|  | /* | 
|  | * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter | 
|  | * | 
|  | * Copyright (C) 2003, 2007  IC Plus Corp | 
|  | * | 
|  | * Original Author: | 
|  | * | 
|  | *   Craig Rich | 
|  | *   Sundance Technology, Inc. | 
|  | *   www.sundanceti.com | 
|  | *   craig_rich@sundanceti.com | 
|  | * | 
|  | * Current Maintainer: | 
|  | * | 
|  | *   Sorbica Shieh. | 
|  | *   http://www.icplus.com.tw | 
|  | *   sorbica@icplus.com.tw | 
|  | * | 
|  | *   Jesse Huang | 
|  | *   http://www.icplus.com.tw | 
|  | *   jesse@icplus.com.tw | 
|  | */ | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) | 
|  | #define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) | 
|  | #define IPG_RESET_MASK \ | 
|  | (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ | 
|  | IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ | 
|  | IPG_AC_AUTO_INIT) | 
|  |  | 
|  | #define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg)) | 
|  | #define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg)) | 
|  | #define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg)) | 
|  |  | 
|  | #define ipg_r32(reg)		ioread32(ioaddr + (reg)) | 
|  | #define ipg_r16(reg)		ioread16(ioaddr + (reg)) | 
|  | #define ipg_r8(reg)		ioread8(ioaddr + (reg)) | 
|  |  | 
|  | enum { | 
|  | netdev_io_size = 128 | 
|  | }; | 
|  |  | 
|  | #include "ipg.h" | 
|  | #define DRV_NAME	"ipg" | 
|  |  | 
|  | MODULE_AUTHOR("IC Plus Corp. 2003"); | 
|  | MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* | 
|  | * Defaults | 
|  | */ | 
|  | #define IPG_MAX_RXFRAME_SIZE	0x0600 | 
|  | #define IPG_RXFRAG_SIZE		0x0600 | 
|  | #define IPG_RXSUPPORT_SIZE	0x0600 | 
|  | #define IPG_IS_JUMBO		false | 
|  |  | 
|  | /* | 
|  | * Variable record -- index by leading revision/length | 
|  | * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN | 
|  | */ | 
|  | static unsigned short DefaultPhyParam[] = { | 
|  | /* 11/12/03 IP1000A v1-3 rev=0x40 */ | 
|  | /*-------------------------------------------------------------------------- | 
|  | (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2, | 
|  | 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6, | 
|  | 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700, | 
|  | --------------------------------------------------------------------------*/ | 
|  | /* 12/17/03 IP1000A v1-4 rev=0x40 */ | 
|  | (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, | 
|  | 0x0000, | 
|  | 30, 0x005e, 9, 0x0700, | 
|  | /* 01/09/04 IP1000A v1-5 rev=0x41 */ | 
|  | (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31, | 
|  | 0x0000, | 
|  | 30, 0x005e, 9, 0x0700, | 
|  | 0x0000 | 
|  | }; | 
|  |  | 
|  | static const char *ipg_brand_name[] = { | 
|  | "IC PLUS IP1000 1000/100/10 based NIC", | 
|  | "Sundance Technology ST2021 based NIC", | 
|  | "Tamarack Microelectronics TC9020/9021 based NIC", | 
|  | "Tamarack Microelectronics TC9020/9021 based NIC", | 
|  | "D-Link NIC", | 
|  | "D-Link NIC IP1000A" | 
|  | }; | 
|  |  | 
|  | static struct pci_device_id ipg_pci_tbl[] __devinitdata = { | 
|  | { PCI_VDEVICE(SUNDANCE,	0x1023), 0 }, | 
|  | { PCI_VDEVICE(SUNDANCE,	0x2021), 1 }, | 
|  | { PCI_VDEVICE(SUNDANCE,	0x1021), 2 }, | 
|  | { PCI_VDEVICE(DLINK,	0x9021), 3 }, | 
|  | { PCI_VDEVICE(DLINK,	0x4000), 4 }, | 
|  | { PCI_VDEVICE(DLINK,	0x4020), 5 }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); | 
|  |  | 
|  | static inline void __iomem *ipg_ioaddr(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | return sp->ioaddr; | 
|  | } | 
|  |  | 
|  | #ifdef IPG_DEBUG | 
|  | static void ipg_dump_rfdlist(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  | u32 offset; | 
|  |  | 
|  | IPG_DEBUG_MSG("_dump_rfdlist\n"); | 
|  |  | 
|  | printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); | 
|  | printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty); | 
|  | printk(KERN_INFO "RFDList start address = %16.16lx\n", | 
|  | (unsigned long) sp->rxd_map); | 
|  | printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n", | 
|  | ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); | 
|  |  | 
|  | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | 
|  | offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; | 
|  | printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->rxd[i].next_desc); | 
|  | offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; | 
|  | printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->rxd[i].rfs); | 
|  | offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; | 
|  | printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->rxd[i].frag_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipg_dump_tfdlist(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  | u32 offset; | 
|  |  | 
|  | IPG_DEBUG_MSG("_dump_tfdlist\n"); | 
|  |  | 
|  | printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current); | 
|  | printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); | 
|  | printk(KERN_INFO "TFDList start address = %16.16lx\n", | 
|  | (unsigned long) sp->txd_map); | 
|  | printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n", | 
|  | ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); | 
|  |  | 
|  | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | 
|  | offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; | 
|  | printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->txd[i].next_desc); | 
|  |  | 
|  | offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; | 
|  | printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->txd[i].tfc); | 
|  | offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; | 
|  | printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i, | 
|  | offset, (unsigned long) sp->txd[i].frag_info); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) | 
|  | { | 
|  | ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); | 
|  | ndelay(IPG_PC_PHYCTRLWAIT_NS); | 
|  | } | 
|  |  | 
|  | static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) | 
|  | { | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); | 
|  | } | 
|  |  | 
|  | static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) | 
|  | { | 
|  | phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; | 
|  |  | 
|  | ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); | 
|  | } | 
|  |  | 
|  | static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) | 
|  | { | 
|  | ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | | 
|  | phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); | 
|  | } | 
|  |  | 
|  | static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity) | 
|  | { | 
|  | u16 bit_data; | 
|  |  | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); | 
|  |  | 
|  | bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; | 
|  |  | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); | 
|  |  | 
|  | return bit_data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a register from the Physical Layer device located | 
|  | * on the IPG NIC, using the IPG PHYCTRL register. | 
|  | */ | 
|  | static int mdio_read(struct net_device *dev, int phy_id, int phy_reg) | 
|  | { | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | /* | 
|  | * The GMII mangement frame structure for a read is as follows: | 
|  | * | 
|  | * |Preamble|st|op|phyad|regad|ta|      data      |idle| | 
|  | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   | | 
|  | * | 
|  | * <32 1s> = 32 consecutive logic 1 values | 
|  | * A = bit of Physical Layer device address (MSB first) | 
|  | * R = bit of register address (MSB first) | 
|  | * z = High impedance state | 
|  | * D = bit of read data (MSB first) | 
|  | * | 
|  | * Transmission order is 'Preamble' field first, bits transmitted | 
|  | * left to right (first to last). | 
|  | */ | 
|  | struct { | 
|  | u32 field; | 
|  | unsigned int len; | 
|  | } p[] = { | 
|  | { GMII_PREAMBLE,	32 },	/* Preamble */ | 
|  | { GMII_ST,		2  },	/* ST */ | 
|  | { GMII_READ,		2  },	/* OP */ | 
|  | { phy_id,		5  },	/* PHYAD */ | 
|  | { phy_reg,		5  },	/* REGAD */ | 
|  | { 0x0000,		2  },	/* TA */ | 
|  | { 0x0000,		16 },	/* DATA */ | 
|  | { 0x0000,		1  }	/* IDLE */ | 
|  | }; | 
|  | unsigned int i, j; | 
|  | u8 polarity, data; | 
|  |  | 
|  | polarity  = ipg_r8(PHY_CTRL); | 
|  | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | 
|  |  | 
|  | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | 
|  | for (j = 0; j < 5; j++) { | 
|  | for (i = 0; i < p[j].len; i++) { | 
|  | /* For each variable length field, the MSB must be | 
|  | * transmitted first. Rotate through the field bits, | 
|  | * starting with the MSB, and move each bit into the | 
|  | * the 1st (2^1) bit position (this is the bit position | 
|  | * corresponding to the MgmtData bit of the PhyCtrl | 
|  | * register for the IPG). | 
|  | * | 
|  | * Example: ST = 01; | 
|  | * | 
|  | *          First write a '0' to bit 1 of the PhyCtrl | 
|  | *          register, then write a '1' to bit 1 of the | 
|  | *          PhyCtrl register. | 
|  | * | 
|  | * To do this, right shift the MSB of ST by the value: | 
|  | * [field length - 1 - #ST bits already written] | 
|  | * then left shift this result by 1. | 
|  | */ | 
|  | data  = (p[j].field >> (p[j].len - 1 - i)) << 1; | 
|  | data &= IPG_PC_MGMTDATA; | 
|  | data |= polarity | IPG_PC_MGMTDIR; | 
|  |  | 
|  | ipg_drive_phy_ctl_low_high(ioaddr, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | send_three_state(ioaddr, polarity); | 
|  |  | 
|  | read_phy_bit(ioaddr, polarity); | 
|  |  | 
|  | /* | 
|  | * For a read cycle, the bits for the next two fields (TA and | 
|  | * DATA) are driven by the PHY (the IPG reads these bits). | 
|  | */ | 
|  | for (i = 0; i < p[6].len; i++) { | 
|  | p[6].field |= | 
|  | (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); | 
|  | } | 
|  |  | 
|  | send_three_state(ioaddr, polarity); | 
|  | send_three_state(ioaddr, polarity); | 
|  | send_three_state(ioaddr, polarity); | 
|  | send_end(ioaddr, polarity); | 
|  |  | 
|  | /* Return the value of the DATA field. */ | 
|  | return p[6].field; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write to a register from the Physical Layer device located | 
|  | * on the IPG NIC, using the IPG PHYCTRL register. | 
|  | */ | 
|  | static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) | 
|  | { | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | /* | 
|  | * The GMII mangement frame structure for a read is as follows: | 
|  | * | 
|  | * |Preamble|st|op|phyad|regad|ta|      data      |idle| | 
|  | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   | | 
|  | * | 
|  | * <32 1s> = 32 consecutive logic 1 values | 
|  | * A = bit of Physical Layer device address (MSB first) | 
|  | * R = bit of register address (MSB first) | 
|  | * z = High impedance state | 
|  | * D = bit of write data (MSB first) | 
|  | * | 
|  | * Transmission order is 'Preamble' field first, bits transmitted | 
|  | * left to right (first to last). | 
|  | */ | 
|  | struct { | 
|  | u32 field; | 
|  | unsigned int len; | 
|  | } p[] = { | 
|  | { GMII_PREAMBLE,	32 },	/* Preamble */ | 
|  | { GMII_ST,		2  },	/* ST */ | 
|  | { GMII_WRITE,		2  },	/* OP */ | 
|  | { phy_id,		5  },	/* PHYAD */ | 
|  | { phy_reg,		5  },	/* REGAD */ | 
|  | { 0x0002,		2  },	/* TA */ | 
|  | { val & 0xffff,		16 },	/* DATA */ | 
|  | { 0x0000,		1  }	/* IDLE */ | 
|  | }; | 
|  | unsigned int i, j; | 
|  | u8 polarity, data; | 
|  |  | 
|  | polarity  = ipg_r8(PHY_CTRL); | 
|  | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); | 
|  |  | 
|  | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ | 
|  | for (j = 0; j < 7; j++) { | 
|  | for (i = 0; i < p[j].len; i++) { | 
|  | /* For each variable length field, the MSB must be | 
|  | * transmitted first. Rotate through the field bits, | 
|  | * starting with the MSB, and move each bit into the | 
|  | * the 1st (2^1) bit position (this is the bit position | 
|  | * corresponding to the MgmtData bit of the PhyCtrl | 
|  | * register for the IPG). | 
|  | * | 
|  | * Example: ST = 01; | 
|  | * | 
|  | *          First write a '0' to bit 1 of the PhyCtrl | 
|  | *          register, then write a '1' to bit 1 of the | 
|  | *          PhyCtrl register. | 
|  | * | 
|  | * To do this, right shift the MSB of ST by the value: | 
|  | * [field length - 1 - #ST bits already written] | 
|  | * then left shift this result by 1. | 
|  | */ | 
|  | data  = (p[j].field >> (p[j].len - 1 - i)) << 1; | 
|  | data &= IPG_PC_MGMTDATA; | 
|  | data |= polarity | IPG_PC_MGMTDIR; | 
|  |  | 
|  | ipg_drive_phy_ctl_low_high(ioaddr, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The last cycle is a tri-state, so read from the PHY. */ | 
|  | for (j = 7; j < 8; j++) { | 
|  | for (i = 0; i < p[j].len; i++) { | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); | 
|  |  | 
|  | p[j].field |= ((ipg_r8(PHY_CTRL) & | 
|  | IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); | 
|  |  | 
|  | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipg_set_led_mode(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | u32 mode; | 
|  |  | 
|  | mode = ipg_r32(ASIC_CTRL); | 
|  | mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); | 
|  |  | 
|  | if ((sp->led_mode & 0x03) > 1) | 
|  | mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */ | 
|  |  | 
|  | if ((sp->led_mode & 0x01) == 1) | 
|  | mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */ | 
|  |  | 
|  | if ((sp->led_mode & 0x08) == 8) | 
|  | mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */ | 
|  |  | 
|  | ipg_w32(mode, ASIC_CTRL); | 
|  | } | 
|  |  | 
|  | static void ipg_set_phy_set(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | int physet; | 
|  |  | 
|  | physet = ipg_r8(PHY_SET); | 
|  | physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); | 
|  | physet |= ((sp->led_mode & 0x70) >> 4); | 
|  | ipg_w8(physet, PHY_SET); | 
|  | } | 
|  |  | 
|  | static int ipg_reset(struct net_device *dev, u32 resetflags) | 
|  | { | 
|  | /* Assert functional resets via the IPG AsicCtrl | 
|  | * register as specified by the 'resetflags' input | 
|  | * parameter. | 
|  | */ | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | unsigned int timeout_count = 0; | 
|  |  | 
|  | IPG_DEBUG_MSG("_reset\n"); | 
|  |  | 
|  | ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); | 
|  |  | 
|  | /* Delay added to account for problem with 10Mbps reset. */ | 
|  | mdelay(IPG_AC_RESETWAIT); | 
|  |  | 
|  | while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { | 
|  | mdelay(IPG_AC_RESETWAIT); | 
|  | if (++timeout_count > IPG_AC_RESET_TIMEOUT) | 
|  | return -ETIME; | 
|  | } | 
|  | /* Set LED Mode in Asic Control */ | 
|  | ipg_set_led_mode(dev); | 
|  |  | 
|  | /* Set PHYSet Register Value */ | 
|  | ipg_set_phy_set(dev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find the GMII PHY address. */ | 
|  | static int ipg_find_phyaddr(struct net_device *dev) | 
|  | { | 
|  | unsigned int phyaddr, i; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | u32 status; | 
|  |  | 
|  | /* Search for the correct PHY address among 32 possible. */ | 
|  | phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; | 
|  |  | 
|  | /* 10/22/03 Grace change verify from GMII_PHY_STATUS to | 
|  | GMII_PHY_ID1 | 
|  | */ | 
|  |  | 
|  | status = mdio_read(dev, phyaddr, MII_BMSR); | 
|  |  | 
|  | if ((status != 0xFFFF) && (status != 0)) | 
|  | return phyaddr; | 
|  | } | 
|  |  | 
|  | return 0x1f; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure IPG based on result of IEEE 802.3 PHY | 
|  | * auto-negotiation. | 
|  | */ | 
|  | static int ipg_config_autoneg(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int txflowcontrol; | 
|  | unsigned int rxflowcontrol; | 
|  | unsigned int fullduplex; | 
|  | u32 mac_ctrl_val; | 
|  | u32 asicctrl; | 
|  | u8 phyctrl; | 
|  |  | 
|  | IPG_DEBUG_MSG("_config_autoneg\n"); | 
|  |  | 
|  | asicctrl = ipg_r32(ASIC_CTRL); | 
|  | phyctrl = ipg_r8(PHY_CTRL); | 
|  | mac_ctrl_val = ipg_r32(MAC_CTRL); | 
|  |  | 
|  | /* Set flags for use in resolving auto-negotation, assuming | 
|  | * non-1000Mbps, half duplex, no flow control. | 
|  | */ | 
|  | fullduplex = 0; | 
|  | txflowcontrol = 0; | 
|  | rxflowcontrol = 0; | 
|  |  | 
|  | /* To accomodate a problem in 10Mbps operation, | 
|  | * set a global flag if PHY running in 10Mbps mode. | 
|  | */ | 
|  | sp->tenmbpsmode = 0; | 
|  |  | 
|  | printk(KERN_INFO "%s: Link speed = ", dev->name); | 
|  |  | 
|  | /* Determine actual speed of operation. */ | 
|  | switch (phyctrl & IPG_PC_LINK_SPEED) { | 
|  | case IPG_PC_LINK_SPEED_10MBPS: | 
|  | printk("10Mbps.\n"); | 
|  | printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", | 
|  | dev->name); | 
|  | sp->tenmbpsmode = 1; | 
|  | break; | 
|  | case IPG_PC_LINK_SPEED_100MBPS: | 
|  | printk("100Mbps.\n"); | 
|  | break; | 
|  | case IPG_PC_LINK_SPEED_1000MBPS: | 
|  | printk("1000Mbps.\n"); | 
|  | break; | 
|  | default: | 
|  | printk("undefined!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (phyctrl & IPG_PC_DUPLEX_STATUS) { | 
|  | fullduplex = 1; | 
|  | txflowcontrol = 1; | 
|  | rxflowcontrol = 1; | 
|  | } | 
|  |  | 
|  | /* Configure full duplex, and flow control. */ | 
|  | if (fullduplex == 1) { | 
|  | /* Configure IPG for full duplex operation. */ | 
|  | printk(KERN_INFO "%s: setting full duplex, ", dev->name); | 
|  |  | 
|  | mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; | 
|  |  | 
|  | if (txflowcontrol == 1) { | 
|  | printk("TX flow control"); | 
|  | mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; | 
|  | } else { | 
|  | printk("no TX flow control"); | 
|  | mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; | 
|  | } | 
|  |  | 
|  | if (rxflowcontrol == 1) { | 
|  | printk(", RX flow control."); | 
|  | mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; | 
|  | } else { | 
|  | printk(", no RX flow control."); | 
|  | mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | 
|  | } | 
|  |  | 
|  | printk("\n"); | 
|  | } else { | 
|  | /* Configure IPG for half duplex operation. */ | 
|  | printk(KERN_INFO "%s: setting half duplex, " | 
|  | "no TX flow control, no RX flow control.\n", dev->name); | 
|  |  | 
|  | mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & | 
|  | ~IPG_MC_TX_FLOW_CONTROL_ENABLE & | 
|  | ~IPG_MC_RX_FLOW_CONTROL_ENABLE; | 
|  | } | 
|  | ipg_w32(mac_ctrl_val, MAC_CTRL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine and configure multicast operation and set | 
|  | * receive mode for IPG. | 
|  | */ | 
|  | static void ipg_nic_set_multicast_list(struct net_device *dev) | 
|  | { | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | struct dev_mc_list *mc_list_ptr; | 
|  | unsigned int hashindex; | 
|  | u32 hashtable[2]; | 
|  | u8 receivemode; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_set_multicast_list\n"); | 
|  |  | 
|  | receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; | 
|  |  | 
|  | if (dev->flags & IFF_PROMISC) { | 
|  | /* NIC to be configured in promiscuous mode. */ | 
|  | receivemode = IPG_RM_RECEIVEALLFRAMES; | 
|  | } else if ((dev->flags & IFF_ALLMULTI) || | 
|  | ((dev->flags & IFF_MULTICAST) && | 
|  | (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { | 
|  | /* NIC to be configured to receive all multicast | 
|  | * frames. */ | 
|  | receivemode |= IPG_RM_RECEIVEMULTICAST; | 
|  | } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) { | 
|  | /* NIC to be configured to receive selected | 
|  | * multicast addresses. */ | 
|  | receivemode |= IPG_RM_RECEIVEMULTICASTHASH; | 
|  | } | 
|  |  | 
|  | /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. | 
|  | * The IPG applies a cyclic-redundancy-check (the same CRC | 
|  | * used to calculate the frame data FCS) to the destination | 
|  | * address all incoming multicast frames whose destination | 
|  | * address has the multicast bit set. The least significant | 
|  | * 6 bits of the CRC result are used as an addressing index | 
|  | * into the hash table. If the value of the bit addressed by | 
|  | * this index is a 1, the frame is passed to the host system. | 
|  | */ | 
|  |  | 
|  | /* Clear hashtable. */ | 
|  | hashtable[0] = 0x00000000; | 
|  | hashtable[1] = 0x00000000; | 
|  |  | 
|  | /* Cycle through all multicast addresses to filter. */ | 
|  | for (mc_list_ptr = dev->mc_list; | 
|  | mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { | 
|  | /* Calculate CRC result for each multicast address. */ | 
|  | hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, | 
|  | ETH_ALEN); | 
|  |  | 
|  | /* Use only the least significant 6 bits. */ | 
|  | hashindex = hashindex & 0x3F; | 
|  |  | 
|  | /* Within "hashtable", set bit number "hashindex" | 
|  | * to a logic 1. | 
|  | */ | 
|  | set_bit(hashindex, (void *)hashtable); | 
|  | } | 
|  |  | 
|  | /* Write the value of the hashtable, to the 4, 16 bit | 
|  | * HASHTABLE IPG registers. | 
|  | */ | 
|  | ipg_w32(hashtable[0], HASHTABLE_0); | 
|  | ipg_w32(hashtable[1], HASHTABLE_1); | 
|  |  | 
|  | ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); | 
|  |  | 
|  | IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); | 
|  | } | 
|  |  | 
|  | static int ipg_io_config(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | u32 origmacctrl; | 
|  | u32 restoremacctrl; | 
|  |  | 
|  | IPG_DEBUG_MSG("_io_config\n"); | 
|  |  | 
|  | origmacctrl = ipg_r32(MAC_CTRL); | 
|  |  | 
|  | restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; | 
|  |  | 
|  | /* Based on compilation option, determine if FCS is to be | 
|  | * stripped on receive frames by IPG. | 
|  | */ | 
|  | if (!IPG_STRIP_FCS_ON_RX) | 
|  | restoremacctrl |= IPG_MC_RCV_FCS; | 
|  |  | 
|  | /* Determine if transmitter and/or receiver are | 
|  | * enabled so we may restore MACCTRL correctly. | 
|  | */ | 
|  | if (origmacctrl & IPG_MC_TX_ENABLED) | 
|  | restoremacctrl |= IPG_MC_TX_ENABLE; | 
|  |  | 
|  | if (origmacctrl & IPG_MC_RX_ENABLED) | 
|  | restoremacctrl |= IPG_MC_RX_ENABLE; | 
|  |  | 
|  | /* Transmitter and receiver must be disabled before setting | 
|  | * IFSSelect. | 
|  | */ | 
|  | ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & | 
|  | IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  |  | 
|  | /* Now that transmitter and receiver are disabled, write | 
|  | * to IFSSelect. | 
|  | */ | 
|  | ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  |  | 
|  | /* Set RECEIVEMODE register. */ | 
|  | ipg_nic_set_multicast_list(dev); | 
|  |  | 
|  | ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE); | 
|  |  | 
|  | ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD); | 
|  | ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); | 
|  | ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH); | 
|  | ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD); | 
|  | ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); | 
|  | ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH); | 
|  | ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | | 
|  | IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | | 
|  | IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | | 
|  | IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); | 
|  | ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH); | 
|  | ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); | 
|  |  | 
|  | /* IPG multi-frag frame bug workaround. | 
|  | * Per silicon revision B3 eratta. | 
|  | */ | 
|  | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); | 
|  |  | 
|  | /* IPG TX poll now bug workaround. | 
|  | * Per silicon revision B3 eratta. | 
|  | */ | 
|  | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); | 
|  |  | 
|  | /* IPG RX poll now bug workaround. | 
|  | * Per silicon revision B3 eratta. | 
|  | */ | 
|  | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); | 
|  |  | 
|  | /* Now restore MACCTRL to original setting. */ | 
|  | ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); | 
|  |  | 
|  | /* Disable unused RMON statistics. */ | 
|  | ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); | 
|  |  | 
|  | /* Disable unused MIB statistics. */ | 
|  | ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | | 
|  | IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | | 
|  | IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | | 
|  | IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | | 
|  | IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | | 
|  | IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a receive buffer within system memory and update | 
|  | * NIC private structure appropriately. | 
|  | */ | 
|  | static int ipg_get_rxbuff(struct net_device *dev, int entry) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | struct ipg_rx *rxfd = sp->rxd + entry; | 
|  | struct sk_buff *skb; | 
|  | u64 rxfragsize; | 
|  |  | 
|  | IPG_DEBUG_MSG("_get_rxbuff\n"); | 
|  |  | 
|  | skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN); | 
|  | if (!skb) { | 
|  | sp->rx_buff[entry] = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Adjust the data start location within the buffer to | 
|  | * align IP address field to a 16 byte boundary. | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | /* Associate the receive buffer with the IPG NIC. */ | 
|  | skb->dev = dev; | 
|  |  | 
|  | /* Save the address of the sk_buff structure. */ | 
|  | sp->rx_buff[entry] = skb; | 
|  |  | 
|  | rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); | 
|  |  | 
|  | /* Set the RFD fragment length. */ | 
|  | rxfragsize = sp->rxfrag_size; | 
|  | rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_rfdlist(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  |  | 
|  | IPG_DEBUG_MSG("_init_rfdlist\n"); | 
|  |  | 
|  | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | 
|  | struct ipg_rx *rxfd = sp->rxd + i; | 
|  |  | 
|  | if (sp->rx_buff[i]) { | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb_irq(sp->rx_buff[i]); | 
|  | sp->rx_buff[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Clear out the RFS field. */ | 
|  | rxfd->rfs = 0x0000000000000000; | 
|  |  | 
|  | if (ipg_get_rxbuff(dev, i) < 0) { | 
|  | /* | 
|  | * A receive buffer was not ready, break the | 
|  | * RFD list here. | 
|  | */ | 
|  | IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); | 
|  |  | 
|  | /* Just in case we cannot allocate a single RFD. | 
|  | * Should not occur. | 
|  | */ | 
|  | if (i == 0) { | 
|  | printk(KERN_ERR "%s: No memory available" | 
|  | " for RFD list.\n", dev->name); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | rxfd->next_desc = cpu_to_le64(sp->rxd_map + | 
|  | sizeof(struct ipg_rx)*(i + 1)); | 
|  | } | 
|  | sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); | 
|  |  | 
|  | sp->rx_current = 0; | 
|  | sp->rx_dirty = 0; | 
|  |  | 
|  | /* Write the location of the RFDList to the IPG. */ | 
|  | ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); | 
|  | ipg_w32(0x00000000, RFD_LIST_PTR_1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_tfdlist(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  |  | 
|  | IPG_DEBUG_MSG("_init_tfdlist\n"); | 
|  |  | 
|  | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | 
|  | struct ipg_tx *txfd = sp->txd + i; | 
|  |  | 
|  | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | 
|  |  | 
|  | if (sp->tx_buff[i]) { | 
|  | dev_kfree_skb_irq(sp->tx_buff[i]); | 
|  | sp->tx_buff[i] = NULL; | 
|  | } | 
|  |  | 
|  | txfd->next_desc = cpu_to_le64(sp->txd_map + | 
|  | sizeof(struct ipg_tx)*(i + 1)); | 
|  | } | 
|  | sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); | 
|  |  | 
|  | sp->tx_current = 0; | 
|  | sp->tx_dirty = 0; | 
|  |  | 
|  | /* Write the location of the TFDList to the IPG. */ | 
|  | IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", | 
|  | (u32) sp->txd_map); | 
|  | ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); | 
|  | ipg_w32(0x00000000, TFD_LIST_PTR_1); | 
|  |  | 
|  | sp->reset_current_tfd = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all transmit buffers which have already been transfered | 
|  | * via DMA to the IPG. | 
|  | */ | 
|  | static void ipg_nic_txfree(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | unsigned int released, pending, dirty; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_txfree\n"); | 
|  |  | 
|  | pending = sp->tx_current - sp->tx_dirty; | 
|  | dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; | 
|  |  | 
|  | for (released = 0; released < pending; released++) { | 
|  | struct sk_buff *skb = sp->tx_buff[dirty]; | 
|  | struct ipg_tx *txfd = sp->txd + dirty; | 
|  |  | 
|  | IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); | 
|  |  | 
|  | /* Look at each TFD's TFC field beginning | 
|  | * at the last freed TFD up to the current TFD. | 
|  | * If the TFDDone bit is set, free the associated | 
|  | * buffer. | 
|  | */ | 
|  | if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE))) | 
|  | break; | 
|  |  | 
|  | /* Free the transmit buffer. */ | 
|  | if (skb) { | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, | 
|  | skb->len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | dev_kfree_skb_irq(skb); | 
|  |  | 
|  | sp->tx_buff[dirty] = NULL; | 
|  | } | 
|  | dirty = (dirty + 1) % IPG_TFDLIST_LENGTH; | 
|  | } | 
|  |  | 
|  | sp->tx_dirty += released; | 
|  |  | 
|  | if (netif_queue_stopped(dev) && | 
|  | (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { | 
|  | netif_wake_queue(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipg_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  |  | 
|  | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | | 
|  | IPG_AC_FIFO); | 
|  |  | 
|  | spin_lock_irq(&sp->lock); | 
|  |  | 
|  | /* Re-configure after DMA reset. */ | 
|  | if (ipg_io_config(dev) < 0) { | 
|  | printk(KERN_INFO "%s: Error during re-configuration.\n", | 
|  | dev->name); | 
|  | } | 
|  |  | 
|  | init_tfdlist(dev); | 
|  |  | 
|  | spin_unlock_irq(&sp->lock); | 
|  |  | 
|  | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, | 
|  | MAC_CTRL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For TxComplete interrupts, free all transmit | 
|  | * buffers which have already been transfered via DMA | 
|  | * to the IPG. | 
|  | */ | 
|  | static void ipg_nic_txcleanup(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_txcleanup\n"); | 
|  |  | 
|  | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | 
|  | /* Reading the TXSTATUS register clears the | 
|  | * TX_COMPLETE interrupt. | 
|  | */ | 
|  | u32 txstatusdword = ipg_r32(TX_STATUS); | 
|  |  | 
|  | IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); | 
|  |  | 
|  | /* Check for Transmit errors. Error bits only valid if | 
|  | * TX_COMPLETE bit in the TXSTATUS register is a 1. | 
|  | */ | 
|  | if (!(txstatusdword & IPG_TS_TX_COMPLETE)) | 
|  | break; | 
|  |  | 
|  | /* If in 10Mbps mode, indicate transmit is ready. */ | 
|  | if (sp->tenmbpsmode) { | 
|  | netif_wake_queue(dev); | 
|  | } | 
|  |  | 
|  | /* Transmit error, increment stat counters. */ | 
|  | if (txstatusdword & IPG_TS_TX_ERROR) { | 
|  | IPG_DEBUG_MSG("Transmit error.\n"); | 
|  | sp->stats.tx_errors++; | 
|  | } | 
|  |  | 
|  | /* Late collision, re-enable transmitter. */ | 
|  | if (txstatusdword & IPG_TS_LATE_COLLISION) { | 
|  | IPG_DEBUG_MSG("Late collision on transmit.\n"); | 
|  | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | 
|  | IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  | } | 
|  |  | 
|  | /* Maximum collisions, re-enable transmitter. */ | 
|  | if (txstatusdword & IPG_TS_TX_MAX_COLL) { | 
|  | IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); | 
|  | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | 
|  | IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  | } | 
|  |  | 
|  | /* Transmit underrun, reset and re-enable | 
|  | * transmitter. | 
|  | */ | 
|  | if (txstatusdword & IPG_TS_TX_UNDERRUN) { | 
|  | IPG_DEBUG_MSG("Transmitter underrun.\n"); | 
|  | sp->stats.tx_fifo_errors++; | 
|  | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | | 
|  | IPG_AC_NETWORK | IPG_AC_FIFO); | 
|  |  | 
|  | /* Re-configure after DMA reset. */ | 
|  | if (ipg_io_config(dev) < 0) { | 
|  | printk(KERN_INFO | 
|  | "%s: Error during re-configuration.\n", | 
|  | dev->name); | 
|  | } | 
|  | init_tfdlist(dev); | 
|  |  | 
|  | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & | 
|  | IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  | } | 
|  | } | 
|  |  | 
|  | ipg_nic_txfree(dev); | 
|  | } | 
|  |  | 
|  | /* Provides statistical information about the IPG NIC. */ | 
|  | static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | u16 temp1; | 
|  | u16 temp2; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_get_stats\n"); | 
|  |  | 
|  | /* Check to see if the NIC has been initialized via nic_open, | 
|  | * before trying to read statistic registers. | 
|  | */ | 
|  | if (!test_bit(__LINK_STATE_START, &dev->state)) | 
|  | return &sp->stats; | 
|  |  | 
|  | sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); | 
|  | sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); | 
|  | sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); | 
|  | sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); | 
|  | temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); | 
|  | sp->stats.rx_errors += temp1; | 
|  | sp->stats.rx_missed_errors += temp1; | 
|  | temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + | 
|  | ipg_r32(IPG_LATECOLLISIONS); | 
|  | temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); | 
|  | sp->stats.collisions += temp1; | 
|  | sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); | 
|  | sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + | 
|  | ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; | 
|  | sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); | 
|  |  | 
|  | /* detailed tx_errors */ | 
|  | sp->stats.tx_carrier_errors += temp2; | 
|  |  | 
|  | /* detailed rx_errors */ | 
|  | sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + | 
|  | ipg_r16(IPG_FRAMETOOLONGERRRORS); | 
|  | sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); | 
|  |  | 
|  | /* Unutilized IPG statistic registers. */ | 
|  | ipg_r32(IPG_MCSTFRAMESRCVDOK); | 
|  |  | 
|  | return &sp->stats; | 
|  | } | 
|  |  | 
|  | /* Restore used receive buffers. */ | 
|  | static int ipg_nic_rxrestore(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | const unsigned int curr = sp->rx_current; | 
|  | unsigned int dirty = sp->rx_dirty; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_rxrestore\n"); | 
|  |  | 
|  | for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { | 
|  | unsigned int entry = dirty % IPG_RFDLIST_LENGTH; | 
|  |  | 
|  | /* rx_copybreak may poke hole here and there. */ | 
|  | if (sp->rx_buff[entry]) | 
|  | continue; | 
|  |  | 
|  | /* Generate a new receive buffer to replace the | 
|  | * current buffer (which will be released by the | 
|  | * Linux system). | 
|  | */ | 
|  | if (ipg_get_rxbuff(dev, entry) < 0) { | 
|  | IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Reset the RFS field. */ | 
|  | sp->rxd[entry].rfs = 0x0000000000000000; | 
|  | } | 
|  | sp->rx_dirty = dirty; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* use jumboindex and jumbosize to control jumbo frame status | 
|  | * initial status is jumboindex=-1 and jumbosize=0 | 
|  | * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. | 
|  | * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving | 
|  | * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump | 
|  | *               previous receiving and need to continue dumping the current one | 
|  | */ | 
|  | enum { | 
|  | NORMAL_PACKET, | 
|  | ERROR_PACKET | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | FRAME_NO_START_NO_END	= 0, | 
|  | FRAME_WITH_START		= 1, | 
|  | FRAME_WITH_END		= 10, | 
|  | FRAME_WITH_START_WITH_END = 11 | 
|  | }; | 
|  |  | 
|  | static void ipg_nic_rx_free_skb(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | 
|  |  | 
|  | if (sp->rx_buff[entry]) { | 
|  | struct ipg_rx *rxfd = sp->rxd + entry; | 
|  |  | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb_irq(sp->rx_buff[entry]); | 
|  | sp->rx_buff[entry] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ipg_nic_rx_check_frame_type(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); | 
|  | int type = FRAME_NO_START_NO_END; | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) | 
|  | type += FRAME_WITH_START; | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) | 
|  | type += FRAME_WITH_END; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static int ipg_nic_rx_check_error(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; | 
|  | struct ipg_rx *rxfd = sp->rxd + entry; | 
|  |  | 
|  | if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & | 
|  | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | | 
|  | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | 
|  | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { | 
|  | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | 
|  | (unsigned long) rxfd->rfs); | 
|  |  | 
|  | /* Increment general receive error statistic. */ | 
|  | sp->stats.rx_errors++; | 
|  |  | 
|  | /* Increment detailed receive error statistics. */ | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { | 
|  | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); | 
|  |  | 
|  | sp->stats.rx_fifo_errors++; | 
|  | } | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { | 
|  | IPG_DEBUG_MSG("RX runt occured.\n"); | 
|  | sp->stats.rx_length_errors++; | 
|  | } | 
|  |  | 
|  | /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, | 
|  | * error count handled by a IPG statistic register. | 
|  | */ | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { | 
|  | IPG_DEBUG_MSG("RX alignment error occured.\n"); | 
|  | sp->stats.rx_frame_errors++; | 
|  | } | 
|  |  | 
|  | /* Do nothing for IPG_RFS_RXFCSERROR, error count | 
|  | * handled by a IPG statistic register. | 
|  | */ | 
|  |  | 
|  | /* Free the memory associated with the RX | 
|  | * buffer since it is erroneous and we will | 
|  | * not pass it to higher layer processes. | 
|  | */ | 
|  | if (sp->rx_buff[entry]) { | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | dev_kfree_skb_irq(sp->rx_buff[entry]); | 
|  | sp->rx_buff[entry] = NULL; | 
|  | } | 
|  | return ERROR_PACKET; | 
|  | } | 
|  | return NORMAL_PACKET; | 
|  | } | 
|  |  | 
|  | static void ipg_nic_rx_with_start_and_end(struct net_device *dev, | 
|  | struct ipg_nic_private *sp, | 
|  | struct ipg_rx *rxfd, unsigned entry) | 
|  | { | 
|  | struct ipg_jumbo *jumbo = &sp->jumbo; | 
|  | struct sk_buff *skb; | 
|  | int framelen; | 
|  |  | 
|  | if (jumbo->found_start) { | 
|  | dev_kfree_skb_irq(jumbo->skb); | 
|  | jumbo->found_start = 0; | 
|  | jumbo->current_size = 0; | 
|  | jumbo->skb = NULL; | 
|  | } | 
|  |  | 
|  | /* 1: found error, 0 no error */ | 
|  | if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) | 
|  | return; | 
|  |  | 
|  | skb = sp->rx_buff[entry]; | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | /* accept this frame and send to upper layer */ | 
|  | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | 
|  | if (framelen > sp->rxfrag_size) | 
|  | framelen = sp->rxfrag_size; | 
|  |  | 
|  | skb_put(skb, framelen); | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | netif_rx(skb); | 
|  | dev->last_rx = jiffies; | 
|  | sp->rx_buff[entry] = NULL; | 
|  | } | 
|  |  | 
|  | static void ipg_nic_rx_with_start(struct net_device *dev, | 
|  | struct ipg_nic_private *sp, | 
|  | struct ipg_rx *rxfd, unsigned entry) | 
|  | { | 
|  | struct ipg_jumbo *jumbo = &sp->jumbo; | 
|  | struct pci_dev *pdev = sp->pdev; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* 1: found error, 0 no error */ | 
|  | if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET) | 
|  | return; | 
|  |  | 
|  | /* accept this frame and send to upper layer */ | 
|  | skb = sp->rx_buff[entry]; | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | if (jumbo->found_start) | 
|  | dev_kfree_skb_irq(jumbo->skb); | 
|  |  | 
|  | pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | skb_put(skb, sp->rxfrag_size); | 
|  |  | 
|  | jumbo->found_start = 1; | 
|  | jumbo->current_size = sp->rxfrag_size; | 
|  | jumbo->skb = skb; | 
|  |  | 
|  | sp->rx_buff[entry] = NULL; | 
|  | dev->last_rx = jiffies; | 
|  | } | 
|  |  | 
|  | static void ipg_nic_rx_with_end(struct net_device *dev, | 
|  | struct ipg_nic_private *sp, | 
|  | struct ipg_rx *rxfd, unsigned entry) | 
|  | { | 
|  | struct ipg_jumbo *jumbo = &sp->jumbo; | 
|  |  | 
|  | /* 1: found error, 0 no error */ | 
|  | if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { | 
|  | struct sk_buff *skb = sp->rx_buff[entry]; | 
|  |  | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | if (jumbo->found_start) { | 
|  | int framelen, endframelen; | 
|  |  | 
|  | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | 
|  |  | 
|  | endframelen = framelen - jumbo->current_size; | 
|  | if (framelen > sp->rxsupport_size) | 
|  | dev_kfree_skb_irq(jumbo->skb); | 
|  | else { | 
|  | memcpy(skb_put(jumbo->skb, endframelen), | 
|  | skb->data, endframelen); | 
|  |  | 
|  | jumbo->skb->protocol = | 
|  | eth_type_trans(jumbo->skb, dev); | 
|  |  | 
|  | jumbo->skb->ip_summed = CHECKSUM_NONE; | 
|  | netif_rx(jumbo->skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | dev->last_rx = jiffies; | 
|  | jumbo->found_start = 0; | 
|  | jumbo->current_size = 0; | 
|  | jumbo->skb = NULL; | 
|  |  | 
|  | ipg_nic_rx_free_skb(dev); | 
|  | } else { | 
|  | dev_kfree_skb_irq(jumbo->skb); | 
|  | jumbo->found_start = 0; | 
|  | jumbo->current_size = 0; | 
|  | jumbo->skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipg_nic_rx_no_start_no_end(struct net_device *dev, | 
|  | struct ipg_nic_private *sp, | 
|  | struct ipg_rx *rxfd, unsigned entry) | 
|  | { | 
|  | struct ipg_jumbo *jumbo = &sp->jumbo; | 
|  |  | 
|  | /* 1: found error, 0 no error */ | 
|  | if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) { | 
|  | struct sk_buff *skb = sp->rx_buff[entry]; | 
|  |  | 
|  | if (skb) { | 
|  | if (jumbo->found_start) { | 
|  | jumbo->current_size += sp->rxfrag_size; | 
|  | if (jumbo->current_size <= sp->rxsupport_size) { | 
|  | memcpy(skb_put(jumbo->skb, | 
|  | sp->rxfrag_size), | 
|  | skb->data, sp->rxfrag_size); | 
|  | } | 
|  | } | 
|  | dev->last_rx = jiffies; | 
|  | ipg_nic_rx_free_skb(dev); | 
|  | } | 
|  | } else { | 
|  | dev_kfree_skb_irq(jumbo->skb); | 
|  | jumbo->found_start = 0; | 
|  | jumbo->current_size = 0; | 
|  | jumbo->skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ipg_nic_rx_jumbo(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | unsigned int curr = sp->rx_current; | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_rx\n"); | 
|  |  | 
|  | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | 
|  | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | 
|  | struct ipg_rx *rxfd = sp->rxd + entry; | 
|  |  | 
|  | if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) | 
|  | break; | 
|  |  | 
|  | switch (ipg_nic_rx_check_frame_type(dev)) { | 
|  | case FRAME_WITH_START_WITH_END: | 
|  | ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry); | 
|  | break; | 
|  | case FRAME_WITH_START: | 
|  | ipg_nic_rx_with_start(dev, sp, rxfd, entry); | 
|  | break; | 
|  | case FRAME_WITH_END: | 
|  | ipg_nic_rx_with_end(dev, sp, rxfd, entry); | 
|  | break; | 
|  | case FRAME_NO_START_NO_END: | 
|  | ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | sp->rx_current = curr; | 
|  |  | 
|  | if (i == IPG_MAXRFDPROCESS_COUNT) { | 
|  | /* There are more RFDs to process, however the | 
|  | * allocated amount of RFD processing time has | 
|  | * expired. Assert Interrupt Requested to make | 
|  | * sure we come back to process the remaining RFDs. | 
|  | */ | 
|  | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | 
|  | } | 
|  |  | 
|  | ipg_nic_rxrestore(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ipg_nic_rx(struct net_device *dev) | 
|  | { | 
|  | /* Transfer received Ethernet frames to higher network layers. */ | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | unsigned int curr = sp->rx_current; | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | struct ipg_rx *rxfd; | 
|  | unsigned int i; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_rx\n"); | 
|  |  | 
|  | #define __RFS_MASK \ | 
|  | cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) | 
|  |  | 
|  | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { | 
|  | unsigned int entry = curr % IPG_RFDLIST_LENGTH; | 
|  | struct sk_buff *skb = sp->rx_buff[entry]; | 
|  | unsigned int framelen; | 
|  |  | 
|  | rxfd = sp->rxd + entry; | 
|  |  | 
|  | if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) | 
|  | break; | 
|  |  | 
|  | /* Get received frame length. */ | 
|  | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; | 
|  |  | 
|  | /* Check for jumbo frame arrival with too small | 
|  | * RXFRAG_SIZE. | 
|  | */ | 
|  | if (framelen > sp->rxfrag_size) { | 
|  | IPG_DEBUG_MSG | 
|  | ("RFS FrameLen > allocated fragment size.\n"); | 
|  |  | 
|  | framelen = sp->rxfrag_size; | 
|  | } | 
|  |  | 
|  | if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & | 
|  | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | | 
|  | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | | 
|  | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) { | 
|  |  | 
|  | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", | 
|  | (unsigned long int) rxfd->rfs); | 
|  |  | 
|  | /* Increment general receive error statistic. */ | 
|  | sp->stats.rx_errors++; | 
|  |  | 
|  | /* Increment detailed receive error statistics. */ | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { | 
|  | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); | 
|  | sp->stats.rx_fifo_errors++; | 
|  | } | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { | 
|  | IPG_DEBUG_MSG("RX runt occured.\n"); | 
|  | sp->stats.rx_length_errors++; | 
|  | } | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ; | 
|  | /* Do nothing, error count handled by a IPG | 
|  | * statistic register. | 
|  | */ | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { | 
|  | IPG_DEBUG_MSG("RX alignment error occured.\n"); | 
|  | sp->stats.rx_frame_errors++; | 
|  | } | 
|  |  | 
|  | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ; | 
|  | /* Do nothing, error count handled by a IPG | 
|  | * statistic register. | 
|  | */ | 
|  |  | 
|  | /* Free the memory associated with the RX | 
|  | * buffer since it is erroneous and we will | 
|  | * not pass it to higher layer processes. | 
|  | */ | 
|  | if (skb) { | 
|  | __le64 info = rxfd->frag_info; | 
|  |  | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(info) & ~IPG_RFI_FRAGLEN, | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | dev_kfree_skb_irq(skb); | 
|  | } | 
|  | } else { | 
|  |  | 
|  | /* Adjust the new buffer length to accomodate the size | 
|  | * of the received frame. | 
|  | */ | 
|  | skb_put(skb, framelen); | 
|  |  | 
|  | /* Set the buffer's protocol field to Ethernet. */ | 
|  | skb->protocol = eth_type_trans(skb, dev); | 
|  |  | 
|  | /* The IPG encountered an error with (or | 
|  | * there were no) IP/TCP/UDP checksums. | 
|  | * This may or may not indicate an invalid | 
|  | * IP/TCP/UDP frame was received. Let the | 
|  | * upper layer decide. | 
|  | */ | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* Hand off frame for higher layer processing. | 
|  | * The function netif_rx() releases the sk_buff | 
|  | * when processing completes. | 
|  | */ | 
|  | netif_rx(skb); | 
|  |  | 
|  | /* Record frame receive time (jiffies = Linux | 
|  | * kernel current time stamp). | 
|  | */ | 
|  | dev->last_rx = jiffies; | 
|  | } | 
|  |  | 
|  | /* Assure RX buffer is not reused by IPG. */ | 
|  | sp->rx_buff[entry] = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are more RFDs to proces and the allocated amount of RFD | 
|  | * processing time has expired, assert Interrupt Requested to make | 
|  | * sure we come back to process the remaining RFDs. | 
|  | */ | 
|  | if (i == IPG_MAXRFDPROCESS_COUNT) | 
|  | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); | 
|  |  | 
|  | #ifdef IPG_DEBUG | 
|  | /* Check if the RFD list contained no receive frame data. */ | 
|  | if (!i) | 
|  | sp->EmptyRFDListCount++; | 
|  | #endif | 
|  | while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) && | 
|  | !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) && | 
|  | (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) { | 
|  | unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; | 
|  |  | 
|  | rxfd = sp->rxd + entry; | 
|  |  | 
|  | IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); | 
|  |  | 
|  | /* An unexpected event, additional code needed to handle | 
|  | * properly. So for the time being, just disregard the | 
|  | * frame. | 
|  | */ | 
|  |  | 
|  | /* Free the memory associated with the RX | 
|  | * buffer since it is erroneous and we will | 
|  | * not pass it to higher layer processes. | 
|  | */ | 
|  | if (sp->rx_buff[entry]) { | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb_irq(sp->rx_buff[entry]); | 
|  | } | 
|  |  | 
|  | /* Assure RX buffer is not reused by IPG. */ | 
|  | sp->rx_buff[entry] = NULL; | 
|  | } | 
|  |  | 
|  | sp->rx_current = curr; | 
|  |  | 
|  | /* Check to see if there are a minimum number of used | 
|  | * RFDs before restoring any (should improve performance.) | 
|  | */ | 
|  | if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) | 
|  | ipg_nic_rxrestore(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ipg_reset_after_host_error(struct work_struct *work) | 
|  | { | 
|  | struct ipg_nic_private *sp = | 
|  | container_of(work, struct ipg_nic_private, task.work); | 
|  | struct net_device *dev = sp->dev; | 
|  |  | 
|  | IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); | 
|  |  | 
|  | /* | 
|  | * Acknowledge HostError interrupt by resetting | 
|  | * IPG DMA and HOST. | 
|  | */ | 
|  | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | 
|  |  | 
|  | init_rfdlist(dev); | 
|  | init_tfdlist(dev); | 
|  |  | 
|  | if (ipg_io_config(dev) < 0) { | 
|  | printk(KERN_INFO "%s: Cannot recover from PCI error.\n", | 
|  | dev->name); | 
|  | schedule_delayed_work(&sp->task, HZ); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) | 
|  | { | 
|  | struct net_device *dev = dev_inst; | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int handled = 0; | 
|  | u16 status; | 
|  |  | 
|  | IPG_DEBUG_MSG("_interrupt_handler\n"); | 
|  |  | 
|  | if (sp->is_jumbo) | 
|  | ipg_nic_rxrestore(dev); | 
|  |  | 
|  | spin_lock(&sp->lock); | 
|  |  | 
|  | /* Get interrupt source information, and acknowledge | 
|  | * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, | 
|  | * IntRequested, MacControlFrame, LinkEvent) interrupts | 
|  | * if issued. Also, all IPG interrupts are disabled by | 
|  | * reading IntStatusAck. | 
|  | */ | 
|  | status = ipg_r16(INT_STATUS_ACK); | 
|  |  | 
|  | IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); | 
|  |  | 
|  | /* Shared IRQ of remove event. */ | 
|  | if (!(status & IPG_IS_RSVD_MASK)) | 
|  | goto out_enable; | 
|  |  | 
|  | handled = 1; | 
|  |  | 
|  | if (unlikely(!netif_running(dev))) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* If RFDListEnd interrupt, restore all used RFDs. */ | 
|  | if (status & IPG_IS_RFD_LIST_END) { | 
|  | IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); | 
|  |  | 
|  | /* The RFD list end indicates an RFD was encountered | 
|  | * with a 0 NextPtr, or with an RFDDone bit set to 1 | 
|  | * (indicating the RFD is not read for use by the | 
|  | * IPG.) Try to restore all RFDs. | 
|  | */ | 
|  | ipg_nic_rxrestore(dev); | 
|  |  | 
|  | #ifdef IPG_DEBUG | 
|  | /* Increment the RFDlistendCount counter. */ | 
|  | sp->RFDlistendCount++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or | 
|  | * IntRequested interrupt, process received frames. */ | 
|  | if ((status & IPG_IS_RX_DMA_PRIORITY) || | 
|  | (status & IPG_IS_RFD_LIST_END) || | 
|  | (status & IPG_IS_RX_DMA_COMPLETE) || | 
|  | (status & IPG_IS_INT_REQUESTED)) { | 
|  | #ifdef IPG_DEBUG | 
|  | /* Increment the RFD list checked counter if interrupted | 
|  | * only to check the RFD list. */ | 
|  | if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | | 
|  | IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & | 
|  | (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | | 
|  | IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | | 
|  | IPG_IS_UPDATE_STATS))) | 
|  | sp->RFDListCheckedCount++; | 
|  | #endif | 
|  |  | 
|  | if (sp->is_jumbo) | 
|  | ipg_nic_rx_jumbo(dev); | 
|  | else | 
|  | ipg_nic_rx(dev); | 
|  | } | 
|  |  | 
|  | /* If TxDMAComplete interrupt, free used TFDs. */ | 
|  | if (status & IPG_IS_TX_DMA_COMPLETE) | 
|  | ipg_nic_txfree(dev); | 
|  |  | 
|  | /* TxComplete interrupts indicate one of numerous actions. | 
|  | * Determine what action to take based on TXSTATUS register. | 
|  | */ | 
|  | if (status & IPG_IS_TX_COMPLETE) | 
|  | ipg_nic_txcleanup(dev); | 
|  |  | 
|  | /* If UpdateStats interrupt, update Linux Ethernet statistics */ | 
|  | if (status & IPG_IS_UPDATE_STATS) | 
|  | ipg_nic_get_stats(dev); | 
|  |  | 
|  | /* If HostError interrupt, reset IPG. */ | 
|  | if (status & IPG_IS_HOST_ERROR) { | 
|  | IPG_DDEBUG_MSG("HostError Interrupt\n"); | 
|  |  | 
|  | schedule_delayed_work(&sp->task, 0); | 
|  | } | 
|  |  | 
|  | /* If LinkEvent interrupt, resolve autonegotiation. */ | 
|  | if (status & IPG_IS_LINK_EVENT) { | 
|  | if (ipg_config_autoneg(dev) < 0) | 
|  | printk(KERN_INFO "%s: Auto-negotiation error.\n", | 
|  | dev->name); | 
|  | } | 
|  |  | 
|  | /* If MACCtrlFrame interrupt, do nothing. */ | 
|  | if (status & IPG_IS_MAC_CTRL_FRAME) | 
|  | IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); | 
|  |  | 
|  | /* If RxComplete interrupt, do nothing. */ | 
|  | if (status & IPG_IS_RX_COMPLETE) | 
|  | IPG_DEBUG_MSG("RxComplete interrupt.\n"); | 
|  |  | 
|  | /* If RxEarly interrupt, do nothing. */ | 
|  | if (status & IPG_IS_RX_EARLY) | 
|  | IPG_DEBUG_MSG("RxEarly interrupt.\n"); | 
|  |  | 
|  | out_enable: | 
|  | /* Re-enable IPG interrupts. */ | 
|  | ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | | 
|  | IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | | 
|  | IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); | 
|  | out_unlock: | 
|  | spin_unlock(&sp->lock); | 
|  |  | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | static void ipg_rx_clear(struct ipg_nic_private *sp) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { | 
|  | if (sp->rx_buff[i]) { | 
|  | struct ipg_rx *rxfd = sp->rxd + i; | 
|  |  | 
|  | dev_kfree_skb_irq(sp->rx_buff[i]); | 
|  | sp->rx_buff[i] = NULL; | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN, | 
|  | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ipg_tx_clear(struct ipg_nic_private *sp) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { | 
|  | if (sp->tx_buff[i]) { | 
|  | struct ipg_tx *txfd = sp->txd + i; | 
|  |  | 
|  | pci_unmap_single(sp->pdev, | 
|  | le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN, | 
|  | sp->tx_buff[i]->len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | dev_kfree_skb_irq(sp->tx_buff[i]); | 
|  |  | 
|  | sp->tx_buff[i] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ipg_nic_open(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | struct pci_dev *pdev = sp->pdev; | 
|  | int rc; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_open\n"); | 
|  |  | 
|  | sp->rx_buf_sz = sp->rxsupport_size; | 
|  |  | 
|  | /* Check for interrupt line conflicts, and request interrupt | 
|  | * line for IPG. | 
|  | * | 
|  | * IMPORTANT: Disable IPG interrupts prior to registering | 
|  | *            IRQ. | 
|  | */ | 
|  | ipg_w16(0x0000, INT_ENABLE); | 
|  |  | 
|  | /* Register the interrupt line to be used by the IPG within | 
|  | * the Linux system. | 
|  | */ | 
|  | rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, | 
|  | dev->name, dev); | 
|  | if (rc < 0) { | 
|  | printk(KERN_INFO "%s: Error when requesting interrupt.\n", | 
|  | dev->name); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dev->irq = pdev->irq; | 
|  |  | 
|  | rc = -ENOMEM; | 
|  |  | 
|  | sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, | 
|  | &sp->rxd_map, GFP_KERNEL); | 
|  | if (!sp->rxd) | 
|  | goto err_free_irq_0; | 
|  |  | 
|  | sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, | 
|  | &sp->txd_map, GFP_KERNEL); | 
|  | if (!sp->txd) | 
|  | goto err_free_rx_1; | 
|  |  | 
|  | rc = init_rfdlist(dev); | 
|  | if (rc < 0) { | 
|  | printk(KERN_INFO "%s: Error during configuration.\n", | 
|  | dev->name); | 
|  | goto err_free_tx_2; | 
|  | } | 
|  |  | 
|  | init_tfdlist(dev); | 
|  |  | 
|  | rc = ipg_io_config(dev); | 
|  | if (rc < 0) { | 
|  | printk(KERN_INFO "%s: Error during configuration.\n", | 
|  | dev->name); | 
|  | goto err_release_tfdlist_3; | 
|  | } | 
|  |  | 
|  | /* Resolve autonegotiation. */ | 
|  | if (ipg_config_autoneg(dev) < 0) | 
|  | printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); | 
|  |  | 
|  | /* initialize JUMBO Frame control variable */ | 
|  | sp->jumbo.found_start = 0; | 
|  | sp->jumbo.current_size = 0; | 
|  | sp->jumbo.skb = NULL; | 
|  |  | 
|  | /* Enable transmit and receive operation of the IPG. */ | 
|  | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & | 
|  | IPG_MC_RSVD_MASK, MAC_CTRL); | 
|  |  | 
|  | netif_start_queue(dev); | 
|  | out: | 
|  | return rc; | 
|  |  | 
|  | err_release_tfdlist_3: | 
|  | ipg_tx_clear(sp); | 
|  | ipg_rx_clear(sp); | 
|  | err_free_tx_2: | 
|  | dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | 
|  | err_free_rx_1: | 
|  | dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | 
|  | err_free_irq_0: | 
|  | free_irq(pdev->irq, dev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static int ipg_nic_stop(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | struct pci_dev *pdev = sp->pdev; | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_stop\n"); | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); | 
|  | IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); | 
|  | IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); | 
|  | IPG_DUMPTFDLIST(dev); | 
|  |  | 
|  | do { | 
|  | (void) ipg_r16(INT_STATUS_ACK); | 
|  |  | 
|  | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); | 
|  |  | 
|  | synchronize_irq(pdev->irq); | 
|  | } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); | 
|  |  | 
|  | ipg_rx_clear(sp); | 
|  |  | 
|  | ipg_tx_clear(sp); | 
|  |  | 
|  | pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); | 
|  | pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); | 
|  |  | 
|  | free_irq(pdev->irq, dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; | 
|  | unsigned long flags; | 
|  | struct ipg_tx *txfd; | 
|  |  | 
|  | IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); | 
|  |  | 
|  | /* If in 10Mbps mode, stop the transmit queue so | 
|  | * no more transmit frames are accepted. | 
|  | */ | 
|  | if (sp->tenmbpsmode) | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | if (sp->reset_current_tfd) { | 
|  | sp->reset_current_tfd = 0; | 
|  | entry = 0; | 
|  | } | 
|  |  | 
|  | txfd = sp->txd + entry; | 
|  |  | 
|  | sp->tx_buff[entry] = skb; | 
|  |  | 
|  | /* Clear all TFC fields, except TFDDONE. */ | 
|  | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); | 
|  |  | 
|  | /* Specify the TFC field within the TFD. */ | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | | 
|  | (IPG_TFC_FRAMEID & sp->tx_current) | | 
|  | (IPG_TFC_FRAGCOUNT & (1 << 24))); | 
|  | /* | 
|  | * 16--17 (WordAlign) <- 3 (disable), | 
|  | * 0--15 (FrameId) <- sp->tx_current, | 
|  | * 24--27 (FragCount) <- 1 | 
|  | */ | 
|  |  | 
|  | /* Request TxComplete interrupts at an interval defined | 
|  | * by the constant IPG_FRAMESBETWEENTXCOMPLETES. | 
|  | * Request TxComplete interrupt for every frame | 
|  | * if in 10Mbps mode to accomodate problem with 10Mbps | 
|  | * processing. | 
|  | */ | 
|  | if (sp->tenmbpsmode) | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); | 
|  | /* Based on compilation option, determine if FCS is to be | 
|  | * appended to transmit frame by IPG. | 
|  | */ | 
|  | if (!(IPG_APPEND_FCS_ON_TX)) | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); | 
|  |  | 
|  | /* Based on compilation option, determine if IP, TCP and/or | 
|  | * UDP checksums are to be added to transmit frame by IPG. | 
|  | */ | 
|  | if (IPG_ADD_IPCHECKSUM_ON_TX) | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); | 
|  |  | 
|  | if (IPG_ADD_TCPCHECKSUM_ON_TX) | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); | 
|  |  | 
|  | if (IPG_ADD_UDPCHECKSUM_ON_TX) | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); | 
|  |  | 
|  | /* Based on compilation option, determine if VLAN tag info is to be | 
|  | * inserted into transmit frame by IPG. | 
|  | */ | 
|  | if (IPG_INSERT_MANUAL_VLAN_TAG) { | 
|  | txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | | 
|  | ((u64) IPG_MANUAL_VLAN_VID << 32) | | 
|  | ((u64) IPG_MANUAL_VLAN_CFI << 44) | | 
|  | ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); | 
|  | } | 
|  |  | 
|  | /* The fragment start location within system memory is defined | 
|  | * by the sk_buff structure's data field. The physical address | 
|  | * of this location within the system's virtual memory space | 
|  | * is determined using the IPG_HOST2BUS_MAP function. | 
|  | */ | 
|  | txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, | 
|  | skb->len, PCI_DMA_TODEVICE)); | 
|  |  | 
|  | /* The length of the fragment within system memory is defined by | 
|  | * the sk_buff structure's len field. | 
|  | */ | 
|  | txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & | 
|  | ((u64) (skb->len & 0xffff) << 48)); | 
|  |  | 
|  | /* Clear the TFDDone bit last to indicate the TFD is ready | 
|  | * for transfer to the IPG. | 
|  | */ | 
|  | txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); | 
|  |  | 
|  | spin_lock_irqsave(&sp->lock, flags); | 
|  |  | 
|  | sp->tx_current++; | 
|  |  | 
|  | mmiowb(); | 
|  |  | 
|  | ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); | 
|  |  | 
|  | if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | spin_unlock_irqrestore(&sp->lock, flags); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static void ipg_set_phy_default_param(unsigned char rev, | 
|  | struct net_device *dev, int phy_address) | 
|  | { | 
|  | unsigned short length; | 
|  | unsigned char revision; | 
|  | unsigned short *phy_param; | 
|  | unsigned short address, value; | 
|  |  | 
|  | phy_param = &DefaultPhyParam[0]; | 
|  | length = *phy_param & 0x00FF; | 
|  | revision = (unsigned char)((*phy_param) >> 8); | 
|  | phy_param++; | 
|  | while (length != 0) { | 
|  | if (rev == revision) { | 
|  | while (length > 1) { | 
|  | address = *phy_param; | 
|  | value = *(phy_param + 1); | 
|  | phy_param += 2; | 
|  | mdio_write(dev, phy_address, address, value); | 
|  | length -= 4; | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | phy_param += length / 2; | 
|  | length = *phy_param & 0x00FF; | 
|  | revision = (unsigned char)((*phy_param) >> 8); | 
|  | phy_param++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int read_eeprom(struct net_device *dev, int eep_addr) | 
|  | { | 
|  | void __iomem *ioaddr = ipg_ioaddr(dev); | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  | u16 value; | 
|  |  | 
|  | value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); | 
|  | ipg_w16(value, EEPROM_CTRL); | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | u16 data; | 
|  |  | 
|  | mdelay(10); | 
|  | data = ipg_r16(EEPROM_CTRL); | 
|  | if (!(data & IPG_EC_EEPROM_BUSY)) { | 
|  | ret = ipg_r16(EEPROM_DATA); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ipg_init_mii(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | struct mii_if_info *mii_if = &sp->mii_if; | 
|  | int phyaddr; | 
|  |  | 
|  | mii_if->dev          = dev; | 
|  | mii_if->mdio_read    = mdio_read; | 
|  | mii_if->mdio_write   = mdio_write; | 
|  | mii_if->phy_id_mask  = 0x1f; | 
|  | mii_if->reg_num_mask = 0x1f; | 
|  |  | 
|  | mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); | 
|  |  | 
|  | if (phyaddr != 0x1f) { | 
|  | u16 mii_phyctrl, mii_1000cr; | 
|  | u8 revisionid = 0; | 
|  |  | 
|  | mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000); | 
|  | mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | | 
|  | GMII_PHY_1000BASETCONTROL_PreferMaster; | 
|  | mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); | 
|  |  | 
|  | mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); | 
|  |  | 
|  | /* Set default phyparam */ | 
|  | pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); | 
|  | ipg_set_phy_default_param(revisionid, dev, phyaddr); | 
|  |  | 
|  | /* Reset PHY */ | 
|  | mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; | 
|  | mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ipg_hw_init(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = sp->ioaddr; | 
|  | unsigned int i; | 
|  | int rc; | 
|  |  | 
|  | /* Read/Write and Reset EEPROM Value */ | 
|  | /* Read LED Mode Configuration from EEPROM */ | 
|  | sp->led_mode = read_eeprom(dev, 6); | 
|  |  | 
|  | /* Reset all functions within the IPG. Do not assert | 
|  | * RST_OUT as not compatible with some PHYs. | 
|  | */ | 
|  | rc = ipg_reset(dev, IPG_RESET_MASK); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | ipg_init_mii(dev); | 
|  |  | 
|  | /* Read MAC Address from EEPROM */ | 
|  | for (i = 0; i < 3; i++) | 
|  | sp->station_addr[i] = read_eeprom(dev, 16 + i); | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); | 
|  |  | 
|  | /* Set station address in ethernet_device structure. */ | 
|  | dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff; | 
|  | dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; | 
|  | dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff; | 
|  | dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; | 
|  | dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff; | 
|  | dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&sp->mii_mutex); | 
|  | rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); | 
|  | mutex_unlock(&sp->mii_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | int err; | 
|  |  | 
|  | /* Function to accomodate changes to Maximum Transfer Unit | 
|  | * (or MTU) of IPG NIC. Cannot use default function since | 
|  | * the default will not allow for MTU > 1500 bytes. | 
|  | */ | 
|  |  | 
|  | IPG_DEBUG_MSG("_nic_change_mtu\n"); | 
|  |  | 
|  | /* | 
|  | * Check that the new MTU value is between 68 (14 byte header, 46 byte | 
|  | * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU. | 
|  | */ | 
|  | if (new_mtu < 68 || new_mtu > 10240) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = ipg_nic_stop(dev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dev->mtu = new_mtu; | 
|  |  | 
|  | sp->max_rxframe_size = new_mtu; | 
|  |  | 
|  | sp->rxfrag_size = new_mtu; | 
|  | if (sp->rxfrag_size > 4088) | 
|  | sp->rxfrag_size = 4088; | 
|  |  | 
|  | sp->rxsupport_size = sp->max_rxframe_size; | 
|  |  | 
|  | if (new_mtu > 0x0600) | 
|  | sp->is_jumbo = true; | 
|  | else | 
|  | sp->is_jumbo = false; | 
|  |  | 
|  | return ipg_nic_open(dev); | 
|  | } | 
|  |  | 
|  | static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&sp->mii_mutex); | 
|  | rc = mii_ethtool_gset(&sp->mii_if, cmd); | 
|  | mutex_unlock(&sp->mii_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&sp->mii_mutex); | 
|  | rc = mii_ethtool_sset(&sp->mii_if, cmd); | 
|  | mutex_unlock(&sp->mii_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int ipg_nway_reset(struct net_device *dev) | 
|  | { | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&sp->mii_mutex); | 
|  | rc = mii_nway_restart(&sp->mii_if); | 
|  | mutex_unlock(&sp->mii_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static struct ethtool_ops ipg_ethtool_ops = { | 
|  | .get_settings = ipg_get_settings, | 
|  | .set_settings = ipg_set_settings, | 
|  | .nway_reset   = ipg_nway_reset, | 
|  | }; | 
|  |  | 
|  | static void __devexit ipg_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata(pdev); | 
|  | struct ipg_nic_private *sp = netdev_priv(dev); | 
|  |  | 
|  | IPG_DEBUG_MSG("_remove\n"); | 
|  |  | 
|  | /* Un-register Ethernet device. */ | 
|  | unregister_netdev(dev); | 
|  |  | 
|  | pci_iounmap(pdev, sp->ioaddr); | 
|  |  | 
|  | pci_release_regions(pdev); | 
|  |  | 
|  | free_netdev(dev); | 
|  | pci_disable_device(pdev); | 
|  | pci_set_drvdata(pdev, NULL); | 
|  | } | 
|  |  | 
|  | static int __devinit ipg_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *id) | 
|  | { | 
|  | unsigned int i = id->driver_data; | 
|  | struct ipg_nic_private *sp; | 
|  | struct net_device *dev; | 
|  | void __iomem *ioaddr; | 
|  | int rc; | 
|  |  | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); | 
|  | if (rc < 0) { | 
|  | rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
|  | if (rc < 0) { | 
|  | printk(KERN_ERR "%s: DMA config failed.\n", | 
|  | pci_name(pdev)); | 
|  | goto err_disable_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize net device. | 
|  | */ | 
|  | dev = alloc_etherdev(sizeof(struct ipg_nic_private)); | 
|  | if (!dev) { | 
|  | printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); | 
|  | rc = -ENOMEM; | 
|  | goto err_disable_0; | 
|  | } | 
|  |  | 
|  | sp = netdev_priv(dev); | 
|  | spin_lock_init(&sp->lock); | 
|  | mutex_init(&sp->mii_mutex); | 
|  |  | 
|  | sp->is_jumbo = IPG_IS_JUMBO; | 
|  | sp->rxfrag_size = IPG_RXFRAG_SIZE; | 
|  | sp->rxsupport_size = IPG_RXSUPPORT_SIZE; | 
|  | sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE; | 
|  |  | 
|  | /* Declare IPG NIC functions for Ethernet device methods. | 
|  | */ | 
|  | dev->open = &ipg_nic_open; | 
|  | dev->stop = &ipg_nic_stop; | 
|  | dev->hard_start_xmit = &ipg_nic_hard_start_xmit; | 
|  | dev->get_stats = &ipg_nic_get_stats; | 
|  | dev->set_multicast_list = &ipg_nic_set_multicast_list; | 
|  | dev->do_ioctl = ipg_ioctl; | 
|  | dev->tx_timeout = ipg_tx_timeout; | 
|  | dev->change_mtu = &ipg_nic_change_mtu; | 
|  |  | 
|  | SET_NETDEV_DEV(dev, &pdev->dev); | 
|  | SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); | 
|  |  | 
|  | rc = pci_request_regions(pdev, DRV_NAME); | 
|  | if (rc) | 
|  | goto err_free_dev_1; | 
|  |  | 
|  | ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); | 
|  | if (!ioaddr) { | 
|  | printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); | 
|  | rc = -EIO; | 
|  | goto err_release_regions_2; | 
|  | } | 
|  |  | 
|  | /* Save the pointer to the PCI device information. */ | 
|  | sp->ioaddr = ioaddr; | 
|  | sp->pdev = pdev; | 
|  | sp->dev = dev; | 
|  |  | 
|  | INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); | 
|  |  | 
|  | pci_set_drvdata(pdev, dev); | 
|  |  | 
|  | rc = ipg_hw_init(dev); | 
|  | if (rc < 0) | 
|  | goto err_unmap_3; | 
|  |  | 
|  | rc = register_netdev(dev); | 
|  | if (rc < 0) | 
|  | goto err_unmap_3; | 
|  |  | 
|  | printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); | 
|  | out: | 
|  | return rc; | 
|  |  | 
|  | err_unmap_3: | 
|  | pci_iounmap(pdev, ioaddr); | 
|  | err_release_regions_2: | 
|  | pci_release_regions(pdev); | 
|  | err_free_dev_1: | 
|  | free_netdev(dev); | 
|  | err_disable_0: | 
|  | pci_disable_device(pdev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static struct pci_driver ipg_pci_driver = { | 
|  | .name		= IPG_DRIVER_NAME, | 
|  | .id_table	= ipg_pci_tbl, | 
|  | .probe		= ipg_probe, | 
|  | .remove		= __devexit_p(ipg_remove), | 
|  | }; | 
|  |  | 
|  | static int __init ipg_init_module(void) | 
|  | { | 
|  | return pci_register_driver(&ipg_pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit ipg_exit_module(void) | 
|  | { | 
|  | pci_unregister_driver(&ipg_pci_driver); | 
|  | } | 
|  |  | 
|  | module_init(ipg_init_module); | 
|  | module_exit(ipg_exit_module); |