[MTD] chips: Clean up trailing white spaces

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c
index 4f6778f3..c40b48d 100644
--- a/drivers/mtd/chips/jedec.c
+++ b/drivers/mtd/chips/jedec.c
@@ -1,6 +1,6 @@
 
 /* JEDEC Flash Interface.
- * This is an older type of interface for self programming flash. It is 
+ * This is an older type of interface for self programming flash. It is
  * commonly use in older AMD chips and is obsolete compared with CFI.
  * It is called JEDEC because the JEDEC association distributes the ID codes
  * for the chips.
@@ -88,9 +88,9 @@
 
 static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
 static void jedec_sync(struct mtd_info *mtd) {};
-static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, 
+static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
 		      size_t *retlen, u_char *buf);
-static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, 
+static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
 			     size_t *retlen, u_char *buf);
 
 static struct mtd_info *jedec_probe(struct map_info *map);
@@ -122,7 +122,7 @@
 
    memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private));
    priv = (struct jedec_private *)&MTD[1];
-   
+
    my_bank_size = map->size;
 
    if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
@@ -131,13 +131,13 @@
       kfree(MTD);
       return NULL;
    }
-   
+
    for (Base = 0; Base < map->size; Base += my_bank_size)
    {
       // Perhaps zero could designate all tests?
       if (map->buswidth == 0)
 	 map->buswidth = 1;
-      
+
       if (map->buswidth == 1){
 	 if (jedec_probe8(map,Base,priv) == 0) {
 		 printk("did recognize jedec chip\n");
@@ -150,7 +150,7 @@
       if (map->buswidth == 4)
 	 jedec_probe32(map,Base,priv);
    }
-   
+
    // Get the biggest sector size
    SectorSize = 0;
    for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
@@ -160,7 +160,7 @@
       if (priv->chips[I].sectorsize > SectorSize)
 	 SectorSize = priv->chips[I].sectorsize;
    }
-   
+
    // Quickly ensure that the other sector sizes are factors of the largest
    for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
    {
@@ -169,9 +169,9 @@
 	 printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
 	 kfree(MTD);
 	 return NULL;
-      }      
+      }
    }
-   
+
    /* Generate a part name that includes the number of different chips and
       other configuration information */
    count = 1;
@@ -181,13 +181,13 @@
    for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
    {
       const struct JEDECTable *JEDEC;
-      
+
       if (priv->chips[I+1].jedec == priv->chips[I].jedec)
       {
 	 count++;
 	 continue;
       }
-      
+
       // Locate the chip in the jedec table
       JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
       if (JEDEC == 0)
@@ -196,11 +196,11 @@
 	 kfree(MTD);
 	 return NULL;
       }
-      
+
       if (Uniq != 0)
 	 strcat(Part,",");
       Uniq++;
-      
+
       if (count != 1)
 	 sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
       else
@@ -208,7 +208,7 @@
       if (strlen(Part) > sizeof(Part)*2/3)
 	 break;
       count = 1;
-   }   
+   }
 
    /* Determine if the chips are organized in a linear fashion, or if there
       are empty banks. Note, the last bank does not count here, only the
@@ -233,7 +233,7 @@
 		   {
 		      if (priv->bank_fill[I] != my_bank_size)
 			 priv->is_banked = 1;
-		      
+
 		      /* This even could be eliminated, but new de-optimized read/write
 			 functions have to be written */
 		      printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
@@ -242,7 +242,7 @@
 			 printk("mtd: Failed. Cannot handle unsymmetric banking\n");
 			 kfree(MTD);
 			 return NULL;
-		      }      
+		      }
 		   }
 	   }
    }
@@ -250,7 +250,7 @@
       strcat(Part,", banked");
 
    //   printk("Part: '%s'\n",Part);
-   
+
    memset(MTD,0,sizeof(*MTD));
   // strlcpy(MTD->name,Part,sizeof(MTD->name));
    MTD->name = map->name;
@@ -291,7 +291,7 @@
 
 /* Take an array of JEDEC numbers that represent interleved flash chips
    and process them. Check to make sure they are good JEDEC numbers, look
-   them up and then add them to the chip list */   
+   them up and then add them to the chip list */
 static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
 		  unsigned long base,struct jedec_private *priv)
 {
@@ -306,16 +306,16 @@
       if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
 	 return 0;
    }
-   
+
    // Finally, just make sure all the chip sizes are the same
    JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
-   
+
    if (JEDEC == 0)
    {
       printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
       return 0;
    }
-   
+
    Size = JEDEC->size;
    SectorSize = JEDEC->sectorsize;
    for (I = 0; I != Count; I++)
@@ -331,7 +331,7 @@
       {
 	 printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
 	 return 0;
-      }      
+      }
    }
 
    // Load the Chips
@@ -345,13 +345,13 @@
    {
       printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
       return 0;
-   }      
-   
+   }
+
    // Add them to the table
    for (J = 0; J != Count; J++)
    {
       unsigned long Bank;
-	 
+
       JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
       priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
       priv->chips[I].size = JEDEC->size;
@@ -364,17 +364,17 @@
       // log2 n :|
       priv->chips[I].addrshift = 0;
       for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
-      
+
       // Determine how filled this bank is.
       Bank = base & (~(my_bank_size-1));
-      if (priv->bank_fill[Bank/my_bank_size] < base + 
+      if (priv->bank_fill[Bank/my_bank_size] < base +
 	  (JEDEC->size << priv->chips[I].addrshift) - Bank)
 	 priv->bank_fill[Bank/my_bank_size] =  base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
       I++;
    }
 
    priv->size += priv->chips[I-1].size*Count;
-	 
+
    return priv->chips[I-1].size;
 }
 
@@ -392,7 +392,7 @@
 // Look for flash using an 8 bit bus interface
 static int jedec_probe8(struct map_info *map,unsigned long base,
 		  struct jedec_private *priv)
-{ 
+{
    #define flread(x) map_read8(map,base+x)
    #define flwrite(v,x) map_write8(map,v,base+x)
 
@@ -410,20 +410,20 @@
    OldVal = flread(base);
    for (I = 0; OldVal != flread(base) && I < 10000; I++)
       OldVal = flread(base);
-   
+
    // Reset the chip
-   flwrite(Reset,0x555); 
-   
+   flwrite(Reset,0x555);
+
    // Send the sequence
    flwrite(AutoSel1,0x555);
    flwrite(AutoSel2,0x2AA);
    flwrite(AutoSel3,0x555);
-   
+
    //  Get the JEDEC numbers
    Mfg[0] = flread(0);
    Id[0] = flread(1);
    //   printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
-      
+
    Size = handle_jedecs(map,Mfg,Id,1,base,priv);
    //   printk("handle_jedecs Size is %x\n",(unsigned int)Size);
    if (Size == 0)
@@ -431,13 +431,13 @@
       flwrite(Reset,0x555);
       return 0;
    }
-   
+
 
    // Reset.
    flwrite(Reset,0x555);
-   
+
    return 1;
-   
+
    #undef flread
    #undef flwrite
 }
@@ -470,17 +470,17 @@
    OldVal = flread(base);
    for (I = 0; OldVal != flread(base) && I < 10000; I++)
       OldVal = flread(base);
-   
+
    // Reset the chip
-   flwrite(Reset,0x555); 
-   
+   flwrite(Reset,0x555);
+
    // Send the sequence
    flwrite(AutoSel1,0x555);
    flwrite(AutoSel2,0x2AA);
    flwrite(AutoSel3,0x555);
-   
+
    // Test #1, JEDEC numbers are readable from 0x??00/0x??01
-   if (flread(0) != flread(0x100) || 
+   if (flread(0) != flread(0x100) ||
        flread(1) != flread(0x101))
    {
       flwrite(Reset,0x555);
@@ -494,14 +494,14 @@
    OldVal = flread(1);
    for (I = 0; I != 4; I++)
       Id[I] = (OldVal >> (I*8));
-      
+
    Size = handle_jedecs(map,Mfg,Id,4,base,priv);
    if (Size == 0)
    {
       flwrite(Reset,0x555);
       return 0;
    }
-   
+
    /* Check if there is address wrap around within a single bank, if this
       returns JEDEC numbers then we assume that it is wrap around. Notice
       we call this routine with the JEDEC return still enabled, if two or
@@ -519,27 +519,27 @@
 
    // Reset.
    flwrite(0xF0F0F0F0,0x555);
-   
+
    return 1;
-   
+
    #undef flread
    #undef flwrite
 }
 
 /* Linear read. */
-static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, 
+static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
 		      size_t *retlen, u_char *buf)
 {
    struct map_info *map = mtd->priv;
-   
+
    map_copy_from(map, buf, from, len);
    *retlen = len;
-   return 0;   
+   return 0;
 }
 
 /* Banked read. Take special care to jump past the holes in the bank
    mapping. This version assumes symetry in the holes.. */
-static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, 
+static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
 			     size_t *retlen, u_char *buf)
 {
    struct map_info *map = mtd->priv;
@@ -555,17 +555,17 @@
       if (priv->bank_fill[0] - offset < len)
 	 get = priv->bank_fill[0] - offset;
 
-      bank /= priv->bank_fill[0];      
+      bank /= priv->bank_fill[0];
       map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
-      
+
       len -= get;
       *retlen += get;
       from += get;
-   }   
-   return 0;   
+   }
+   return 0;
 }
 
-/* Pass the flags value that the flash return before it re-entered read 
+/* Pass the flags value that the flash return before it re-entered read
    mode. */
 static void jedec_flash_failed(unsigned char code)
 {
@@ -579,17 +579,17 @@
    printk("mtd: Programming didn't take\n");
 }
 
-/* This uses the erasure function described in the AMD Flash Handbook, 
+/* This uses the erasure function described in the AMD Flash Handbook,
    it will work for flashes with a fixed sector size only. Flashes with
    a selection of sector sizes (ie the AMD Am29F800B) will need a different
-   routine. This routine tries to parallize erasing multiple chips/sectors 
+   routine. This routine tries to parallize erasing multiple chips/sectors
    where possible */
 static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
 {
    // Does IO to the currently selected chip
    #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
    #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
-   
+
    unsigned long Time = 0;
    unsigned long NoTime = 0;
    unsigned long start = instr->addr, len = instr->len;
@@ -603,7 +603,7 @@
        (len % mtd->erasesize) != 0 ||
        (len/mtd->erasesize) == 0)
       return -EINVAL;
-   
+
    jedec_flash_chip_scan(priv,start,len);
 
    // Start the erase sequence on each chip
@@ -611,16 +611,16 @@
    {
       unsigned long off;
       struct jedec_flash_chip *chip = priv->chips + I;
-      
+
       if (chip->length == 0)
 	 continue;
-      
+
       if (chip->start + chip->length > chip->size)
       {
 	 printk("DIE\n");
 	 return -EIO;
-      }     
-      
+      }
+
       flwrite(0xF0,chip->start + 0x555);
       flwrite(0xAA,chip->start + 0x555);
       flwrite(0x55,chip->start + 0x2AA);
@@ -628,8 +628,8 @@
       flwrite(0xAA,chip->start + 0x555);
       flwrite(0x55,chip->start + 0x2AA);
 
-      /* Once we start selecting the erase sectors the delay between each 
-         command must not exceed 50us or it will immediately start erasing 
+      /* Once we start selecting the erase sectors the delay between each
+         command must not exceed 50us or it will immediately start erasing
          and ignore the other sectors */
       for (off = 0; off < len; off += chip->sectorsize)
       {
@@ -641,19 +641,19 @@
 	 {
 	    printk("mtd: Ack! We timed out the erase timer!\n");
 	    return -EIO;
-	 }       	 
+	 }
       }
-   }   
+   }
 
    /* We could split this into a timer routine and return early, performing
       background erasure.. Maybe later if the need warrents */
 
    /* Poll the flash for erasure completion, specs say this can take as long
-      as 480 seconds to do all the sectors (for a 2 meg flash). 
+      as 480 seconds to do all the sectors (for a 2 meg flash).
       Erasure time is dependent on chip age, temp and wear.. */
-   
+
    /* This being a generic routine assumes a 32 bit bus. It does read32s
-      and bundles interleved chips into the same grouping. This will work 
+      and bundles interleved chips into the same grouping. This will work
       for all bus widths */
    Time = 0;
    NoTime = 0;
@@ -664,20 +664,20 @@
       unsigned todo[4] = {0,0,0,0};
       unsigned todo_left = 0;
       unsigned J;
-      
+
       if (chip->length == 0)
 	 continue;
 
-      /* Find all chips in this data line, realistically this is all 
+      /* Find all chips in this data line, realistically this is all
          or nothing up to the interleve count */
       for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
       {
-	 if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == 
+	 if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
 	     (chip->base & (~((1<<chip->addrshift)-1))))
 	 {
 	    todo_left++;
 	    todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
-	 }	 
+	 }
       }
 
       /*      printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
@@ -687,7 +687,7 @@
       {
 	 __u32 Last[4];
 	 unsigned long Count = 0;
-	 
+
 	 /* During erase bit 7 is held low and bit 6 toggles, we watch this,
 	    should it stop toggling or go high then the erase is completed,
   	    or this is not really flash ;> */
@@ -718,23 +718,23 @@
 	       __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
 	       if (todo[J] == 0)
 		  continue;
-	       
+
 	       if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
 	       {
 //		  printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
 		  continue;
 	       }
-	       
+
 	       if (Byte1 == Byte2)
 	       {
 		  jedec_flash_failed(Byte3);
 		  return -EIO;
 	       }
-	       
+
 	       todo[J] = 0;
 	       todo_left--;
 	    }
-	    
+
 /*	    if (NoTime == 0)
 	       Time += HZ/10 - schedule_timeout(HZ/10);*/
 	    NoTime = 0;
@@ -751,7 +751,7 @@
 	      break;
 	    }
 	    Count++;
-	    
+
 /*	    // Count time, max of 15s per sector (according to AMD)
 	    if (Time > 15*len/mtd->erasesize*HZ)
 	    {
@@ -759,38 +759,38 @@
 	       return -EIO;
 	    }	    */
 	 }
-	 	 
+
 	 // Skip to the next chip if we used chip erase
 	 if (chip->length == chip->size)
 	    off = chip->size;
 	 else
 	    off += chip->sectorsize;
-	 
+
 	 if (off >= chip->length)
 	    break;
 	 NoTime = 1;
       }
-      
+
       for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
       {
 	 if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
 	     (chip->base & (~((1<<chip->addrshift)-1))))
 	    priv->chips[J].length = 0;
-      }      
+      }
    }
-       	    
+
    //printk("done\n");
    instr->state = MTD_ERASE_DONE;
    mtd_erase_callback(instr);
    return 0;
-   
+
    #undef flread
    #undef flwrite
 }
 
 /* This is the simple flash writing function. It writes to every byte, in
    sequence. It takes care of how to properly address the flash if
-   the flash is interleved. It can only be used if all the chips in the 
+   the flash is interleved. It can only be used if all the chips in the
    array are identical!*/
 static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
 		       size_t *retlen, const u_char *buf)
@@ -800,25 +800,25 @@
       of addrshift (interleave index) and then adds the control register index. */
    #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
    #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
-   
+
    struct map_info *map = mtd->priv;
    struct jedec_private *priv = map->fldrv_priv;
    unsigned long base;
    unsigned long off;
    size_t save_len = len;
-   
+
    if (start + len > mtd->size)
       return -EIO;
-   
+
    //printk("Here");
-   
+
    //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
    while (len != 0)
    {
       struct jedec_flash_chip *chip = priv->chips;
       unsigned long bank;
       unsigned long boffset;
-	 
+
       // Compute the base of the flash.
       off = ((unsigned long)start) % (chip->size << chip->addrshift);
       base = start - off;
@@ -828,10 +828,10 @@
       boffset = base & (priv->bank_fill[0]-1);
       bank = (bank/priv->bank_fill[0])*my_bank_size;
       base = bank + boffset;
-      
+
     //  printk("Flasing %X %X %X\n",base,chip->size,len);
      // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
-      
+
       // Loop over this page
       for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
       {
@@ -845,7 +845,7 @@
 	 }
 	 if (((~oldbyte) & *buf) != 0)
 	    printk("mtd: warn: Trying to set a 0 to a 1\n");
-	     
+
 	 // Write
 	 flwrite(0xAA,0x555);
 	 flwrite(0x55,0x2AA);
@@ -854,10 +854,10 @@
 	 Last[0] = map_read8(map,base + off);
 	 Last[1] = map_read8(map,base + off);
 	 Last[2] = map_read8(map,base + off);
-	 
+
 	 /* Wait for the flash to finish the operation. We store the last 4
 	    status bytes that have been retrieved so we can determine why
-	    it failed. The toggle bits keep toggling when there is a 
+	    it failed. The toggle bits keep toggling when there is a
 	    failure */
 	 for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
 	      Count < 10000; Count++)
@@ -866,7 +866,7 @@
 	 {
 	    jedec_flash_failed(Last[(Count - 3) % 4]);
 	    return -EIO;
-	 }	 
+	 }
       }
    }
    *retlen = save_len;
@@ -885,24 +885,24 @@
    // Zero the records
    for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
       priv->chips[I].start = priv->chips[I].length = 0;
-   
+
    // Intersect the region with each chip
    for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
    {
       struct jedec_flash_chip *chip = priv->chips + I;
       unsigned long ByteStart;
       unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
-      
+
       // End is before this chip or the start is after it
       if (start+len < chip->offset ||
 	  ChipEndByte - (1 << chip->addrshift) < start)
 	 continue;
-      
+
       if (start < chip->offset)
       {
 	 ByteStart = chip->offset;
 	 chip->start = 0;
-      }      
+      }
       else
       {
 	 chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;