| /* | 
 |  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc | 
 |  * | 
 |  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) | 
 |  * Copyright (C) 2006 David Brownell (convert to new framework) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The original "cmos clock" chip was an MC146818 chip, now obsolete. | 
 |  * That defined the register interface now provided by all PCs, some | 
 |  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets | 
 |  * integrate an MC146818 clone in their southbridge, and boards use | 
 |  * that instead of discrete clones like the DS12887 or M48T86.  There | 
 |  * are also clones that connect using the LPC bus. | 
 |  * | 
 |  * That register API is also used directly by various other drivers | 
 |  * (notably for integrated NVRAM), infrastructure (x86 has code to | 
 |  * bypass the RTC framework, directly reading the RTC during boot | 
 |  * and updating minutes/seconds for systems using NTP synch) and | 
 |  * utilities (like userspace 'hwclock', if no /dev node exists). | 
 |  * | 
 |  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with | 
 |  * interrupts disabled, holding the global rtc_lock, to exclude those | 
 |  * other drivers and utilities on correctly configured systems. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_platform.h> | 
 |  | 
 | /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ | 
 | #include <asm-generic/rtc.h> | 
 |  | 
 | struct cmos_rtc { | 
 | 	struct rtc_device	*rtc; | 
 | 	struct device		*dev; | 
 | 	int			irq; | 
 | 	struct resource		*iomem; | 
 |  | 
 | 	void			(*wake_on)(struct device *); | 
 | 	void			(*wake_off)(struct device *); | 
 |  | 
 | 	u8			enabled_wake; | 
 | 	u8			suspend_ctrl; | 
 |  | 
 | 	/* newer hardware extends the original register set */ | 
 | 	u8			day_alrm; | 
 | 	u8			mon_alrm; | 
 | 	u8			century; | 
 | }; | 
 |  | 
 | /* both platform and pnp busses use negative numbers for invalid irqs */ | 
 | #define is_valid_irq(n)		((n) > 0) | 
 |  | 
 | static const char driver_name[] = "rtc_cmos"; | 
 |  | 
 | /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; | 
 |  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values | 
 |  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. | 
 |  */ | 
 | #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF) | 
 |  | 
 | static inline int is_intr(u8 rtc_intr) | 
 | { | 
 | 	if (!(rtc_intr & RTC_IRQF)) | 
 | 		return 0; | 
 | 	return rtc_intr & RTC_IRQMASK; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because | 
 |  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly | 
 |  * used in a broken "legacy replacement" mode.  The breakage includes | 
 |  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for | 
 |  * other (better) use. | 
 |  * | 
 |  * When that broken mode is in use, platform glue provides a partial | 
 |  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't | 
 |  * want to use HPET for anything except those IRQs though... | 
 |  */ | 
 | #ifdef CONFIG_HPET_EMULATE_RTC | 
 | #include <asm/hpet.h> | 
 | #else | 
 |  | 
 | static inline int is_hpet_enabled(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_mask_rtc_irq_bit(unsigned long mask) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_set_rtc_irq_bit(unsigned long mask) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_set_periodic_freq(unsigned long freq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_rtc_dropped_irq(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_rtc_timer_init(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | extern irq_handler_t hpet_rtc_interrupt; | 
 |  | 
 | static inline int hpet_register_irq_handler(irq_handler_t handler) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int hpet_unregister_irq_handler(irq_handler_t handler) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | #ifdef RTC_PORT | 
 |  | 
 | /* Most newer x86 systems have two register banks, the first used | 
 |  * for RTC and NVRAM and the second only for NVRAM.  Caller must | 
 |  * own rtc_lock ... and we won't worry about access during NMI. | 
 |  */ | 
 | #define can_bank2	true | 
 |  | 
 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
 | { | 
 | 	outb(addr, RTC_PORT(2)); | 
 | 	return inb(RTC_PORT(3)); | 
 | } | 
 |  | 
 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
 | { | 
 | 	outb(addr, RTC_PORT(2)); | 
 | 	outb(val, RTC_PORT(2)); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | #define can_bank2	false | 
 |  | 
 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static int cmos_read_time(struct device *dev, struct rtc_time *t) | 
 | { | 
 | 	/* REVISIT:  if the clock has a "century" register, use | 
 | 	 * that instead of the heuristic in get_rtc_time(). | 
 | 	 * That'll make Y3K compatility (year > 2070) easy! | 
 | 	 */ | 
 | 	get_rtc_time(t); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cmos_set_time(struct device *dev, struct rtc_time *t) | 
 | { | 
 | 	/* REVISIT:  set the "century" register if available | 
 | 	 * | 
 | 	 * NOTE: this ignores the issue whereby updating the seconds | 
 | 	 * takes effect exactly 500ms after we write the register. | 
 | 	 * (Also queueing and other delays before we get this far.) | 
 | 	 */ | 
 | 	return set_rtc_time(t); | 
 | } | 
 |  | 
 | static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	unsigned char	rtc_control; | 
 |  | 
 | 	if (!is_valid_irq(cmos->irq)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Basic alarms only support hour, minute, and seconds fields. | 
 | 	 * Some also support day and month, for alarms up to a year in | 
 | 	 * the future. | 
 | 	 */ | 
 | 	t->time.tm_mday = -1; | 
 | 	t->time.tm_mon = -1; | 
 |  | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | 
 | 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); | 
 | 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); | 
 |  | 
 | 	if (cmos->day_alrm) { | 
 | 		/* ignore upper bits on readback per ACPI spec */ | 
 | 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; | 
 | 		if (!t->time.tm_mday) | 
 | 			t->time.tm_mday = -1; | 
 |  | 
 | 		if (cmos->mon_alrm) { | 
 | 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm); | 
 | 			if (!t->time.tm_mon) | 
 | 				t->time.tm_mon = -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
 | 		if (((unsigned)t->time.tm_sec) < 0x60) | 
 | 			t->time.tm_sec = bcd2bin(t->time.tm_sec); | 
 | 		else | 
 | 			t->time.tm_sec = -1; | 
 | 		if (((unsigned)t->time.tm_min) < 0x60) | 
 | 			t->time.tm_min = bcd2bin(t->time.tm_min); | 
 | 		else | 
 | 			t->time.tm_min = -1; | 
 | 		if (((unsigned)t->time.tm_hour) < 0x24) | 
 | 			t->time.tm_hour = bcd2bin(t->time.tm_hour); | 
 | 		else | 
 | 			t->time.tm_hour = -1; | 
 |  | 
 | 		if (cmos->day_alrm) { | 
 | 			if (((unsigned)t->time.tm_mday) <= 0x31) | 
 | 				t->time.tm_mday = bcd2bin(t->time.tm_mday); | 
 | 			else | 
 | 				t->time.tm_mday = -1; | 
 |  | 
 | 			if (cmos->mon_alrm) { | 
 | 				if (((unsigned)t->time.tm_mon) <= 0x12) | 
 | 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; | 
 | 				else | 
 | 					t->time.tm_mon = -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	t->time.tm_year = -1; | 
 |  | 
 | 	t->enabled = !!(rtc_control & RTC_AIE); | 
 | 	t->pending = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) | 
 | { | 
 | 	unsigned char	rtc_intr; | 
 |  | 
 | 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; | 
 | 	 * allegedly some older rtcs need that to handle irqs properly | 
 | 	 */ | 
 | 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
 |  | 
 | 	if (is_hpet_enabled()) | 
 | 		return; | 
 |  | 
 | 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
 | 	if (is_intr(rtc_intr)) | 
 | 		rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
 | } | 
 |  | 
 | static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) | 
 | { | 
 | 	unsigned char	rtc_control; | 
 |  | 
 | 	/* flush any pending IRQ status, notably for update irqs, | 
 | 	 * before we enable new IRQs | 
 | 	 */ | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	cmos_checkintr(cmos, rtc_control); | 
 |  | 
 | 	rtc_control |= mask; | 
 | 	CMOS_WRITE(rtc_control, RTC_CONTROL); | 
 | 	hpet_set_rtc_irq_bit(mask); | 
 |  | 
 | 	cmos_checkintr(cmos, rtc_control); | 
 | } | 
 |  | 
 | static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) | 
 | { | 
 | 	unsigned char	rtc_control; | 
 |  | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	rtc_control &= ~mask; | 
 | 	CMOS_WRITE(rtc_control, RTC_CONTROL); | 
 | 	hpet_mask_rtc_irq_bit(mask); | 
 |  | 
 | 	cmos_checkintr(cmos, rtc_control); | 
 | } | 
 |  | 
 | static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 |        unsigned char   mon, mday, hrs, min, sec, rtc_control; | 
 |  | 
 | 	if (!is_valid_irq(cmos->irq)) | 
 | 		return -EIO; | 
 |  | 
 | 	mon = t->time.tm_mon + 1; | 
 | 	mday = t->time.tm_mday; | 
 | 	hrs = t->time.tm_hour; | 
 | 	min = t->time.tm_min; | 
 | 	sec = t->time.tm_sec; | 
 |  | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
 | 		/* Writing 0xff means "don't care" or "match all".  */ | 
 | 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff; | 
 | 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; | 
 | 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; | 
 | 		min = (min < 60) ? bin2bcd(min) : 0xff; | 
 | 		sec = (sec < 60) ? bin2bcd(sec) : 0xff; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&rtc_lock); | 
 |  | 
 | 	/* next rtc irq must not be from previous alarm setting */ | 
 | 	cmos_irq_disable(cmos, RTC_AIE); | 
 |  | 
 | 	/* update alarm */ | 
 | 	CMOS_WRITE(hrs, RTC_HOURS_ALARM); | 
 | 	CMOS_WRITE(min, RTC_MINUTES_ALARM); | 
 | 	CMOS_WRITE(sec, RTC_SECONDS_ALARM); | 
 |  | 
 | 	/* the system may support an "enhanced" alarm */ | 
 | 	if (cmos->day_alrm) { | 
 | 		CMOS_WRITE(mday, cmos->day_alrm); | 
 | 		if (cmos->mon_alrm) | 
 | 			CMOS_WRITE(mon, cmos->mon_alrm); | 
 | 	} | 
 |  | 
 | 	/* FIXME the HPET alarm glue currently ignores day_alrm | 
 | 	 * and mon_alrm ... | 
 | 	 */ | 
 | 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); | 
 |  | 
 | 	if (t->enabled) | 
 | 		cmos_irq_enable(cmos, RTC_AIE); | 
 |  | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	unsigned long	flags; | 
 |  | 
 | 	if (!is_valid_irq(cmos->irq)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&rtc_lock, flags); | 
 |  | 
 | 	if (enabled) | 
 | 		cmos_irq_enable(cmos, RTC_AIE); | 
 | 	else | 
 | 		cmos_irq_disable(cmos, RTC_AIE); | 
 |  | 
 | 	spin_unlock_irqrestore(&rtc_lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) | 
 |  | 
 | static int cmos_procfs(struct device *dev, struct seq_file *seq) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	unsigned char	rtc_control, valid; | 
 |  | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	valid = CMOS_READ(RTC_VALID); | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	/* NOTE:  at least ICH6 reports battery status using a different | 
 | 	 * (non-RTC) bit; and SQWE is ignored on many current systems. | 
 | 	 */ | 
 | 	return seq_printf(seq, | 
 | 			"periodic_IRQ\t: %s\n" | 
 | 			"update_IRQ\t: %s\n" | 
 | 			"HPET_emulated\t: %s\n" | 
 | 			// "square_wave\t: %s\n" | 
 | 			"BCD\t\t: %s\n" | 
 | 			"DST_enable\t: %s\n" | 
 | 			"periodic_freq\t: %d\n" | 
 | 			"batt_status\t: %s\n", | 
 | 			(rtc_control & RTC_PIE) ? "yes" : "no", | 
 | 			(rtc_control & RTC_UIE) ? "yes" : "no", | 
 | 			is_hpet_enabled() ? "yes" : "no", | 
 | 			// (rtc_control & RTC_SQWE) ? "yes" : "no", | 
 | 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes", | 
 | 			(rtc_control & RTC_DST_EN) ? "yes" : "no", | 
 | 			cmos->rtc->irq_freq, | 
 | 			(valid & RTC_VRT) ? "okay" : "dead"); | 
 | } | 
 |  | 
 | #else | 
 | #define	cmos_procfs	NULL | 
 | #endif | 
 |  | 
 | static const struct rtc_class_ops cmos_rtc_ops = { | 
 | 	.read_time		= cmos_read_time, | 
 | 	.set_time		= cmos_set_time, | 
 | 	.read_alarm		= cmos_read_alarm, | 
 | 	.set_alarm		= cmos_set_alarm, | 
 | 	.proc			= cmos_procfs, | 
 | 	.alarm_irq_enable	= cmos_alarm_irq_enable, | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * All these chips have at least 64 bytes of address space, shared by | 
 |  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used | 
 |  * by boot firmware.  Modern chips have 128 or 256 bytes. | 
 |  */ | 
 |  | 
 | #define NVRAM_OFFSET	(RTC_REG_D + 1) | 
 |  | 
 | static ssize_t | 
 | cmos_nvram_read(struct file *filp, struct kobject *kobj, | 
 | 		struct bin_attribute *attr, | 
 | 		char *buf, loff_t off, size_t count) | 
 | { | 
 | 	int	retval; | 
 |  | 
 | 	if (unlikely(off >= attr->size)) | 
 | 		return 0; | 
 | 	if (unlikely(off < 0)) | 
 | 		return -EINVAL; | 
 | 	if ((off + count) > attr->size) | 
 | 		count = attr->size - off; | 
 |  | 
 | 	off += NVRAM_OFFSET; | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	for (retval = 0; count; count--, off++, retval++) { | 
 | 		if (off < 128) | 
 | 			*buf++ = CMOS_READ(off); | 
 | 		else if (can_bank2) | 
 | 			*buf++ = cmos_read_bank2(off); | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t | 
 | cmos_nvram_write(struct file *filp, struct kobject *kobj, | 
 | 		struct bin_attribute *attr, | 
 | 		char *buf, loff_t off, size_t count) | 
 | { | 
 | 	struct cmos_rtc	*cmos; | 
 | 	int		retval; | 
 |  | 
 | 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); | 
 | 	if (unlikely(off >= attr->size)) | 
 | 		return -EFBIG; | 
 | 	if (unlikely(off < 0)) | 
 | 		return -EINVAL; | 
 | 	if ((off + count) > attr->size) | 
 | 		count = attr->size - off; | 
 |  | 
 | 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a | 
 | 	 * checksum on part of the NVRAM data.  That's currently ignored | 
 | 	 * here.  If userspace is smart enough to know what fields of | 
 | 	 * NVRAM to update, updating checksums is also part of its job. | 
 | 	 */ | 
 | 	off += NVRAM_OFFSET; | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	for (retval = 0; count; count--, off++, retval++) { | 
 | 		/* don't trash RTC registers */ | 
 | 		if (off == cmos->day_alrm | 
 | 				|| off == cmos->mon_alrm | 
 | 				|| off == cmos->century) | 
 | 			buf++; | 
 | 		else if (off < 128) | 
 | 			CMOS_WRITE(*buf++, off); | 
 | 		else if (can_bank2) | 
 | 			cmos_write_bank2(*buf++, off); | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static struct bin_attribute nvram = { | 
 | 	.attr = { | 
 | 		.name	= "nvram", | 
 | 		.mode	= S_IRUGO | S_IWUSR, | 
 | 	}, | 
 |  | 
 | 	.read	= cmos_nvram_read, | 
 | 	.write	= cmos_nvram_write, | 
 | 	/* size gets set up later */ | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static struct cmos_rtc	cmos_rtc; | 
 |  | 
 | static irqreturn_t cmos_interrupt(int irq, void *p) | 
 | { | 
 | 	u8		irqstat; | 
 | 	u8		rtc_control; | 
 |  | 
 | 	spin_lock(&rtc_lock); | 
 |  | 
 | 	/* When the HPET interrupt handler calls us, the interrupt | 
 | 	 * status is passed as arg1 instead of the irq number.  But | 
 | 	 * always clear irq status, even when HPET is in the way. | 
 | 	 * | 
 | 	 * Note that HPET and RTC are almost certainly out of phase, | 
 | 	 * giving different IRQ status ... | 
 | 	 */ | 
 | 	irqstat = CMOS_READ(RTC_INTR_FLAGS); | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 | 	if (is_hpet_enabled()) | 
 | 		irqstat = (unsigned long)irq & 0xF0; | 
 | 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
 |  | 
 | 	/* All Linux RTC alarms should be treated as if they were oneshot. | 
 | 	 * Similar code may be needed in system wakeup paths, in case the | 
 | 	 * alarm woke the system. | 
 | 	 */ | 
 | 	if (irqstat & RTC_AIE) { | 
 | 		rtc_control &= ~RTC_AIE; | 
 | 		CMOS_WRITE(rtc_control, RTC_CONTROL); | 
 | 		hpet_mask_rtc_irq_bit(RTC_AIE); | 
 |  | 
 | 		CMOS_READ(RTC_INTR_FLAGS); | 
 | 	} | 
 | 	spin_unlock(&rtc_lock); | 
 |  | 
 | 	if (is_intr(irqstat)) { | 
 | 		rtc_update_irq(p, 1, irqstat); | 
 | 		return IRQ_HANDLED; | 
 | 	} else | 
 | 		return IRQ_NONE; | 
 | } | 
 |  | 
 | #ifdef	CONFIG_PNP | 
 | #define	INITSECTION | 
 |  | 
 | #else | 
 | #define	INITSECTION	__init | 
 | #endif | 
 |  | 
 | static int INITSECTION | 
 | cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) | 
 | { | 
 | 	struct cmos_rtc_board_info	*info = dev->platform_data; | 
 | 	int				retval = 0; | 
 | 	unsigned char			rtc_control; | 
 | 	unsigned			address_space; | 
 |  | 
 | 	/* there can be only one ... */ | 
 | 	if (cmos_rtc.dev) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!ports) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver. | 
 | 	 * | 
 | 	 * REVISIT non-x86 systems may instead use memory space resources | 
 | 	 * (needing ioremap etc), not i/o space resources like this ... | 
 | 	 */ | 
 | 	ports = request_region(ports->start, | 
 | 			ports->end + 1 - ports->start, | 
 | 			driver_name); | 
 | 	if (!ports) { | 
 | 		dev_dbg(dev, "i/o registers already in use\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	cmos_rtc.irq = rtc_irq; | 
 | 	cmos_rtc.iomem = ports; | 
 |  | 
 | 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM | 
 | 	 * driver did, but don't reject unknown configs.   Old hardware | 
 | 	 * won't address 128 bytes.  Newer chips have multiple banks, | 
 | 	 * though they may not be listed in one I/O resource. | 
 | 	 */ | 
 | #if	defined(CONFIG_ATARI) | 
 | 	address_space = 64; | 
 | #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ | 
 | 			|| defined(__sparc__) || defined(__mips__) \ | 
 | 			|| defined(__powerpc__) | 
 | 	address_space = 128; | 
 | #else | 
 | #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. | 
 | 	address_space = 128; | 
 | #endif | 
 | 	if (can_bank2 && ports->end > (ports->start + 1)) | 
 | 		address_space = 256; | 
 |  | 
 | 	/* For ACPI systems extension info comes from the FADT.  On others, | 
 | 	 * board specific setup provides it as appropriate.  Systems where | 
 | 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and | 
 | 	 * some almost-clones) can provide hooks to make that behave. | 
 | 	 * | 
 | 	 * Note that ACPI doesn't preclude putting these registers into | 
 | 	 * "extended" areas of the chip, including some that we won't yet | 
 | 	 * expect CMOS_READ and friends to handle. | 
 | 	 */ | 
 | 	if (info) { | 
 | 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128) | 
 | 			cmos_rtc.day_alrm = info->rtc_day_alarm; | 
 | 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) | 
 | 			cmos_rtc.mon_alrm = info->rtc_mon_alarm; | 
 | 		if (info->rtc_century && info->rtc_century < 128) | 
 | 			cmos_rtc.century = info->rtc_century; | 
 |  | 
 | 		if (info->wake_on && info->wake_off) { | 
 | 			cmos_rtc.wake_on = info->wake_on; | 
 | 			cmos_rtc.wake_off = info->wake_off; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmos_rtc.dev = dev; | 
 | 	dev_set_drvdata(dev, &cmos_rtc); | 
 |  | 
 | 	cmos_rtc.rtc = rtc_device_register(driver_name, dev, | 
 | 				&cmos_rtc_ops, THIS_MODULE); | 
 | 	if (IS_ERR(cmos_rtc.rtc)) { | 
 | 		retval = PTR_ERR(cmos_rtc.rtc); | 
 | 		goto cleanup0; | 
 | 	} | 
 |  | 
 | 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); | 
 |  | 
 | 	spin_lock_irq(&rtc_lock); | 
 |  | 
 | 	/* force periodic irq to CMOS reset default of 1024Hz; | 
 | 	 * | 
 | 	 * REVISIT it's been reported that at least one x86_64 ALI mobo | 
 | 	 * doesn't use 32KHz here ... for portability we might need to | 
 | 	 * do something about other clock frequencies. | 
 | 	 */ | 
 | 	cmos_rtc.rtc->irq_freq = 1024; | 
 | 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); | 
 | 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); | 
 |  | 
 | 	/* disable irqs */ | 
 | 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); | 
 |  | 
 | 	rtc_control = CMOS_READ(RTC_CONTROL); | 
 |  | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	/* FIXME: | 
 | 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either. | 
 | 	 */ | 
 |        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { | 
 | 		dev_warn(dev, "only 24-hr supported\n"); | 
 | 		retval = -ENXIO; | 
 | 		goto cleanup1; | 
 | 	} | 
 |  | 
 | 	if (is_valid_irq(rtc_irq)) { | 
 | 		irq_handler_t rtc_cmos_int_handler; | 
 |  | 
 | 		if (is_hpet_enabled()) { | 
 | 			int err; | 
 |  | 
 | 			rtc_cmos_int_handler = hpet_rtc_interrupt; | 
 | 			err = hpet_register_irq_handler(cmos_interrupt); | 
 | 			if (err != 0) { | 
 | 				printk(KERN_WARNING "hpet_register_irq_handler " | 
 | 						" failed in rtc_init()."); | 
 | 				goto cleanup1; | 
 | 			} | 
 | 		} else | 
 | 			rtc_cmos_int_handler = cmos_interrupt; | 
 |  | 
 | 		retval = request_irq(rtc_irq, rtc_cmos_int_handler, | 
 | 				IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev), | 
 | 				cmos_rtc.rtc); | 
 | 		if (retval < 0) { | 
 | 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); | 
 | 			goto cleanup1; | 
 | 		} | 
 | 	} | 
 | 	hpet_rtc_timer_init(); | 
 |  | 
 | 	/* export at least the first block of NVRAM */ | 
 | 	nvram.size = address_space - NVRAM_OFFSET; | 
 | 	retval = sysfs_create_bin_file(&dev->kobj, &nvram); | 
 | 	if (retval < 0) { | 
 | 		dev_dbg(dev, "can't create nvram file? %d\n", retval); | 
 | 		goto cleanup2; | 
 | 	} | 
 |  | 
 | 	pr_info("%s: %s%s, %zd bytes nvram%s\n", | 
 | 		dev_name(&cmos_rtc.rtc->dev), | 
 | 		!is_valid_irq(rtc_irq) ? "no alarms" : | 
 | 			cmos_rtc.mon_alrm ? "alarms up to one year" : | 
 | 			cmos_rtc.day_alrm ? "alarms up to one month" : | 
 | 			"alarms up to one day", | 
 | 		cmos_rtc.century ? ", y3k" : "", | 
 | 		nvram.size, | 
 | 		is_hpet_enabled() ? ", hpet irqs" : ""); | 
 |  | 
 | 	return 0; | 
 |  | 
 | cleanup2: | 
 | 	if (is_valid_irq(rtc_irq)) | 
 | 		free_irq(rtc_irq, cmos_rtc.rtc); | 
 | cleanup1: | 
 | 	cmos_rtc.dev = NULL; | 
 | 	rtc_device_unregister(cmos_rtc.rtc); | 
 | cleanup0: | 
 | 	release_region(ports->start, ports->end + 1 - ports->start); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void cmos_do_shutdown(void) | 
 | { | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); | 
 | 	spin_unlock_irq(&rtc_lock); | 
 | } | 
 |  | 
 | static void __exit cmos_do_remove(struct device *dev) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	struct resource *ports; | 
 |  | 
 | 	cmos_do_shutdown(); | 
 |  | 
 | 	sysfs_remove_bin_file(&dev->kobj, &nvram); | 
 |  | 
 | 	if (is_valid_irq(cmos->irq)) { | 
 | 		free_irq(cmos->irq, cmos->rtc); | 
 | 		hpet_unregister_irq_handler(cmos_interrupt); | 
 | 	} | 
 |  | 
 | 	rtc_device_unregister(cmos->rtc); | 
 | 	cmos->rtc = NULL; | 
 |  | 
 | 	ports = cmos->iomem; | 
 | 	release_region(ports->start, ports->end + 1 - ports->start); | 
 | 	cmos->iomem = NULL; | 
 |  | 
 | 	cmos->dev = NULL; | 
 | 	dev_set_drvdata(dev, NULL); | 
 | } | 
 |  | 
 | #ifdef	CONFIG_PM | 
 |  | 
 | static int cmos_suspend(struct device *dev) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	unsigned char	tmp; | 
 |  | 
 | 	/* only the alarm might be a wakeup event source */ | 
 | 	spin_lock_irq(&rtc_lock); | 
 | 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); | 
 | 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { | 
 | 		unsigned char	mask; | 
 |  | 
 | 		if (device_may_wakeup(dev)) | 
 | 			mask = RTC_IRQMASK & ~RTC_AIE; | 
 | 		else | 
 | 			mask = RTC_IRQMASK; | 
 | 		tmp &= ~mask; | 
 | 		CMOS_WRITE(tmp, RTC_CONTROL); | 
 |  | 
 | 		/* shut down hpet emulation - we don't need it for alarm */ | 
 | 		hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE); | 
 | 		cmos_checkintr(cmos, tmp); | 
 | 	} | 
 | 	spin_unlock_irq(&rtc_lock); | 
 |  | 
 | 	if (tmp & RTC_AIE) { | 
 | 		cmos->enabled_wake = 1; | 
 | 		if (cmos->wake_on) | 
 | 			cmos->wake_on(dev); | 
 | 		else | 
 | 			enable_irq_wake(cmos->irq); | 
 | 	} | 
 |  | 
 | 	pr_debug("%s: suspend%s, ctrl %02x\n", | 
 | 			dev_name(&cmos_rtc.rtc->dev), | 
 | 			(tmp & RTC_AIE) ? ", alarm may wake" : "", | 
 | 			tmp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even | 
 |  * after a detour through G3 "mechanical off", although the ACPI spec | 
 |  * says wakeup should only work from G1/S4 "hibernate".  To most users, | 
 |  * distinctions between S4 and S5 are pointless.  So when the hardware | 
 |  * allows, don't draw that distinction. | 
 |  */ | 
 | static inline int cmos_poweroff(struct device *dev) | 
 | { | 
 | 	return cmos_suspend(dev); | 
 | } | 
 |  | 
 | static int cmos_resume(struct device *dev) | 
 | { | 
 | 	struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
 | 	unsigned char	tmp = cmos->suspend_ctrl; | 
 |  | 
 | 	/* re-enable any irqs previously active */ | 
 | 	if (tmp & RTC_IRQMASK) { | 
 | 		unsigned char	mask; | 
 |  | 
 | 		if (cmos->enabled_wake) { | 
 | 			if (cmos->wake_off) | 
 | 				cmos->wake_off(dev); | 
 | 			else | 
 | 				disable_irq_wake(cmos->irq); | 
 | 			cmos->enabled_wake = 0; | 
 | 		} | 
 |  | 
 | 		spin_lock_irq(&rtc_lock); | 
 | 		do { | 
 | 			CMOS_WRITE(tmp, RTC_CONTROL); | 
 | 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); | 
 |  | 
 | 			mask = CMOS_READ(RTC_INTR_FLAGS); | 
 | 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; | 
 | 			if (!is_hpet_enabled() || !is_intr(mask)) | 
 | 				break; | 
 |  | 
 | 			/* force one-shot behavior if HPET blocked | 
 | 			 * the wake alarm's irq | 
 | 			 */ | 
 | 			rtc_update_irq(cmos->rtc, 1, mask); | 
 | 			tmp &= ~RTC_AIE; | 
 | 			hpet_mask_rtc_irq_bit(RTC_AIE); | 
 | 		} while (mask & RTC_AIE); | 
 | 		spin_unlock_irq(&rtc_lock); | 
 | 	} | 
 |  | 
 | 	pr_debug("%s: resume, ctrl %02x\n", | 
 | 			dev_name(&cmos_rtc.rtc->dev), | 
 | 			tmp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); | 
 |  | 
 | #else | 
 |  | 
 | static inline int cmos_poweroff(struct device *dev) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. | 
 |  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs | 
 |  * probably list them in similar PNPBIOS tables; so PNP is more common. | 
 |  * | 
 |  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that | 
 |  * predate even PNPBIOS should set up platform_bus devices. | 
 |  */ | 
 |  | 
 | #ifdef	CONFIG_ACPI | 
 |  | 
 | #include <linux/acpi.h> | 
 |  | 
 | static u32 rtc_handler(void *context) | 
 | { | 
 | 	acpi_clear_event(ACPI_EVENT_RTC); | 
 | 	acpi_disable_event(ACPI_EVENT_RTC, 0); | 
 | 	return ACPI_INTERRUPT_HANDLED; | 
 | } | 
 |  | 
 | static inline void rtc_wake_setup(void) | 
 | { | 
 | 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); | 
 | 	/* | 
 | 	 * After the RTC handler is installed, the Fixed_RTC event should | 
 | 	 * be disabled. Only when the RTC alarm is set will it be enabled. | 
 | 	 */ | 
 | 	acpi_clear_event(ACPI_EVENT_RTC); | 
 | 	acpi_disable_event(ACPI_EVENT_RTC, 0); | 
 | } | 
 |  | 
 | static void rtc_wake_on(struct device *dev) | 
 | { | 
 | 	acpi_clear_event(ACPI_EVENT_RTC); | 
 | 	acpi_enable_event(ACPI_EVENT_RTC, 0); | 
 | } | 
 |  | 
 | static void rtc_wake_off(struct device *dev) | 
 | { | 
 | 	acpi_disable_event(ACPI_EVENT_RTC, 0); | 
 | } | 
 |  | 
 | /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find | 
 |  * its device node and pass extra config data.  This helps its driver use | 
 |  * capabilities that the now-obsolete mc146818 didn't have, and informs it | 
 |  * that this board's RTC is wakeup-capable (per ACPI spec). | 
 |  */ | 
 | static struct cmos_rtc_board_info acpi_rtc_info; | 
 |  | 
 | static void __devinit | 
 | cmos_wake_setup(struct device *dev) | 
 | { | 
 | 	if (acpi_disabled) | 
 | 		return; | 
 |  | 
 | 	rtc_wake_setup(); | 
 | 	acpi_rtc_info.wake_on = rtc_wake_on; | 
 | 	acpi_rtc_info.wake_off = rtc_wake_off; | 
 |  | 
 | 	/* workaround bug in some ACPI tables */ | 
 | 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { | 
 | 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n", | 
 | 			acpi_gbl_FADT.month_alarm); | 
 | 		acpi_gbl_FADT.month_alarm = 0; | 
 | 	} | 
 |  | 
 | 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; | 
 | 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; | 
 | 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; | 
 |  | 
 | 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */ | 
 | 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) | 
 | 		dev_info(dev, "RTC can wake from S4\n"); | 
 |  | 
 | 	dev->platform_data = &acpi_rtc_info; | 
 |  | 
 | 	/* RTC always wakes from S1/S2/S3, and often S4/STD */ | 
 | 	device_init_wakeup(dev, 1); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void __devinit | 
 | cmos_wake_setup(struct device *dev) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef	CONFIG_PNP | 
 |  | 
 | #include <linux/pnp.h> | 
 |  | 
 | static int __devinit | 
 | cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) | 
 | { | 
 | 	cmos_wake_setup(&pnp->dev); | 
 |  | 
 | 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) | 
 | 		/* Some machines contain a PNP entry for the RTC, but | 
 | 		 * don't define the IRQ. It should always be safe to | 
 | 		 * hardcode it in these cases | 
 | 		 */ | 
 | 		return cmos_do_probe(&pnp->dev, | 
 | 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); | 
 | 	else | 
 | 		return cmos_do_probe(&pnp->dev, | 
 | 				pnp_get_resource(pnp, IORESOURCE_IO, 0), | 
 | 				pnp_irq(pnp, 0)); | 
 | } | 
 |  | 
 | static void __exit cmos_pnp_remove(struct pnp_dev *pnp) | 
 | { | 
 | 	cmos_do_remove(&pnp->dev); | 
 | } | 
 |  | 
 | #ifdef	CONFIG_PM | 
 |  | 
 | static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) | 
 | { | 
 | 	return cmos_suspend(&pnp->dev); | 
 | } | 
 |  | 
 | static int cmos_pnp_resume(struct pnp_dev *pnp) | 
 | { | 
 | 	return cmos_resume(&pnp->dev); | 
 | } | 
 |  | 
 | #else | 
 | #define	cmos_pnp_suspend	NULL | 
 | #define	cmos_pnp_resume		NULL | 
 | #endif | 
 |  | 
 | static void cmos_pnp_shutdown(struct pnp_dev *pnp) | 
 | { | 
 | 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) | 
 | 		return; | 
 |  | 
 | 	cmos_do_shutdown(); | 
 | } | 
 |  | 
 | static const struct pnp_device_id rtc_ids[] = { | 
 | 	{ .id = "PNP0b00", }, | 
 | 	{ .id = "PNP0b01", }, | 
 | 	{ .id = "PNP0b02", }, | 
 | 	{ }, | 
 | }; | 
 | MODULE_DEVICE_TABLE(pnp, rtc_ids); | 
 |  | 
 | static struct pnp_driver cmos_pnp_driver = { | 
 | 	.name		= (char *) driver_name, | 
 | 	.id_table	= rtc_ids, | 
 | 	.probe		= cmos_pnp_probe, | 
 | 	.remove		= __exit_p(cmos_pnp_remove), | 
 | 	.shutdown	= cmos_pnp_shutdown, | 
 |  | 
 | 	/* flag ensures resume() gets called, and stops syslog spam */ | 
 | 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE, | 
 | 	.suspend	= cmos_pnp_suspend, | 
 | 	.resume		= cmos_pnp_resume, | 
 | }; | 
 |  | 
 | #endif	/* CONFIG_PNP */ | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static const struct of_device_id of_cmos_match[] = { | 
 | 	{ | 
 | 		.compatible = "motorola,mc146818", | 
 | 	}, | 
 | 	{ }, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, of_cmos_match); | 
 |  | 
 | static __init void cmos_of_init(struct platform_device *pdev) | 
 | { | 
 | 	struct device_node *node = pdev->dev.of_node; | 
 | 	struct rtc_time time; | 
 | 	int ret; | 
 | 	const __be32 *val; | 
 |  | 
 | 	if (!node) | 
 | 		return; | 
 |  | 
 | 	val = of_get_property(node, "ctrl-reg", NULL); | 
 | 	if (val) | 
 | 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); | 
 |  | 
 | 	val = of_get_property(node, "freq-reg", NULL); | 
 | 	if (val) | 
 | 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); | 
 |  | 
 | 	get_rtc_time(&time); | 
 | 	ret = rtc_valid_tm(&time); | 
 | 	if (ret) { | 
 | 		struct rtc_time def_time = { | 
 | 			.tm_year = 1, | 
 | 			.tm_mday = 1, | 
 | 		}; | 
 | 		set_rtc_time(&def_time); | 
 | 	} | 
 | } | 
 | #else | 
 | static inline void cmos_of_init(struct platform_device *pdev) {} | 
 | #define of_cmos_match NULL | 
 | #endif | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* Platform setup should have set up an RTC device, when PNP is | 
 |  * unavailable ... this could happen even on (older) PCs. | 
 |  */ | 
 |  | 
 | static int __init cmos_platform_probe(struct platform_device *pdev) | 
 | { | 
 | 	cmos_of_init(pdev); | 
 | 	cmos_wake_setup(&pdev->dev); | 
 | 	return cmos_do_probe(&pdev->dev, | 
 | 			platform_get_resource(pdev, IORESOURCE_IO, 0), | 
 | 			platform_get_irq(pdev, 0)); | 
 | } | 
 |  | 
 | static int __exit cmos_platform_remove(struct platform_device *pdev) | 
 | { | 
 | 	cmos_do_remove(&pdev->dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cmos_platform_shutdown(struct platform_device *pdev) | 
 | { | 
 | 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) | 
 | 		return; | 
 |  | 
 | 	cmos_do_shutdown(); | 
 | } | 
 |  | 
 | /* work with hotplug and coldplug */ | 
 | MODULE_ALIAS("platform:rtc_cmos"); | 
 |  | 
 | static struct platform_driver cmos_platform_driver = { | 
 | 	.remove		= __exit_p(cmos_platform_remove), | 
 | 	.shutdown	= cmos_platform_shutdown, | 
 | 	.driver = { | 
 | 		.name		= (char *) driver_name, | 
 | #ifdef CONFIG_PM | 
 | 		.pm		= &cmos_pm_ops, | 
 | #endif | 
 | 		.of_match_table = of_cmos_match, | 
 | 	} | 
 | }; | 
 |  | 
 | #ifdef CONFIG_PNP | 
 | static bool pnp_driver_registered; | 
 | #endif | 
 | static bool platform_driver_registered; | 
 |  | 
 | static int __init cmos_init(void) | 
 | { | 
 | 	int retval = 0; | 
 |  | 
 | #ifdef	CONFIG_PNP | 
 | 	retval = pnp_register_driver(&cmos_pnp_driver); | 
 | 	if (retval == 0) | 
 | 		pnp_driver_registered = true; | 
 | #endif | 
 |  | 
 | 	if (!cmos_rtc.dev) { | 
 | 		retval = platform_driver_probe(&cmos_platform_driver, | 
 | 					       cmos_platform_probe); | 
 | 		if (retval == 0) | 
 | 			platform_driver_registered = true; | 
 | 	} | 
 |  | 
 | 	if (retval == 0) | 
 | 		return 0; | 
 |  | 
 | #ifdef	CONFIG_PNP | 
 | 	if (pnp_driver_registered) | 
 | 		pnp_unregister_driver(&cmos_pnp_driver); | 
 | #endif | 
 | 	return retval; | 
 | } | 
 | module_init(cmos_init); | 
 |  | 
 | static void __exit cmos_exit(void) | 
 | { | 
 | #ifdef	CONFIG_PNP | 
 | 	if (pnp_driver_registered) | 
 | 		pnp_unregister_driver(&cmos_pnp_driver); | 
 | #endif | 
 | 	if (platform_driver_registered) | 
 | 		platform_driver_unregister(&cmos_platform_driver); | 
 | } | 
 | module_exit(cmos_exit); | 
 |  | 
 |  | 
 | MODULE_AUTHOR("David Brownell"); | 
 | MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); | 
 | MODULE_LICENSE("GPL"); |