|  | /******************************************************************************* | 
|  |  | 
|  | Intel(R) Gigabit Ethernet Linux driver | 
|  | Copyright(c) 2007 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* e1000_82575 | 
|  | * e1000_82576 | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "e1000_mac.h" | 
|  | #include "e1000_82575.h" | 
|  |  | 
|  | static s32  igb_get_invariants_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_phy_82575(struct e1000_hw *); | 
|  | static void igb_release_phy_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_nvm_82575(struct e1000_hw *); | 
|  | static void igb_release_nvm_82575(struct e1000_hw *); | 
|  | static s32  igb_check_for_link_82575(struct e1000_hw *); | 
|  | static s32  igb_get_cfg_done_82575(struct e1000_hw *); | 
|  | static s32  igb_init_hw_82575(struct e1000_hw *); | 
|  | static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); | 
|  | static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); | 
|  | static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32); | 
|  | static s32  igb_reset_hw_82575(struct e1000_hw *); | 
|  | static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); | 
|  | static s32  igb_setup_copper_link_82575(struct e1000_hw *); | 
|  | static s32  igb_setup_fiber_serdes_link_82575(struct e1000_hw *); | 
|  | static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); | 
|  | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); | 
|  | static s32  igb_configure_pcs_link_82575(struct e1000_hw *); | 
|  | static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, | 
|  | u16 *); | 
|  | static s32  igb_get_phy_id_82575(struct e1000_hw *); | 
|  | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); | 
|  | static bool igb_sgmii_active_82575(struct e1000_hw *); | 
|  | static s32  igb_reset_init_script_82575(struct e1000_hw *); | 
|  | static s32  igb_read_mac_addr_82575(struct e1000_hw *); | 
|  |  | 
|  |  | 
|  | struct e1000_dev_spec_82575 { | 
|  | bool sgmii_active; | 
|  | }; | 
|  |  | 
|  | static s32 igb_get_invariants_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | struct e1000_dev_spec_82575 *dev_spec; | 
|  | u32 eecd; | 
|  | s32 ret_val; | 
|  | u16 size; | 
|  | u32 ctrl_ext = 0; | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82575EB_COPPER: | 
|  | case E1000_DEV_ID_82575EB_FIBER_SERDES: | 
|  | case E1000_DEV_ID_82575GB_QUAD_COPPER: | 
|  | mac->type = e1000_82575; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_MAC_INIT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* MAC initialization */ | 
|  | hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575); | 
|  |  | 
|  | /* Device-specific structure allocation */ | 
|  | hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL); | 
|  |  | 
|  | if (!hw->dev_spec) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; | 
|  |  | 
|  | /* Set media type */ | 
|  | /* | 
|  | * The 82575 uses bits 22:23 for link mode. The mode can be changed | 
|  | * based on the EEPROM. We cannot rely upon device ID. There | 
|  | * is no distinguishable difference between fiber and internal | 
|  | * SerDes mode on the 82575. There can be an external PHY attached | 
|  | * on the SGMII interface. For this, we'll set sgmii_active to true. | 
|  | */ | 
|  | phy->media_type = e1000_media_type_copper; | 
|  | dev_spec->sgmii_active = false; | 
|  |  | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) == | 
|  | E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) { | 
|  | hw->phy.media_type = e1000_media_type_internal_serdes; | 
|  | ctrl_ext |= E1000_CTRL_I2C_ENA; | 
|  | } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) { | 
|  | dev_spec->sgmii_active = true; | 
|  | ctrl_ext |= E1000_CTRL_I2C_ENA; | 
|  | } else { | 
|  | ctrl_ext &= ~E1000_CTRL_I2C_ENA; | 
|  | } | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext); | 
|  |  | 
|  | /* Set mta register count */ | 
|  | mac->mta_reg_count = 128; | 
|  | /* Set rar entry count */ | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES_82575; | 
|  | /* Set if part includes ASF firmware */ | 
|  | mac->asf_firmware_present = true; | 
|  | /* Set if manageability features are enabled. */ | 
|  | mac->arc_subsystem_valid = | 
|  | (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) | 
|  | ? true : false; | 
|  |  | 
|  | /* physical interface link setup */ | 
|  | mac->ops.setup_physical_interface = | 
|  | (hw->phy.media_type == e1000_media_type_copper) | 
|  | ? igb_setup_copper_link_82575 | 
|  | : igb_setup_fiber_serdes_link_82575; | 
|  |  | 
|  | /* NVM initialization */ | 
|  | eecd = rd32(E1000_EECD); | 
|  |  | 
|  | nvm->opcode_bits        = 8; | 
|  | nvm->delay_usec         = 1; | 
|  | switch (nvm->override) { | 
|  | case e1000_nvm_override_spi_large: | 
|  | nvm->page_size    = 32; | 
|  | nvm->address_bits = 16; | 
|  | break; | 
|  | case e1000_nvm_override_spi_small: | 
|  | nvm->page_size    = 8; | 
|  | nvm->address_bits = 8; | 
|  | break; | 
|  | default: | 
|  | nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | 
|  | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nvm->type = e1000_nvm_eeprom_spi; | 
|  |  | 
|  | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | E1000_EECD_SIZE_EX_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Added to a constant, "size" becomes the left-shift value | 
|  | * for setting word_size. | 
|  | */ | 
|  | size += NVM_WORD_SIZE_BASE_SHIFT; | 
|  | nvm->word_size = 1 << size; | 
|  |  | 
|  | /* setup PHY parameters */ | 
|  | if (phy->media_type != e1000_media_type_copper) { | 
|  | phy->type = e1000_phy_none; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->reset_delay_us      = 100; | 
|  |  | 
|  | /* PHY function pointers */ | 
|  | if (igb_sgmii_active_82575(hw)) { | 
|  | phy->ops.reset_phy          = igb_phy_hw_reset_sgmii_82575; | 
|  | phy->ops.read_phy_reg       = igb_read_phy_reg_sgmii_82575; | 
|  | phy->ops.write_phy_reg      = igb_write_phy_reg_sgmii_82575; | 
|  | } else { | 
|  | phy->ops.reset_phy          = igb_phy_hw_reset; | 
|  | phy->ops.read_phy_reg       = igb_read_phy_reg_igp; | 
|  | phy->ops.write_phy_reg      = igb_write_phy_reg_igp; | 
|  | } | 
|  |  | 
|  | /* Set phy->phy_addr and phy->id. */ | 
|  | ret_val = igb_get_phy_id_82575(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Verify phy id and set remaining function pointers */ | 
|  | switch (phy->id) { | 
|  | case M88E1111_I_PHY_ID: | 
|  | phy->type                   = e1000_phy_m88; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_m88; | 
|  | phy->ops.get_cable_length   = igb_get_cable_length_m88; | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | 
|  | break; | 
|  | case IGP03E1000_E_PHY_ID: | 
|  | phy->type                   = e1000_phy_igp_3; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_igp; | 
|  | phy->ops.get_cable_length   = igb_get_cable_length_igp_2; | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; | 
|  | phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575; | 
|  | phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_phy_82575 - Acquire rights to access PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire access rights to the correct PHY.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mask; | 
|  |  | 
|  | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
|  |  | 
|  | return igb_acquire_swfw_sync_82575(hw, mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_phy_82575 - Release rights to access PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  A wrapper to release access rights to the correct PHY.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static void igb_release_phy_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mask; | 
|  |  | 
|  | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
|  | igb_release_swfw_sync_82575(hw, mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the PHY register at offset using the serial gigabit media independent | 
|  | *  interface and stores the retrieved information in data. | 
|  | **/ | 
|  | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 i, i2ccmd = 0; | 
|  |  | 
|  | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
|  | hw_dbg(hw, "PHY Address %u is out of range\n", offset); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up Op-code, Phy Address, and register address in the I2CCMD | 
|  | * register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | 
|  | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | 
|  | (E1000_I2CCMD_OPCODE_READ)); | 
|  |  | 
|  | wr32(E1000_I2CCMD, i2ccmd); | 
|  |  | 
|  | /* Poll the ready bit to see if the I2C read completed */ | 
|  | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | 
|  | udelay(50); | 
|  | i2ccmd = rd32(E1000_I2CCMD); | 
|  | if (i2ccmd & E1000_I2CCMD_READY) | 
|  | break; | 
|  | } | 
|  | if (!(i2ccmd & E1000_I2CCMD_READY)) { | 
|  | hw_dbg(hw, "I2CCMD Read did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (i2ccmd & E1000_I2CCMD_ERROR) { | 
|  | hw_dbg(hw, "I2CCMD Error bit set\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* Need to byte-swap the 16-bit value. */ | 
|  | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Writes the data to PHY register at the offset using the serial gigabit | 
|  | *  media independent interface. | 
|  | **/ | 
|  | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
|  | u16 data) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 i, i2ccmd = 0; | 
|  | u16 phy_data_swapped; | 
|  |  | 
|  | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
|  | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | /* Swap the data bytes for the I2C interface */ | 
|  | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | 
|  |  | 
|  | /* | 
|  | * Set up Op-code, Phy Address, and register address in the I2CCMD | 
|  | * register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | 
|  | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | 
|  | E1000_I2CCMD_OPCODE_WRITE | | 
|  | phy_data_swapped); | 
|  |  | 
|  | wr32(E1000_I2CCMD, i2ccmd); | 
|  |  | 
|  | /* Poll the ready bit to see if the I2C read completed */ | 
|  | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | 
|  | udelay(50); | 
|  | i2ccmd = rd32(E1000_I2CCMD); | 
|  | if (i2ccmd & E1000_I2CCMD_READY) | 
|  | break; | 
|  | } | 
|  | if (!(i2ccmd & E1000_I2CCMD_READY)) { | 
|  | hw_dbg(hw, "I2CCMD Write did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (i2ccmd & E1000_I2CCMD_ERROR) { | 
|  | hw_dbg(hw, "I2CCMD Error bit set\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_id_82575 - Retreive PHY addr and id | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Retreives the PHY address and ID for both PHY's which do and do not use | 
|  | *  sgmi interface. | 
|  | **/ | 
|  | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32  ret_val = 0; | 
|  | u16 phy_id; | 
|  |  | 
|  | /* | 
|  | * For SGMII PHYs, we try the list of possible addresses until | 
|  | * we find one that works.  For non-SGMII PHYs | 
|  | * (e.g. integrated copper PHYs), an address of 1 should | 
|  | * work.  The result of this function should mean phy->phy_addr | 
|  | * and phy->id are set correctly. | 
|  | */ | 
|  | if (!(igb_sgmii_active_82575(hw))) { | 
|  | phy->addr = 1; | 
|  | ret_val = igb_get_phy_id(hw); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The address field in the I2CCMD register is 3 bits and 0 is invalid. | 
|  | * Therefore, we need to test 1-7 | 
|  | */ | 
|  | for (phy->addr = 1; phy->addr < 8; phy->addr++) { | 
|  | ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); | 
|  | if (ret_val == 0) { | 
|  | hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n", | 
|  | phy_id, | 
|  | phy->addr); | 
|  | /* | 
|  | * At the time of this writing, The M88 part is | 
|  | * the only supported SGMII PHY product. | 
|  | */ | 
|  | if (phy_id == M88_VENDOR) | 
|  | break; | 
|  | } else { | 
|  | hw_dbg(hw, "PHY address %u was unreadable\n", | 
|  | phy->addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A valid PHY type couldn't be found. */ | 
|  | if (phy->addr == 8) { | 
|  | phy->addr = 0; | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = igb_get_phy_id(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Resets the PHY using the serial gigabit media independent interface. | 
|  | **/ | 
|  | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * This isn't a true "hard" reset, but is the only reset | 
|  | * available to us at this time. | 
|  | */ | 
|  |  | 
|  | hw_dbg(hw, "Soft resetting SGMII attached PHY...\n"); | 
|  |  | 
|  | /* | 
|  | * SFP documentation requires the following to configure the SPF module | 
|  | * to work on SGMII.  No further documentation is given. | 
|  | */ | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_phy_sw_reset(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When | 
|  | *  activating LPLU this function also disables smart speed | 
|  | *  and vice versa.  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (active) { | 
|  | data |= IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, | 
|  | IGP02E1000_PHY_POWER_MGMT, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else { | 
|  | data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, | 
|  | IGP02E1000_PHY_POWER_MGMT, | 
|  | data); | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = hw->phy.ops.read_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = hw->phy.ops.write_phy_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_nvm_82575 - Request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the necessary semaphores for exclussive access to the EEPROM. | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_acquire_nvm(hw); | 
|  |  | 
|  | if (ret_val) | 
|  | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_nvm_82575 - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit, | 
|  | *  then release the semaphores acquired. | 
|  | **/ | 
|  | static void igb_release_nvm_82575(struct e1000_hw *hw) | 
|  | { | 
|  | igb_release_nvm(hw); | 
|  | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're acquiring the lock for. | 
|  | **/ | 
|  | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 16; | 
|  | s32 ret_val = 0; | 
|  | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | 
|  |  | 
|  | while (i < timeout) { | 
|  | if (igb_get_hw_semaphore(hw)) { | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | if (!(swfw_sync & (fwmask | swmask))) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Firmware currently using resource (fwmask) | 
|  | * or other software thread using resource (swmask) | 
|  | */ | 
|  | igb_put_hw_semaphore(hw); | 
|  | mdelay(5); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n"); | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync |= swmask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're releasing the lock for. | 
|  | **/ | 
|  | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  |  | 
|  | while (igb_get_hw_semaphore(hw) != 0); | 
|  | /* Empty */ | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | swfw_sync &= ~mask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_cfg_done_82575 - Read config done bit | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read the management control register for the config done bit for | 
|  | *  completion status.  NOTE: silicon which is EEPROM-less will fail trying | 
|  | *  to read the config done bit, so an error is *ONLY* logged and returns | 
|  | *  0.  If we were to return with error, EEPROM-less silicon | 
|  | *  would not be able to be reset or change link. | 
|  | **/ | 
|  | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  | s32 ret_val = 0; | 
|  | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | 
|  |  | 
|  | if (hw->bus.func == 1) | 
|  | mask = E1000_NVM_CFG_DONE_PORT_1; | 
|  |  | 
|  | while (timeout) { | 
|  | if (rd32(E1000_EEMNGCTL) & mask) | 
|  | break; | 
|  | msleep(1); | 
|  | timeout--; | 
|  | } | 
|  | if (!timeout) | 
|  | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | 
|  |  | 
|  | /* If EEPROM is not marked present, init the PHY manually */ | 
|  | if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && | 
|  | (hw->phy.type == e1000_phy_igp_3)) | 
|  | igb_phy_init_script_igp3(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_for_link_82575 - Check for link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  If sgmii is enabled, then use the pcs register to determine link, otherwise | 
|  | *  use the generic interface for determining link. | 
|  | **/ | 
|  | static s32 igb_check_for_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 speed, duplex; | 
|  |  | 
|  | /* SGMII link check is done through the PCS register. */ | 
|  | if ((hw->phy.media_type != e1000_media_type_copper) || | 
|  | (igb_sgmii_active_82575(hw))) | 
|  | ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, | 
|  | &duplex); | 
|  | else | 
|  | ret_val = igb_check_for_copper_link(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: stores the current speed | 
|  | *  @duplex: stores the current duplex | 
|  | * | 
|  | *  Using the physical coding sub-layer (PCS), retreive the current speed and | 
|  | *  duplex, then store the values in the pointers provided. | 
|  | **/ | 
|  | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, | 
|  | u16 *duplex) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 pcs; | 
|  |  | 
|  | /* Set up defaults for the return values of this function */ | 
|  | mac->serdes_has_link = false; | 
|  | *speed = 0; | 
|  | *duplex = 0; | 
|  |  | 
|  | /* | 
|  | * Read the PCS Status register for link state. For non-copper mode, | 
|  | * the status register is not accurate. The PCS status register is | 
|  | * used instead. | 
|  | */ | 
|  | pcs = rd32(E1000_PCS_LSTAT); | 
|  |  | 
|  | /* | 
|  | * The link up bit determines when link is up on autoneg. The sync ok | 
|  | * gets set once both sides sync up and agree upon link. Stable link | 
|  | * can be determined by checking for both link up and link sync ok | 
|  | */ | 
|  | if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { | 
|  | mac->serdes_has_link = true; | 
|  |  | 
|  | /* Detect and store PCS speed */ | 
|  | if (pcs & E1000_PCS_LSTS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | } else if (pcs & E1000_PCS_LSTS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | } | 
|  |  | 
|  | /* Detect and store PCS duplex */ | 
|  | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_rar_set_82575 - Set receive address register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @addr: pointer to the receive address | 
|  | *  @index: receive address array register | 
|  | * | 
|  | *  Sets the receive address array register at index to the address passed | 
|  | *  in by addr. | 
|  | **/ | 
|  | static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | { | 
|  | if (index < E1000_RAR_ENTRIES_82575) | 
|  | igb_rar_set(hw, addr, index); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reset_hw_82575 - Reset hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets the hardware into a known state.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 igb_reset_hw_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, icr; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = igb_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | hw_dbg(hw, "Masking off all interrupts\n"); | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  |  | 
|  | wr32(E1000_RCTL, 0); | 
|  | wr32(E1000_TCTL, E1000_TCTL_PSP); | 
|  | wrfl(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  |  | 
|  | hw_dbg(hw, "Issuing a global reset to MAC\n"); | 
|  | wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); | 
|  |  | 
|  | ret_val = igb_get_auto_rd_done(hw); | 
|  | if (ret_val) { | 
|  | /* | 
|  | * When auto config read does not complete, do not | 
|  | * return with an error. This can happen in situations | 
|  | * where there is no eeprom and prevents getting link. | 
|  | */ | 
|  | hw_dbg(hw, "Auto Read Done did not complete\n"); | 
|  | } | 
|  |  | 
|  | /* If EEPROM is not present, run manual init scripts */ | 
|  | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | 
|  | igb_reset_init_script_82575(hw); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  | icr = rd32(E1000_ICR); | 
|  |  | 
|  | igb_check_alt_mac_addr(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_hw_82575 - Initialize hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This inits the hardware readying it for operation. | 
|  | **/ | 
|  | static s32 igb_init_hw_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | u16 i, rar_count = mac->rar_entry_count; | 
|  |  | 
|  | /* Initialize identification LED */ | 
|  | ret_val = igb_id_led_init(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error initializing identification LED\n"); | 
|  | /* This is not fatal and we should not stop init due to this */ | 
|  | } | 
|  |  | 
|  | /* Disabling VLAN filtering */ | 
|  | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | 
|  | igb_clear_vfta(hw); | 
|  |  | 
|  | /* Setup the receive address */ | 
|  | igb_init_rx_addrs(hw, rar_count); | 
|  | /* Zero out the Multicast HASH table */ | 
|  | hw_dbg(hw, "Zeroing the MTA\n"); | 
|  | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | array_wr32(E1000_MTA, i, 0); | 
|  |  | 
|  | /* Setup link and flow control */ | 
|  | ret_val = igb_setup_link(hw); | 
|  |  | 
|  | /* | 
|  | * Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | igb_clear_hw_cntrs_82575(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_copper_link_82575 - Configure copper link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the link for auto-neg or forced speed and duplex.  Then we check | 
|  | *  for link, once link is established calls to configure collision distance | 
|  | *  and flow control are called. | 
|  | **/ | 
|  | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, led_ctrl; | 
|  | s32  ret_val; | 
|  | bool link; | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_m88: | 
|  | ret_val = igb_copper_link_setup_m88(hw); | 
|  | break; | 
|  | case e1000_phy_igp_3: | 
|  | ret_val = igb_copper_link_setup_igp(hw); | 
|  | /* Setup activity LED */ | 
|  | led_ctrl = rd32(E1000_LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | wr32(E1000_LEDCTL, led_ctrl); | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (hw->mac.autoneg) { | 
|  | /* | 
|  | * Setup autoneg and flow control advertisement | 
|  | * and perform autonegotiation. | 
|  | */ | 
|  | ret_val = igb_copper_link_autoneg(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * PHY will be set to 10H, 10F, 100H or 100F | 
|  | * depending on user settings. | 
|  | */ | 
|  | hw_dbg(hw, "Forcing Speed and Duplex\n"); | 
|  | ret_val = igb_phy_force_speed_duplex(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret_val = igb_configure_pcs_link_82575(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check link status. Wait up to 100 microseconds for link to become | 
|  | * valid. | 
|  | */ | 
|  | ret_val = igb_phy_has_link(hw, | 
|  | COPPER_LINK_UP_LIMIT, | 
|  | 10, | 
|  | &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (link) { | 
|  | hw_dbg(hw, "Valid link established!!!\n"); | 
|  | /* Config the MAC and PHY after link is up */ | 
|  | igb_config_collision_dist(hw); | 
|  | ret_val = igb_config_fc_after_link_up(hw); | 
|  | } else { | 
|  | hw_dbg(hw, "Unable to establish link!!!\n"); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures speed and duplex for fiber and serdes links. | 
|  | **/ | 
|  | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * On the 82575, SerDes loopback mode persists until it is | 
|  | * explicitly turned off or a power cycle is performed.  A read to | 
|  | * the register does not indicate its status.  Therefore, we ensure | 
|  | * loopback mode is disabled during initialization. | 
|  | */ | 
|  | wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | 
|  |  | 
|  | /* Force link up, set 1gb, set both sw defined pins */ | 
|  | reg = rd32(E1000_CTRL); | 
|  | reg |= E1000_CTRL_SLU | | 
|  | E1000_CTRL_SPD_1000 | | 
|  | E1000_CTRL_FRCSPD | | 
|  | E1000_CTRL_SWDPIN0 | | 
|  | E1000_CTRL_SWDPIN1; | 
|  | wr32(E1000_CTRL, reg); | 
|  |  | 
|  | /* Set switch control to serdes energy detect */ | 
|  | reg = rd32(E1000_CONNSW); | 
|  | reg |= E1000_CONNSW_ENRGSRC; | 
|  | wr32(E1000_CONNSW, reg); | 
|  |  | 
|  | /* | 
|  | * New SerDes mode allows for forcing speed or autonegotiating speed | 
|  | * at 1gb. Autoneg should be default set by most drivers. This is the | 
|  | * mode that will be compatible with older link partners and switches. | 
|  | * However, both are supported by the hardware and some drivers/tools. | 
|  | */ | 
|  | reg = rd32(E1000_PCS_LCTL); | 
|  |  | 
|  | reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | | 
|  | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | 
|  |  | 
|  | if (hw->mac.autoneg) { | 
|  | /* Set PCS register for autoneg */ | 
|  | reg |= E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */ | 
|  | E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */ | 
|  | E1000_PCS_LCTL_AN_ENABLE |     /* Enable Autoneg */ | 
|  | E1000_PCS_LCTL_AN_RESTART;     /* Restart autoneg */ | 
|  | hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg); | 
|  | } else { | 
|  | /* Set PCS register for forced speed */ | 
|  | reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */ | 
|  | E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */ | 
|  | E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */ | 
|  | E1000_PCS_LCTL_FSD |           /* Force Speed */ | 
|  | E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */ | 
|  | hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg); | 
|  | } | 
|  | wr32(E1000_PCS_LCTL, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_configure_pcs_link_82575 - Configure PCS link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configure the physical coding sub-layer (PCS) link.  The PCS link is | 
|  | *  only used on copper connections where the serialized gigabit media | 
|  | *  independent interface (sgmii) is being used.  Configures the link | 
|  | *  for auto-negotiation or forces speed/duplex. | 
|  | **/ | 
|  | static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 reg = 0; | 
|  |  | 
|  | if (hw->phy.media_type != e1000_media_type_copper || | 
|  | !(igb_sgmii_active_82575(hw))) | 
|  | goto out; | 
|  |  | 
|  | /* For SGMII, we need to issue a PCS autoneg restart */ | 
|  | reg = rd32(E1000_PCS_LCTL); | 
|  |  | 
|  | /* AN time out should be disabled for SGMII mode */ | 
|  | reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); | 
|  |  | 
|  | if (mac->autoneg) { | 
|  | /* Make sure forced speed and force link are not set */ | 
|  | reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | 
|  |  | 
|  | /* | 
|  | * The PHY should be setup prior to calling this function. | 
|  | * All we need to do is restart autoneg and enable autoneg. | 
|  | */ | 
|  | reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE; | 
|  | } else { | 
|  | /* Set PCS regiseter for forced speed */ | 
|  |  | 
|  | /* Turn off bits for full duplex, speed, and autoneg */ | 
|  | reg &= ~(E1000_PCS_LCTL_FSV_1000 | | 
|  | E1000_PCS_LCTL_FSV_100 | | 
|  | E1000_PCS_LCTL_FDV_FULL | | 
|  | E1000_PCS_LCTL_AN_ENABLE); | 
|  |  | 
|  | /* Check for duplex first */ | 
|  | if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX) | 
|  | reg |= E1000_PCS_LCTL_FDV_FULL; | 
|  |  | 
|  | /* Now set speed */ | 
|  | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) | 
|  | reg |= E1000_PCS_LCTL_FSV_100; | 
|  |  | 
|  | /* Force speed and force link */ | 
|  | reg |= E1000_PCS_LCTL_FSD | | 
|  | E1000_PCS_LCTL_FORCE_LINK | | 
|  | E1000_PCS_LCTL_FLV_LINK_UP; | 
|  |  | 
|  | hw_dbg(hw, | 
|  | "Wrote 0x%08X to PCS_LCTL to configure forced link\n", | 
|  | reg); | 
|  | } | 
|  | wr32(E1000_PCS_LCTL, reg); | 
|  |  | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_sgmii_active_82575 - Return sgmii state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  82575 silicon has a serialized gigabit media independent interface (sgmii) | 
|  | *  which can be enabled for use in the embedded applications.  Simply | 
|  | *  return the current state of the sgmii interface. | 
|  | **/ | 
|  | static bool igb_sgmii_active_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_dev_spec_82575 *dev_spec; | 
|  | bool ret_val; | 
|  |  | 
|  | if (hw->mac.type != e1000_82575) { | 
|  | ret_val = false; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; | 
|  |  | 
|  | ret_val = dev_spec->sgmii_active; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reset_init_script_82575 - Inits HW defaults after reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Inits recommended HW defaults after a reset when there is no EEPROM | 
|  | *  detected. This is only for the 82575. | 
|  | **/ | 
|  | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | hw_dbg(hw, "Running reset init script for 82575\n"); | 
|  | /* SerDes configuration via SERDESCTRL */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); | 
|  |  | 
|  | /* CCM configuration via CCMCTL register */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); | 
|  |  | 
|  | /* PCIe lanes configuration */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); | 
|  |  | 
|  | /* PCIe PLL Configuration */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_mac_addr_82575 - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (igb_check_alt_mac_addr(hw)) | 
|  | ret_val = igb_read_mac_addr(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the hardware counters by reading the counter registers. | 
|  | **/ | 
|  | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | igb_clear_hw_cntrs_base(hw); | 
|  |  | 
|  | temp = rd32(E1000_PRC64); | 
|  | temp = rd32(E1000_PRC127); | 
|  | temp = rd32(E1000_PRC255); | 
|  | temp = rd32(E1000_PRC511); | 
|  | temp = rd32(E1000_PRC1023); | 
|  | temp = rd32(E1000_PRC1522); | 
|  | temp = rd32(E1000_PTC64); | 
|  | temp = rd32(E1000_PTC127); | 
|  | temp = rd32(E1000_PTC255); | 
|  | temp = rd32(E1000_PTC511); | 
|  | temp = rd32(E1000_PTC1023); | 
|  | temp = rd32(E1000_PTC1522); | 
|  |  | 
|  | temp = rd32(E1000_ALGNERRC); | 
|  | temp = rd32(E1000_RXERRC); | 
|  | temp = rd32(E1000_TNCRS); | 
|  | temp = rd32(E1000_CEXTERR); | 
|  | temp = rd32(E1000_TSCTC); | 
|  | temp = rd32(E1000_TSCTFC); | 
|  |  | 
|  | temp = rd32(E1000_MGTPRC); | 
|  | temp = rd32(E1000_MGTPDC); | 
|  | temp = rd32(E1000_MGTPTC); | 
|  |  | 
|  | temp = rd32(E1000_IAC); | 
|  | temp = rd32(E1000_ICRXOC); | 
|  |  | 
|  | temp = rd32(E1000_ICRXPTC); | 
|  | temp = rd32(E1000_ICRXATC); | 
|  | temp = rd32(E1000_ICTXPTC); | 
|  | temp = rd32(E1000_ICTXATC); | 
|  | temp = rd32(E1000_ICTXQEC); | 
|  | temp = rd32(E1000_ICTXQMTC); | 
|  | temp = rd32(E1000_ICRXDMTC); | 
|  |  | 
|  | temp = rd32(E1000_CBTMPC); | 
|  | temp = rd32(E1000_HTDPMC); | 
|  | temp = rd32(E1000_CBRMPC); | 
|  | temp = rd32(E1000_RPTHC); | 
|  | temp = rd32(E1000_HGPTC); | 
|  | temp = rd32(E1000_HTCBDPC); | 
|  | temp = rd32(E1000_HGORCL); | 
|  | temp = rd32(E1000_HGORCH); | 
|  | temp = rd32(E1000_HGOTCL); | 
|  | temp = rd32(E1000_HGOTCH); | 
|  | temp = rd32(E1000_LENERRS); | 
|  |  | 
|  | /* This register should not be read in copper configurations */ | 
|  | if (hw->phy.media_type == e1000_media_type_internal_serdes) | 
|  | temp = rd32(E1000_SCVPC); | 
|  | } | 
|  |  | 
|  | static struct e1000_mac_operations e1000_mac_ops_82575 = { | 
|  | .reset_hw             = igb_reset_hw_82575, | 
|  | .init_hw              = igb_init_hw_82575, | 
|  | .check_for_link       = igb_check_for_link_82575, | 
|  | .rar_set              = igb_rar_set_82575, | 
|  | .read_mac_addr        = igb_read_mac_addr_82575, | 
|  | .get_speed_and_duplex = igb_get_speed_and_duplex_copper, | 
|  | }; | 
|  |  | 
|  | static struct e1000_phy_operations e1000_phy_ops_82575 = { | 
|  | .acquire_phy          = igb_acquire_phy_82575, | 
|  | .get_cfg_done         = igb_get_cfg_done_82575, | 
|  | .release_phy          = igb_release_phy_82575, | 
|  | }; | 
|  |  | 
|  | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { | 
|  | .acquire_nvm          = igb_acquire_nvm_82575, | 
|  | .read_nvm             = igb_read_nvm_eerd, | 
|  | .release_nvm          = igb_release_nvm_82575, | 
|  | .write_nvm            = igb_write_nvm_spi, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82575_info = { | 
|  | .get_invariants = igb_get_invariants_82575, | 
|  | .mac_ops = &e1000_mac_ops_82575, | 
|  | .phy_ops = &e1000_phy_ops_82575, | 
|  | .nvm_ops = &e1000_nvm_ops_82575, | 
|  | }; | 
|  |  |