| /* Common capabilities, needed by capability.o and root_plug.o | 
 |  * | 
 |  *	This program is free software; you can redistribute it and/or modify | 
 |  *	it under the terms of the GNU General Public License as published by | 
 |  *	the Free Software Foundation; either version 2 of the License, or | 
 |  *	(at your option) any later version. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/capability.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/security.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/netlink.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/xattr.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/securebits.h> | 
 |  | 
 | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	NETLINK_CB(skb).eff_cap = current->cap_effective; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_netlink_recv(struct sk_buff *skb, int cap) | 
 | { | 
 | 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(cap_netlink_recv); | 
 |  | 
 | /* | 
 |  * NOTE WELL: cap_capable() cannot be used like the kernel's capable() | 
 |  * function.  That is, it has the reverse semantics: cap_capable() | 
 |  * returns 0 when a task has a capability, but the kernel's capable() | 
 |  * returns 1 for this case. | 
 |  */ | 
 | int cap_capable (struct task_struct *tsk, int cap) | 
 | { | 
 | 	/* Derived from include/linux/sched.h:capable. */ | 
 | 	if (cap_raised(tsk->cap_effective, cap)) | 
 | 		return 0; | 
 | 	return -EPERM; | 
 | } | 
 |  | 
 | int cap_settime(struct timespec *ts, struct timezone *tz) | 
 | { | 
 | 	if (!capable(CAP_SYS_TIME)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_ptrace_may_access(struct task_struct *child, unsigned int mode) | 
 | { | 
 | 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | 
 | 	if (cap_issubset(child->cap_permitted, current->cap_permitted)) | 
 | 		return 0; | 
 | 	if (capable(CAP_SYS_PTRACE)) | 
 | 		return 0; | 
 | 	return -EPERM; | 
 | } | 
 |  | 
 | int cap_ptrace_traceme(struct task_struct *parent) | 
 | { | 
 | 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */ | 
 | 	if (cap_issubset(current->cap_permitted, parent->cap_permitted)) | 
 | 		return 0; | 
 | 	if (has_capability(parent, CAP_SYS_PTRACE)) | 
 | 		return 0; | 
 | 	return -EPERM; | 
 | } | 
 |  | 
 | int cap_capget (struct task_struct *target, kernel_cap_t *effective, | 
 | 		kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
 | { | 
 | 	/* Derived from kernel/capability.c:sys_capget. */ | 
 | 	*effective = target->cap_effective; | 
 | 	*inheritable = target->cap_inheritable; | 
 | 	*permitted = target->cap_permitted; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 
 |  | 
 | static inline int cap_block_setpcap(struct task_struct *target) | 
 | { | 
 | 	/* | 
 | 	 * No support for remote process capability manipulation with | 
 | 	 * filesystem capability support. | 
 | 	 */ | 
 | 	return (target != current); | 
 | } | 
 |  | 
 | static inline int cap_inh_is_capped(void) | 
 | { | 
 | 	/* | 
 | 	 * Return 1 if changes to the inheritable set are limited | 
 | 	 * to the old permitted set. That is, if the current task | 
 | 	 * does *not* possess the CAP_SETPCAP capability. | 
 | 	 */ | 
 | 	return (cap_capable(current, CAP_SETPCAP) != 0); | 
 | } | 
 |  | 
 | static inline int cap_limit_ptraced_target(void) { return 1; } | 
 |  | 
 | #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */ | 
 |  | 
 | static inline int cap_block_setpcap(struct task_struct *t) { return 0; } | 
 | static inline int cap_inh_is_capped(void) { return 1; } | 
 | static inline int cap_limit_ptraced_target(void) | 
 | { | 
 | 	return !capable(CAP_SETPCAP); | 
 | } | 
 |  | 
 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | 
 |  | 
 | int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, | 
 | 		      kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
 | { | 
 | 	if (cap_block_setpcap(target)) { | 
 | 		return -EPERM; | 
 | 	} | 
 | 	if (cap_inh_is_capped() | 
 | 	    && !cap_issubset(*inheritable, | 
 | 			     cap_combine(target->cap_inheritable, | 
 | 					 current->cap_permitted))) { | 
 | 		/* incapable of using this inheritable set */ | 
 | 		return -EPERM; | 
 | 	} | 
 | 	if (!cap_issubset(*inheritable, | 
 | 			   cap_combine(target->cap_inheritable, | 
 | 				       current->cap_bset))) { | 
 | 		/* no new pI capabilities outside bounding set */ | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	/* verify restrictions on target's new Permitted set */ | 
 | 	if (!cap_issubset (*permitted, | 
 | 			   cap_combine (target->cap_permitted, | 
 | 					current->cap_permitted))) { | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */ | 
 | 	if (!cap_issubset (*effective, *permitted)) { | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, | 
 | 		     kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
 | { | 
 | 	target->cap_effective = *effective; | 
 | 	target->cap_inheritable = *inheritable; | 
 | 	target->cap_permitted = *permitted; | 
 | } | 
 |  | 
 | static inline void bprm_clear_caps(struct linux_binprm *bprm) | 
 | { | 
 | 	cap_clear(bprm->cap_post_exec_permitted); | 
 | 	bprm->cap_effective = false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 
 |  | 
 | int cap_inode_need_killpriv(struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	int error; | 
 |  | 
 | 	if (!inode->i_op || !inode->i_op->getxattr) | 
 | 	       return 0; | 
 |  | 
 | 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); | 
 | 	if (error <= 0) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int cap_inode_killpriv(struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 |  | 
 | 	if (!inode->i_op || !inode->i_op->removexattr) | 
 | 	       return 0; | 
 |  | 
 | 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); | 
 | } | 
 |  | 
 | static inline int cap_from_disk(struct vfs_cap_data *caps, | 
 | 				struct linux_binprm *bprm, unsigned size) | 
 | { | 
 | 	__u32 magic_etc; | 
 | 	unsigned tocopy, i; | 
 | 	int ret; | 
 |  | 
 | 	if (size < sizeof(magic_etc)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	magic_etc = le32_to_cpu(caps->magic_etc); | 
 |  | 
 | 	switch ((magic_etc & VFS_CAP_REVISION_MASK)) { | 
 | 	case VFS_CAP_REVISION_1: | 
 | 		if (size != XATTR_CAPS_SZ_1) | 
 | 			return -EINVAL; | 
 | 		tocopy = VFS_CAP_U32_1; | 
 | 		break; | 
 | 	case VFS_CAP_REVISION_2: | 
 | 		if (size != XATTR_CAPS_SZ_2) | 
 | 			return -EINVAL; | 
 | 		tocopy = VFS_CAP_U32_2; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) { | 
 | 		bprm->cap_effective = true; | 
 | 	} else { | 
 | 		bprm->cap_effective = false; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	CAP_FOR_EACH_U32(i) { | 
 | 		__u32 value_cpu; | 
 |  | 
 | 		if (i >= tocopy) { | 
 | 			/* | 
 | 			 * Legacy capability sets have no upper bits | 
 | 			 */ | 
 | 			bprm->cap_post_exec_permitted.cap[i] = 0; | 
 | 			continue; | 
 | 		} | 
 | 		/* | 
 | 		 * pP' = (X & fP) | (pI & fI) | 
 | 		 */ | 
 | 		value_cpu = le32_to_cpu(caps->data[i].permitted); | 
 | 		bprm->cap_post_exec_permitted.cap[i] = | 
 | 			(current->cap_bset.cap[i] & value_cpu) | | 
 | 			(current->cap_inheritable.cap[i] & | 
 | 				le32_to_cpu(caps->data[i].inheritable)); | 
 | 		if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) { | 
 | 			/* | 
 | 			 * insufficient to execute correctly | 
 | 			 */ | 
 | 			ret = -EPERM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For legacy apps, with no internal support for recognizing they | 
 | 	 * do not have enough capabilities, we return an error if they are | 
 | 	 * missing some "forced" (aka file-permitted) capabilities. | 
 | 	 */ | 
 | 	return bprm->cap_effective ? ret : 0; | 
 | } | 
 |  | 
 | /* Locate any VFS capabilities: */ | 
 | static int get_file_caps(struct linux_binprm *bprm) | 
 | { | 
 | 	struct dentry *dentry; | 
 | 	int rc = 0; | 
 | 	struct vfs_cap_data vcaps; | 
 | 	struct inode *inode; | 
 |  | 
 | 	bprm_clear_caps(bprm); | 
 |  | 
 | 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) | 
 | 		return 0; | 
 |  | 
 | 	dentry = dget(bprm->file->f_dentry); | 
 | 	inode = dentry->d_inode; | 
 | 	if (!inode->i_op || !inode->i_op->getxattr) | 
 | 		goto out; | 
 |  | 
 | 	rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps, | 
 | 				   XATTR_CAPS_SZ); | 
 | 	if (rc == -ENODATA || rc == -EOPNOTSUPP) { | 
 | 		/* no data, that's ok */ | 
 | 		rc = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	if (rc < 0) | 
 | 		goto out; | 
 |  | 
 | 	rc = cap_from_disk(&vcaps, bprm, rc); | 
 | 	if (rc == -EINVAL) | 
 | 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", | 
 | 		       __func__, rc, bprm->filename); | 
 |  | 
 | out: | 
 | 	dput(dentry); | 
 | 	if (rc) | 
 | 		bprm_clear_caps(bprm); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | #else | 
 | int cap_inode_need_killpriv(struct dentry *dentry) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_inode_killpriv(struct dentry *dentry) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int get_file_caps(struct linux_binprm *bprm) | 
 | { | 
 | 	bprm_clear_caps(bprm); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | int cap_bprm_set_security (struct linux_binprm *bprm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = get_file_caps(bprm); | 
 |  | 
 | 	if (!issecure(SECURE_NOROOT)) { | 
 | 		/* | 
 | 		 * To support inheritance of root-permissions and suid-root | 
 | 		 * executables under compatibility mode, we override the | 
 | 		 * capability sets for the file. | 
 | 		 * | 
 | 		 * If only the real uid is 0, we do not set the effective | 
 | 		 * bit. | 
 | 		 */ | 
 | 		if (bprm->e_uid == 0 || current->uid == 0) { | 
 | 			/* pP' = (cap_bset & ~0) | (pI & ~0) */ | 
 | 			bprm->cap_post_exec_permitted = cap_combine( | 
 | 				current->cap_bset, current->cap_inheritable | 
 | 				); | 
 | 			bprm->cap_effective = (bprm->e_uid == 0); | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) | 
 | { | 
 | 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || | 
 | 	    !cap_issubset(bprm->cap_post_exec_permitted, | 
 | 			  current->cap_permitted)) { | 
 | 		set_dumpable(current->mm, suid_dumpable); | 
 | 		current->pdeath_signal = 0; | 
 |  | 
 | 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { | 
 | 			if (!capable(CAP_SETUID)) { | 
 | 				bprm->e_uid = current->uid; | 
 | 				bprm->e_gid = current->gid; | 
 | 			} | 
 | 			if (cap_limit_ptraced_target()) { | 
 | 				bprm->cap_post_exec_permitted = cap_intersect( | 
 | 					bprm->cap_post_exec_permitted, | 
 | 					current->cap_permitted); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	current->suid = current->euid = current->fsuid = bprm->e_uid; | 
 | 	current->sgid = current->egid = current->fsgid = bprm->e_gid; | 
 |  | 
 | 	/* For init, we want to retain the capabilities set | 
 | 	 * in the init_task struct. Thus we skip the usual | 
 | 	 * capability rules */ | 
 | 	if (!is_global_init(current)) { | 
 | 		current->cap_permitted = bprm->cap_post_exec_permitted; | 
 | 		if (bprm->cap_effective) | 
 | 			current->cap_effective = bprm->cap_post_exec_permitted; | 
 | 		else | 
 | 			cap_clear(current->cap_effective); | 
 | 	} | 
 |  | 
 | 	/* AUD: Audit candidate if current->cap_effective is set */ | 
 |  | 
 | 	current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); | 
 | } | 
 |  | 
 | int cap_bprm_secureexec (struct linux_binprm *bprm) | 
 | { | 
 | 	if (current->uid != 0) { | 
 | 		if (bprm->cap_effective) | 
 | 			return 1; | 
 | 		if (!cap_isclear(bprm->cap_post_exec_permitted)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return (current->euid != current->uid || | 
 | 		current->egid != current->gid); | 
 | } | 
 |  | 
 | int cap_inode_setxattr(struct dentry *dentry, const char *name, | 
 | 		       const void *value, size_t size, int flags) | 
 | { | 
 | 	if (!strcmp(name, XATTR_NAME_CAPS)) { | 
 | 		if (!capable(CAP_SETFCAP)) | 
 | 			return -EPERM; | 
 | 		return 0; | 
 | 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
 | 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  && | 
 | 	    !capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_inode_removexattr(struct dentry *dentry, const char *name) | 
 | { | 
 | 	if (!strcmp(name, XATTR_NAME_CAPS)) { | 
 | 		if (!capable(CAP_SETFCAP)) | 
 | 			return -EPERM; | 
 | 		return 0; | 
 | 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
 | 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  && | 
 | 	    !capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* moved from kernel/sys.c. */ | 
 | /*  | 
 |  * cap_emulate_setxuid() fixes the effective / permitted capabilities of | 
 |  * a process after a call to setuid, setreuid, or setresuid. | 
 |  * | 
 |  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of | 
 |  *  {r,e,s}uid != 0, the permitted and effective capabilities are | 
 |  *  cleared. | 
 |  * | 
 |  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective | 
 |  *  capabilities of the process are cleared. | 
 |  * | 
 |  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective | 
 |  *  capabilities are set to the permitted capabilities. | 
 |  * | 
 |  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should  | 
 |  *  never happen. | 
 |  * | 
 |  *  -astor  | 
 |  * | 
 |  * cevans - New behaviour, Oct '99 | 
 |  * A process may, via prctl(), elect to keep its capabilities when it | 
 |  * calls setuid() and switches away from uid==0. Both permitted and | 
 |  * effective sets will be retained. | 
 |  * Without this change, it was impossible for a daemon to drop only some | 
 |  * of its privilege. The call to setuid(!=0) would drop all privileges! | 
 |  * Keeping uid 0 is not an option because uid 0 owns too many vital | 
 |  * files.. | 
 |  * Thanks to Olaf Kirch and Peter Benie for spotting this. | 
 |  */ | 
 | static inline void cap_emulate_setxuid (int old_ruid, int old_euid, | 
 | 					int old_suid) | 
 | { | 
 | 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) && | 
 | 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) && | 
 | 	    !issecure(SECURE_KEEP_CAPS)) { | 
 | 		cap_clear (current->cap_permitted); | 
 | 		cap_clear (current->cap_effective); | 
 | 	} | 
 | 	if (old_euid == 0 && current->euid != 0) { | 
 | 		cap_clear (current->cap_effective); | 
 | 	} | 
 | 	if (old_euid != 0 && current->euid == 0) { | 
 | 		current->cap_effective = current->cap_permitted; | 
 | 	} | 
 | } | 
 |  | 
 | int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, | 
 | 			  int flags) | 
 | { | 
 | 	switch (flags) { | 
 | 	case LSM_SETID_RE: | 
 | 	case LSM_SETID_ID: | 
 | 	case LSM_SETID_RES: | 
 | 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */ | 
 | 		if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 
 | 			cap_emulate_setxuid (old_ruid, old_euid, old_suid); | 
 | 		} | 
 | 		break; | 
 | 	case LSM_SETID_FS: | 
 | 		{ | 
 | 			uid_t old_fsuid = old_ruid; | 
 |  | 
 | 			/* Copied from kernel/sys.c:setfsuid. */ | 
 |  | 
 | 			/* | 
 | 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? | 
 | 			 *          if not, we might be a bit too harsh here. | 
 | 			 */ | 
 |  | 
 | 			if (!issecure (SECURE_NO_SETUID_FIXUP)) { | 
 | 				if (old_fsuid == 0 && current->fsuid != 0) { | 
 | 					current->cap_effective = | 
 | 						cap_drop_fs_set( | 
 | 						    current->cap_effective); | 
 | 				} | 
 | 				if (old_fsuid != 0 && current->fsuid == 0) { | 
 | 					current->cap_effective = | 
 | 						cap_raise_fs_set( | 
 | 						    current->cap_effective, | 
 | 						    current->cap_permitted); | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 
 | /* | 
 |  * Rationale: code calling task_setscheduler, task_setioprio, and | 
 |  * task_setnice, assumes that | 
 |  *   . if capable(cap_sys_nice), then those actions should be allowed | 
 |  *   . if not capable(cap_sys_nice), but acting on your own processes, | 
 |  *   	then those actions should be allowed | 
 |  * This is insufficient now since you can call code without suid, but | 
 |  * yet with increased caps. | 
 |  * So we check for increased caps on the target process. | 
 |  */ | 
 | static int cap_safe_nice(struct task_struct *p) | 
 | { | 
 | 	if (!cap_issubset(p->cap_permitted, current->cap_permitted) && | 
 | 	    !capable(CAP_SYS_NICE)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_task_setscheduler (struct task_struct *p, int policy, | 
 | 			   struct sched_param *lp) | 
 | { | 
 | 	return cap_safe_nice(p); | 
 | } | 
 |  | 
 | int cap_task_setioprio (struct task_struct *p, int ioprio) | 
 | { | 
 | 	return cap_safe_nice(p); | 
 | } | 
 |  | 
 | int cap_task_setnice (struct task_struct *p, int nice) | 
 | { | 
 | 	return cap_safe_nice(p); | 
 | } | 
 |  | 
 | /* | 
 |  * called from kernel/sys.c for prctl(PR_CABSET_DROP) | 
 |  * done without task_capability_lock() because it introduces | 
 |  * no new races - i.e. only another task doing capget() on | 
 |  * this task could get inconsistent info.  There can be no | 
 |  * racing writer bc a task can only change its own caps. | 
 |  */ | 
 | static long cap_prctl_drop(unsigned long cap) | 
 | { | 
 | 	if (!capable(CAP_SETPCAP)) | 
 | 		return -EPERM; | 
 | 	if (!cap_valid(cap)) | 
 | 		return -EINVAL; | 
 | 	cap_lower(current->cap_bset, cap); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else | 
 | int cap_task_setscheduler (struct task_struct *p, int policy, | 
 | 			   struct sched_param *lp) | 
 | { | 
 | 	return 0; | 
 | } | 
 | int cap_task_setioprio (struct task_struct *p, int ioprio) | 
 | { | 
 | 	return 0; | 
 | } | 
 | int cap_task_setnice (struct task_struct *p, int nice) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, | 
 | 		   unsigned long arg4, unsigned long arg5, long *rc_p) | 
 | { | 
 | 	long error = 0; | 
 |  | 
 | 	switch (option) { | 
 | 	case PR_CAPBSET_READ: | 
 | 		if (!cap_valid(arg2)) | 
 | 			error = -EINVAL; | 
 | 		else | 
 | 			error = !!cap_raised(current->cap_bset, arg2); | 
 | 		break; | 
 | #ifdef CONFIG_SECURITY_FILE_CAPABILITIES | 
 | 	case PR_CAPBSET_DROP: | 
 | 		error = cap_prctl_drop(arg2); | 
 | 		break; | 
 |  | 
 | 	/* | 
 | 	 * The next four prctl's remain to assist with transitioning a | 
 | 	 * system from legacy UID=0 based privilege (when filesystem | 
 | 	 * capabilities are not in use) to a system using filesystem | 
 | 	 * capabilities only - as the POSIX.1e draft intended. | 
 | 	 * | 
 | 	 * Note: | 
 | 	 * | 
 | 	 *  PR_SET_SECUREBITS = | 
 | 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED) | 
 | 	 *    | issecure_mask(SECURE_NOROOT) | 
 | 	 *    | issecure_mask(SECURE_NOROOT_LOCKED) | 
 | 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP) | 
 | 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) | 
 | 	 * | 
 | 	 * will ensure that the current process and all of its | 
 | 	 * children will be locked into a pure | 
 | 	 * capability-based-privilege environment. | 
 | 	 */ | 
 | 	case PR_SET_SECUREBITS: | 
 | 		if ((((current->securebits & SECURE_ALL_LOCKS) >> 1) | 
 | 		     & (current->securebits ^ arg2))                  /*[1]*/ | 
 | 		    || ((current->securebits & SECURE_ALL_LOCKS | 
 | 			 & ~arg2))                                    /*[2]*/ | 
 | 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ | 
 | 		    || (cap_capable(current, CAP_SETPCAP) != 0)) {    /*[4]*/ | 
 | 			/* | 
 | 			 * [1] no changing of bits that are locked | 
 | 			 * [2] no unlocking of locks | 
 | 			 * [3] no setting of unsupported bits | 
 | 			 * [4] doing anything requires privilege (go read about | 
 | 			 *     the "sendmail capabilities bug") | 
 | 			 */ | 
 | 			error = -EPERM;  /* cannot change a locked bit */ | 
 | 		} else { | 
 | 			current->securebits = arg2; | 
 | 		} | 
 | 		break; | 
 | 	case PR_GET_SECUREBITS: | 
 | 		error = current->securebits; | 
 | 		break; | 
 |  | 
 | #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */ | 
 |  | 
 | 	case PR_GET_KEEPCAPS: | 
 | 		if (issecure(SECURE_KEEP_CAPS)) | 
 | 			error = 1; | 
 | 		break; | 
 | 	case PR_SET_KEEPCAPS: | 
 | 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ | 
 | 			error = -EINVAL; | 
 | 		else if (issecure(SECURE_KEEP_CAPS_LOCKED)) | 
 | 			error = -EPERM; | 
 | 		else if (arg2) | 
 | 			current->securebits |= issecure_mask(SECURE_KEEP_CAPS); | 
 | 		else | 
 | 			current->securebits &= | 
 | 				~issecure_mask(SECURE_KEEP_CAPS); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* No functionality available - continue with default */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Functionality provided */ | 
 | 	*rc_p = error; | 
 | 	return 1; | 
 | } | 
 |  | 
 | void cap_task_reparent_to_init (struct task_struct *p) | 
 | { | 
 | 	cap_set_init_eff(p->cap_effective); | 
 | 	cap_clear(p->cap_inheritable); | 
 | 	cap_set_full(p->cap_permitted); | 
 | 	p->securebits = SECUREBITS_DEFAULT; | 
 | 	return; | 
 | } | 
 |  | 
 | int cap_syslog (int type) | 
 | { | 
 | 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cap_vm_enough_memory(struct mm_struct *mm, long pages) | 
 | { | 
 | 	int cap_sys_admin = 0; | 
 |  | 
 | 	if (cap_capable(current, CAP_SYS_ADMIN) == 0) | 
 | 		cap_sys_admin = 1; | 
 | 	return __vm_enough_memory(mm, pages, cap_sys_admin); | 
 | } | 
 |  |