a two-level page table system, | 
 |  * i.e. the logical three-level Linux page table layout are folded. | 
 |  * Each task has the following memory page tables: | 
 |  * | 
 |  *   PGD table (page directory), ie. 3rd-level page table: | 
 |  *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables | 
 |  *	(Architectures that don't have the PMD folded point to the PMD tables) | 
 |  * | 
 |  *	The pointer to the PGD table for a given task can be retrieved from | 
 |  *	the task structure (struct task_struct*) t, e.g. current(): | 
 |  *	  (t->mm ? t->mm : t->active_mm)->pgd | 
 |  * | 
 |  *   PMD tables (page middle-directory), ie. 2nd-level page tables: | 
 |  *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). | 
 |  * | 
 |  *   PTE tables (page table entry), ie. 1st-level page tables: | 
 |  *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE | 
 |  *	invalid_pte_table for absent mappings. | 
 |  * | 
 |  * The individual pages are 4 kB big with special pages for the empty_zero_page. | 
 |  */ | 
 | #define PGDIR_SHIFT	22 | 
 | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
 | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
 |  | 
 | /* | 
 |  * Entries per page directory level: we use two-level, so | 
 |  * we don't really have any PMD directory physically. | 
 |  */ | 
 | #define PTRS_PER_PTE		1024 | 
 | #define PTRS_PER_PTE_SHIFT	10 | 
 | #define PTRS_PER_PMD		1 | 
 | #define PTRS_PER_PGD		1024 | 
 | #define PGD_ORDER		0 | 
 | #define PMD_ORDER		0 | 
 | #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE) | 
 | #define FIRST_USER_ADDRESS      XCHAL_SEG_MAPPABLE_VADDR | 
 | #define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT) | 
 |  | 
 | /* virtual memory area. We keep a distance to other memory regions to be | 
 |  * on the safe side. We also use this area for cache aliasing. | 
 |  */ | 
 |  | 
 | // FIXME: virtual memory area must be configuration-dependent | 
 |  | 
 | #define VMALLOC_START		0xC0000000 | 
 | #define VMALLOC_END		0xC7FF0000 | 
 |  | 
 | /* Xtensa Linux config PTE layout (when present): | 
 |  *	31-12:	PPN | 
 |  *	11-6:	Software | 
 |  *	5-4:	RING | 
 |  *	3-0:	CA | 
 |  * | 
 |  * Similar to the Alpha and MIPS ports, we need to keep track of the ref | 
 |  * and mod bits in software.  We have a software "you can read | 
 |  * from this page" bit, and a hardware one which actually lets the | 
 |  * process read from the page.  On the same token we have a software | 
 |  * writable bit and the real hardware one which actually lets the | 
 |  * process write to the page. | 
 |  * | 
 |  * See further below for PTE layout for swapped-out pages. | 
 |  */ | 
 |  | 
 | #define _PAGE_VALID		(1<<0)	/* hardware: page is accessible */ | 
 | #define _PAGE_WRENABLE		(1<<1)	/* hardware: page is writable */ | 
 |  | 
 | /* None of these cache modes include MP coherency:  */ | 
 | #define _PAGE_NO_CACHE		(0<<2)	/* bypass, non-speculative */ | 
 | #if XCHAL_DCACHE_IS_WRITEBACK | 
 | # define _PAGE_WRITEBACK	(1<<2)	/* write back */ | 
 | # define _PAGE_WRITETHRU	(2<<2)	/* write through */ | 
 | #else | 
 | # define _PAGE_WRITEBACK	(1<<2)	/* assume write through */ | 
 | # define _PAGE_WRITETHRU	(1<<2) | 
 | #endif | 
 | #define _PAGE_NOALLOC		(3<<2)	/* don't allocate cache,if not cached */ | 
 | #define _CACHE_MASK		(3<<2) | 
 |  | 
 | #define _PAGE_USER		(1<<4)	/* user access (ring=1) */ | 
 | #define _PAGE_KERNEL		(0<<4)	/* kernel access (ring=0) */ | 
 |  | 
 | /* Software */ | 
 | #define _PAGE_RW		(1<<6)	/* software: page writable */ | 
 | #define _PAGE_DIRTY		(1<<7)	/* software: page dirty */ | 
 | #define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */ | 
 | #define _PAGE_FILE		(1<<9)	/* nonlinear file mapping*/ | 
 |  | 
 | #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY) | 
 | #define _PAGE_PRESENT	( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED) | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | # define PAGE_NONE	__pgprot(_PAGE_PRESENT) | 
 | # define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW) | 
 | # define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER) | 
 | # define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER) | 
 | # define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE) | 
 | # define PAGE_INVALID	__pgprot(_PAGE_USER) | 
 |  | 
 | # if (DCACHE_WAY_SIZE > PAGE_SIZE) | 
 | #  define PAGE_DIRECTORY  __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL) | 
 | # else | 
 | #  define PAGE_DIRECTORY  __pgprot(_PAGE_PRESENT | _PAGE_KERNEL) | 
 | # endif | 
 |  | 
 | #else /* no mmu */ | 
 |  | 
 | # define PAGE_NONE       __pgprot(0) | 
 | # define PAGE_SHARED     __pgprot(0) | 
 | # define PAGE_COPY       __pgprot(0) | 
 | # define PAGE_READONLY   __pgprot(0) | 
 | # define PAGE_KERNEL     __pgprot(0) | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * On certain configurations of Xtensa MMUs (eg. the initial Linux config), | 
 |  * the MMU can't do page protection for execute, and considers that the same as | 
 |  * read.  Also, write permissions may imply read permissions. | 
 |  * What follows is the closest we can get by reasonable means.. | 
 |  * See linux/mm/mmap.c for protection_map[] array that uses these definitions. | 
 |  */ | 
 | #define __P000	PAGE_NONE	/* private --- */ | 
 | #define __P001	PAGE_READONLY	/* private --r */ | 
 | #define __P010	PAGE_COPY	/* private -w- */ | 
 | #define __P011	PAGE_COPY	/* private -wr */ | 
 | #define __P100	PAGE_READONLY	/* private x-- */ | 
 | #define __P101	PAGE_READONLY	/* private x-r */ | 
 | #define __P110	PAGE_COPY	/* private xw- */ | 
 | #define __P111	PAGE_COPY	/* private xwr */ | 
 |  | 
 | #define __S000	PAGE_NONE	/* shared  --- */ | 
 | #define __S001	PAGE_READONLY	/* shared  --r */ | 
 | #define __S010	PAGE_SHARED	/* shared  -w- */ | 
 | #define __S011	PAGE_SHARED	/* shared  -wr */ | 
 | #define __S100	PAGE_READONLY	/* shared  x-- */ | 
 | #define __S101	PAGE_READONLY	/* shared  x-r */ | 
 | #define __S110	PAGE_SHARED	/* shared  xw- */ | 
 | #define __S111	PAGE_SHARED	/* shared  xwr */ | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | #define pte_ERROR(e) \ | 
 | 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) | 
 | #define pgd_ERROR(e) \ | 
 | 	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | 
 |  | 
 | extern unsigned long empty_zero_page[1024]; | 
 |  | 
 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
 |  | 
 | extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; | 
 |  | 
 | /* | 
 |  * The pmd contains the kernel virtual address of the pte page. | 
 |  */ | 
 | #define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) | 
 | #define pmd_page(pmd) virt_to_page(pmd_val(pmd)) | 
 |  | 
 | /* | 
 |  * The following only work if pte_present() is true. | 
 |  */ | 
 | #define pte_none(pte)	 (!(pte_val(pte) ^ _PAGE_USER)) | 
 | #define pte_present(pte) (pte_val(pte) & _PAGE_VALID) | 
 | #define pte_clear(mm,addr,ptep)						\ | 
 | 	do { update_pte(ptep, __pte(_PAGE_USER)); } while(0) | 
 |  | 
 | #define pmd_none(pmd)	 (!pmd_val(pmd)) | 
 | #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) | 
 | #define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0) | 
 | #define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK) | 
 |  | 
 | /* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */ | 
 |  | 
 | static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; } | 
 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } | 
 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } | 
 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } | 
 | static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; } | 
 | static inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; } | 
 | static inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; } | 
 | static inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; } | 
 | static inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; } | 
 | static inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; } | 
 | static inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_RW; return pte; } | 
 |  | 
 | /* | 
 |  * Conversion functions: convert a page and protection to a page entry, | 
 |  * and a page entry and page directory to the page they refer to. | 
 |  */ | 
 | #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT) | 
 | #define pte_same(a,b)		(pte_val(a) == pte_val(b)) | 
 | #define pte_page(x)		pfn_to_page(pte_pfn(x)) | 
 | #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) | 
 | #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot) | 
 |  | 
 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
 | { | 
 | 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); | 
 | } | 
 |  | 
 | /* | 
 |  * Certain architectures need to do special things when pte's | 
 |  * within a page table are directly modified.  Thus, the following | 
 |  * hook is made available. | 
 |  */ | 
 | static inline void update_pte(pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	*ptep = pteval; | 
 | #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK | 
 | 	__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep)); | 
 | #endif | 
 | } | 
 |  | 
 | struct mm_struct; | 
 |  | 
 | static inline void | 
 | set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	update_pte(ptep, pteval); | 
 | } | 
 |  | 
 |  | 
 | static inline void | 
 | set_pmd(pmd_t *pmdp, pmd_t pmdval) | 
 | { | 
 | 	*pmdp = pmdval; | 
 | #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK | 
 | 	__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp)); | 
 | #endif | 
 | } | 
 |  | 
 | struct vm_area_struct; | 
 |  | 
 | static inline int | 
 | ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, | 
 |     			  pte_t *ptep) | 
 | { | 
 | 	pte_t pte = *ptep; | 
 | 	if (!pte_young(pte)) | 
 | 		return 0; | 
 | 	update_pte(ptep, pte_mkold(pte)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline int | 
 | ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, | 
 |    			  pte_t *ptep) | 
 | { | 
 | 	pte_t pte = *ptep; | 
 | 	if (!pte_dirty(pte)) | 
 | 		return 0; | 
 | 	update_pte(ptep, pte_mkclean(pte)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline pte_t | 
 | ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	pte_t pte = *ptep; | 
 | 	pte_clear(mm, addr, ptep); | 
 | 	return pte; | 
 | } | 
 |  | 
 | static inline void | 
 | ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 |   	pte_t pte = *ptep; | 
 |   	update_pte(ptep, pte_wrprotect(pte)); | 
 | } | 
 |  | 
 | /* to find an entry in a kernel page-table-directory */ | 
 | #define pgd_offset_k(address)	pgd_offset(&init_mm, address) | 
 |  | 
 | /* to find an entry in a page-table-directory */ | 
 | #define pgd_offset(mm,address)	((mm)->pgd + pgd_index(address)) | 
 |  | 
 | #define pgd_index(address)	((address) >> PGDIR_SHIFT) | 
 |  | 
 | /* Find an entry in the second-level page table.. */ | 
 | #define pmd_offset(dir,address) ((pmd_t*)(dir)) | 
 |  | 
 | /* Find an entry in the third-level page table.. */ | 
 | #define pte_index(address)	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
 | #define pte_offset_kernel(dir,addr) 					\ | 
 | 	((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr)) | 
 | #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr)) | 
 | #define pte_offset_map_nested(dir,addr)	pte_offset_kernel((dir),(addr)) | 
 |  | 
 | #define pte_unmap(pte)		do { } while (0) | 
 | #define pte_unmap_nested(pte)	do { } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Encode and decode a swap entry. | 
 |  * Each PTE in a process VM's page table is either: | 
 |  *   "present" -- valid and not swapped out, protection bits are meaningful; | 
 |  *   "not present" -- which further subdivides in these two cases: | 
 |  *      "none" -- no mapping at all; identified by pte_none(), set by pte_clear( | 
 |  *      "swapped out" -- the page is swapped out, and the SWP macros below | 
 |  *                      are used to store swap file info in the PTE itself. | 
 |  * | 
 |  * In the Xtensa processor MMU, any PTE entries in user space (or anywhere | 
 |  * in virtual memory that can map differently across address spaces) | 
 |  * must have a correct ring value that represents the RASID field that | 
 |  * is changed when switching address spaces.  Eg. such PTE entries cannot | 
 |  * be set to ring zero, because that can cause a (global) kernel ASID | 
 |  * entry to be created in the TLBs (even with invalid cache attribute), | 
 |  * potentially causing a multihit exception when going back to another | 
 |  * address space that mapped the same virtual address at another ring. | 
 |  * | 
 |  * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs. | 
 |  * We also avoid using the _PAGE_VALID bit which must be zero for non-present | 
 |  * pages. | 
 |  * | 
 |  * We end up with the following available bits:  1..3 and 7..31. | 
 |  * We don't bother with 1..3 for now (we can use them later if needed), | 
 |  * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits | 
 |  * for SWP_OFFSET.  At least 5 bits are needed for SWP_TYPE, because it | 
 |  * is currently implemented as an index into swap_info[MAX_SWAPFILES] | 
 |  * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>. | 
 |  * However, for some reason all other architectures in the 2.4 kernel | 
 |  * reserve either 6, 7, or 8 bits so I'll not detract from that for now.  :) | 
 |  * SWP_OFFSET is an offset into the swap file in page-size units, so | 
 |  * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB. | 
 |  * | 
 |  * FIXME:  2 GB isn't very big.  Other bits can be used to allow | 
 |  * larger swap sizes.  In the meantime, it appears relatively easy to get | 
 |  * around the 2 GB limitation by simply using multiple swap files. | 
 |  */ | 
 |  | 
 | #define __swp_type(entry)	(((entry).val >> 7) & 0x3f) | 
 | #define __swp_offset(entry)	((entry).val >> 13) | 
 | #define __swp_entry(type,offs)	((swp_entry_t) {((type) << 7) | ((offs) << 13)}) | 
 | #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) }) | 
 | #define __swp_entry_to_pte(x)	((pte_t) { (x).val }) | 
 |  | 
 | #define PTE_FILE_MAX_BITS	29 | 
 | #define pte_to_pgoff(pte)	(pte_val(pte) >> 3) | 
 | #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE }) | 
 |  | 
 |  | 
 | #endif /*  !defined (__ASSEMBLY__) */ | 
 |  | 
 |  | 
 | #ifdef __ASSEMBLY__ | 
 |  | 
 | /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), | 
 |  *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), | 
 |  *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) | 
 |  *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) | 
 |  * | 
 |  * Note: We require an additional temporary register which can be the same as | 
 |  *       the register that holds the address. | 
 |  * | 
 |  * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) | 
 |  * | 
 |  */ | 
 | #define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT | 
 | #define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT | 
 |  | 
 | #define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\ | 
 | 					_PGD_INDEX(tmp, adr);		\ | 
 | 					addx4	mm, tmp, mm | 
 |  | 
 | #define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\ | 
 | 					srli	pmd, pmd, PAGE_SHIFT;	\ | 
 | 					slli	pmd, pmd, PAGE_SHIFT;	\ | 
 | 					addx4	pmd, tmp, pmd | 
 |  | 
 | #else | 
 |  | 
 | extern void paging_init(void); | 
 |  | 
 | #define kern_addr_valid(addr)	(1) | 
 |  | 
 | extern  void update_mmu_cache(struct vm_area_struct * vma, | 
 | 			      unsigned long address, pte_t pte); | 
 |  | 
 | /* | 
 |  * remap a physical page `pfn' of size `size' with page protection `prot' | 
 |  * into virtual address `from' | 
 |  */ | 
 | #define io_remap_pfn_range(vma,from,pfn,size,prot) \ | 
 |                 remap_pfn_range(vma, from, pfn, size, prot) | 
 |  | 
 |  | 
 | /* No page table caches to init */ | 
 |  | 
 | #define pgtable_cache_init()	do { } while (0) | 
 |  | 
 | typedef pte_t *pte_addr_t; | 
 |  | 
 | #endif /* !defined (__ASSEMBLY__) */ | 
 |  | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
 | #define __HAVE_ARCH_PTEP_MKDIRTY | 
 | #define __HAVE_ARCH_PTE_SAME | 
 |  | 
 | #include <asm-generic/pgtable.h> | 
 |  | 
 | #endif /* _XTENSA_PGTABLE_H */ |