|  | /* | 
|  | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | 
|  | * policies) | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static inline int rt_overloaded(struct rq *rq) | 
|  | { | 
|  | return atomic_read(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_set_overload(struct rq *rq) | 
|  | { | 
|  | cpu_set(rq->cpu, rq->rd->rto_mask); | 
|  | /* | 
|  | * Make sure the mask is visible before we set | 
|  | * the overload count. That is checked to determine | 
|  | * if we should look at the mask. It would be a shame | 
|  | * if we looked at the mask, but the mask was not | 
|  | * updated yet. | 
|  | */ | 
|  | wmb(); | 
|  | atomic_inc(&rq->rd->rto_count); | 
|  | } | 
|  |  | 
|  | static inline void rt_clear_overload(struct rq *rq) | 
|  | { | 
|  | /* the order here really doesn't matter */ | 
|  | atomic_dec(&rq->rd->rto_count); | 
|  | cpu_clear(rq->cpu, rq->rd->rto_mask); | 
|  | } | 
|  |  | 
|  | static void update_rt_migration(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { | 
|  | if (!rq->rt.overloaded) { | 
|  | rt_set_overload(rq); | 
|  | rq->rt.overloaded = 1; | 
|  | } | 
|  | } else if (rq->rt.overloaded) { | 
|  | rt_clear_overload(rq); | 
|  | rq->rt.overloaded = 0; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return container_of(rt_se, struct task_struct, rt); | 
|  | } | 
|  |  | 
|  | static inline int on_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return !list_empty(&rt_se->run_list); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | if (!rt_rq->tg) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 
|  | list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rq; | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->rt_rq; | 
|  | } | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = rt_se->parent) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return rt_se->my_q; | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se); | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | 
|  |  | 
|  | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = rt_rq->rt_se; | 
|  |  | 
|  | if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { | 
|  | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; | 
|  |  | 
|  | enqueue_rt_entity(rt_se); | 
|  | if (rt_rq->highest_prio < curr->prio) | 
|  | resched_task(curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = rt_rq->rt_se; | 
|  |  | 
|  | if (rt_se && on_rt_rq(rt_se)) | 
|  | dequeue_rt_entity(rt_se); | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | 
|  | } | 
|  |  | 
|  | static int rt_se_boosted(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (rt_rq) | 
|  | return !!rt_rq->rt_nr_boosted; | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | return p->prio != p->normal_prio; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static inline cpumask_t sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_rq(smp_processor_id())->rd->span; | 
|  | } | 
|  | #else | 
|  | static inline cpumask_t sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_map; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &rt_rq->tg->rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_runtime; | 
|  | } | 
|  |  | 
|  | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | 
|  | { | 
|  | return ktime_to_ns(def_rt_bandwidth.rt_period); | 
|  | } | 
|  |  | 
|  | #define for_each_leaf_rt_rq(rt_rq, rq) \ | 
|  | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | 
|  |  | 
|  | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) | 
|  | { | 
|  | return container_of(rt_rq, struct rq, rt); | 
|  | } | 
|  |  | 
|  | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct task_struct *p = rt_task_of(rt_se); | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | return &rq->rt; | 
|  | } | 
|  |  | 
|  | #define for_each_sched_rt_entity(rt_se) \ | 
|  | for (; rt_se; rt_se = NULL) | 
|  |  | 
|  | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | 
|  | { | 
|  | return rt_rq->rt_throttled; | 
|  | } | 
|  |  | 
|  | static inline cpumask_t sched_rt_period_mask(void) | 
|  | { | 
|  | return cpu_online_map; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | 
|  | { | 
|  | return &cpu_rq(cpu)->rt; | 
|  | } | 
|  |  | 
|  | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) | 
|  | { | 
|  | return &def_rt_bandwidth; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) | 
|  | { | 
|  | int i, idle = 1; | 
|  | cpumask_t span; | 
|  |  | 
|  | if (rt_b->rt_runtime == RUNTIME_INF) | 
|  | return 1; | 
|  |  | 
|  | span = sched_rt_period_mask(); | 
|  | for_each_cpu_mask(i, span) { | 
|  | int enqueue = 0; | 
|  | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  |  | 
|  | spin_lock(&rq->lock); | 
|  | if (rt_rq->rt_time) { | 
|  | u64 runtime; | 
|  |  | 
|  | spin_lock(&rt_rq->rt_runtime_lock); | 
|  | runtime = rt_rq->rt_runtime; | 
|  | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | 
|  | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | 
|  | rt_rq->rt_throttled = 0; | 
|  | enqueue = 1; | 
|  | } | 
|  | if (rt_rq->rt_time || rt_rq->rt_nr_running) | 
|  | idle = 0; | 
|  | spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | if (enqueue) | 
|  | sched_rt_rq_enqueue(rt_rq); | 
|  | spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | return idle; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int balance_runtime(struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | 
|  | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | 
|  | int i, weight, more = 0; | 
|  | u64 rt_period; | 
|  |  | 
|  | weight = cpus_weight(rd->span); | 
|  |  | 
|  | spin_lock(&rt_b->rt_runtime_lock); | 
|  | rt_period = ktime_to_ns(rt_b->rt_period); | 
|  | for_each_cpu_mask(i, rd->span) { | 
|  | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); | 
|  | s64 diff; | 
|  |  | 
|  | if (iter == rt_rq) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&iter->rt_runtime_lock); | 
|  | diff = iter->rt_runtime - iter->rt_time; | 
|  | if (diff > 0) { | 
|  | do_div(diff, weight); | 
|  | if (rt_rq->rt_runtime + diff > rt_period) | 
|  | diff = rt_period - rt_rq->rt_runtime; | 
|  | iter->rt_runtime -= diff; | 
|  | rt_rq->rt_runtime += diff; | 
|  | more = 1; | 
|  | if (rt_rq->rt_runtime == rt_period) { | 
|  | spin_unlock(&iter->rt_runtime_lock); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&iter->rt_runtime_lock); | 
|  | } | 
|  | spin_unlock(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | return more; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct rt_rq *rt_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (rt_rq) | 
|  | return rt_rq->highest_prio; | 
|  | #endif | 
|  |  | 
|  | return rt_task_of(rt_se)->prio; | 
|  | } | 
|  |  | 
|  | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) | 
|  | { | 
|  | u64 runtime = sched_rt_runtime(rt_rq); | 
|  |  | 
|  | if (runtime == RUNTIME_INF) | 
|  | return 0; | 
|  |  | 
|  | if (rt_rq->rt_throttled) | 
|  | return rt_rq_throttled(rt_rq); | 
|  |  | 
|  | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (rt_rq->rt_time > runtime) { | 
|  | int more; | 
|  |  | 
|  | spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | more = balance_runtime(rt_rq); | 
|  | spin_lock(&rt_rq->rt_runtime_lock); | 
|  |  | 
|  | if (more) | 
|  | runtime = sched_rt_runtime(rt_rq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (rt_rq->rt_time > runtime) { | 
|  | rt_rq->rt_throttled = 1; | 
|  | if (rt_rq_throttled(rt_rq)) { | 
|  | sched_rt_rq_dequeue(rt_rq); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the current task's runtime statistics. Skip current tasks that | 
|  | * are not in our scheduling class. | 
|  | */ | 
|  | static void update_curr_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *curr = rq->curr; | 
|  | struct sched_rt_entity *rt_se = &curr->rt; | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | u64 delta_exec; | 
|  |  | 
|  | if (!task_has_rt_policy(curr)) | 
|  | return; | 
|  |  | 
|  | delta_exec = rq->clock - curr->se.exec_start; | 
|  | if (unlikely((s64)delta_exec < 0)) | 
|  | delta_exec = 0; | 
|  |  | 
|  | schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); | 
|  |  | 
|  | curr->se.sum_exec_runtime += delta_exec; | 
|  | curr->se.exec_start = rq->clock; | 
|  | cpuacct_charge(curr, delta_exec); | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = rt_rq_of_se(rt_se); | 
|  |  | 
|  | spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_time += delta_exec; | 
|  | if (sched_rt_runtime_exceeded(rt_rq)) | 
|  | resched_task(curr); | 
|  | spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
|  | rt_rq->rt_nr_running++; | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | if (rt_se_prio(rt_se) < rt_rq->highest_prio) | 
|  | rt_rq->highest_prio = rt_se_prio(rt_se); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | if (rt_se->nr_cpus_allowed > 1) { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  | rq->rt.rt_nr_migratory++; | 
|  | } | 
|  |  | 
|  | update_rt_migration(rq_of_rt_rq(rt_rq)); | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted++; | 
|  |  | 
|  | if (rt_rq->tg) | 
|  | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | 
|  | #else | 
|  | start_rt_bandwidth(&def_rt_bandwidth); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline | 
|  | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | 
|  | { | 
|  | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | 
|  | WARN_ON(!rt_rq->rt_nr_running); | 
|  | rt_rq->rt_nr_running--; | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | if (rt_rq->rt_nr_running) { | 
|  | struct rt_prio_array *array; | 
|  |  | 
|  | WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); | 
|  | if (rt_se_prio(rt_se) == rt_rq->highest_prio) { | 
|  | /* recalculate */ | 
|  | array = &rt_rq->active; | 
|  | rt_rq->highest_prio = | 
|  | sched_find_first_bit(array->bitmap); | 
|  | } /* otherwise leave rq->highest prio alone */ | 
|  | } else | 
|  | rt_rq->highest_prio = MAX_RT_PRIO; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | if (rt_se->nr_cpus_allowed > 1) { | 
|  | struct rq *rq = rq_of_rt_rq(rt_rq); | 
|  | rq->rt.rt_nr_migratory--; | 
|  | } | 
|  |  | 
|  | update_rt_migration(rq_of_rt_rq(rt_rq)); | 
|  | #endif /* CONFIG_SMP */ | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | if (rt_se_boosted(rt_se)) | 
|  | rt_rq->rt_nr_boosted--; | 
|  |  | 
|  | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct rt_rq *group_rq = group_rt_rq(rt_se); | 
|  |  | 
|  | if (group_rq && rt_rq_throttled(group_rq)) | 
|  | return; | 
|  |  | 
|  | list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | 
|  | __set_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | inc_rt_tasks(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | list_del_init(&rt_se->run_list); | 
|  | if (list_empty(array->queue + rt_se_prio(rt_se))) | 
|  | __clear_bit(rt_se_prio(rt_se), array->bitmap); | 
|  |  | 
|  | dec_rt_tasks(rt_se, rt_rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the prio of an upper entry depends on the lower | 
|  | * entries, we must remove entries top - down. | 
|  | */ | 
|  | static void dequeue_rt_stack(struct task_struct *p) | 
|  | { | 
|  | struct sched_rt_entity *rt_se, *back = NULL; | 
|  |  | 
|  | rt_se = &p->rt; | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_se->back = back; | 
|  | back = rt_se; | 
|  | } | 
|  |  | 
|  | for (rt_se = back; rt_se; rt_se = rt_se->back) { | 
|  | if (on_rt_rq(rt_se)) | 
|  | dequeue_rt_entity(rt_se); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  |  | 
|  | if (wakeup) | 
|  | rt_se->timeout = 0; | 
|  |  | 
|  | dequeue_rt_stack(p); | 
|  |  | 
|  | /* | 
|  | * enqueue everybody, bottom - up. | 
|  | */ | 
|  | for_each_sched_rt_entity(rt_se) | 
|  | enqueue_rt_entity(rt_se); | 
|  |  | 
|  | inc_cpu_load(rq, p->se.load.weight); | 
|  | } | 
|  |  | 
|  | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | dequeue_rt_stack(p); | 
|  |  | 
|  | /* | 
|  | * re-enqueue all non-empty rt_rq entities. | 
|  | */ | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = group_rt_rq(rt_se); | 
|  | if (rt_rq && rt_rq->rt_nr_running) | 
|  | enqueue_rt_entity(rt_se); | 
|  | } | 
|  |  | 
|  | dec_cpu_load(rq, p->se.load.weight); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the end of the run list without the overhead of dequeue | 
|  | * followed by enqueue. | 
|  | */ | 
|  | static | 
|  | void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | 
|  | { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  |  | 
|  | list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); | 
|  | } | 
|  |  | 
|  | static void requeue_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | struct sched_rt_entity *rt_se = &p->rt; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | for_each_sched_rt_entity(rt_se) { | 
|  | rt_rq = rt_rq_of_se(rt_se); | 
|  | requeue_rt_entity(rt_rq, rt_se); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void yield_task_rt(struct rq *rq) | 
|  | { | 
|  | requeue_task_rt(rq, rq->curr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int find_lowest_rq(struct task_struct *task); | 
|  |  | 
|  | static int select_task_rq_rt(struct task_struct *p, int sync) | 
|  | { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the current task is an RT task, then | 
|  | * try to see if we can wake this RT task up on another | 
|  | * runqueue. Otherwise simply start this RT task | 
|  | * on its current runqueue. | 
|  | * | 
|  | * We want to avoid overloading runqueues. Even if | 
|  | * the RT task is of higher priority than the current RT task. | 
|  | * RT tasks behave differently than other tasks. If | 
|  | * one gets preempted, we try to push it off to another queue. | 
|  | * So trying to keep a preempting RT task on the same | 
|  | * cache hot CPU will force the running RT task to | 
|  | * a cold CPU. So we waste all the cache for the lower | 
|  | * RT task in hopes of saving some of a RT task | 
|  | * that is just being woken and probably will have | 
|  | * cold cache anyway. | 
|  | */ | 
|  | if (unlikely(rt_task(rq->curr)) && | 
|  | (p->rt.nr_cpus_allowed > 1)) { | 
|  | int cpu = find_lowest_rq(p); | 
|  |  | 
|  | return (cpu == -1) ? task_cpu(p) : cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise, just let it ride on the affined RQ and the | 
|  | * post-schedule router will push the preempted task away | 
|  | */ | 
|  | return task_cpu(p); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * Preempt the current task with a newly woken task if needed: | 
|  | */ | 
|  | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, | 
|  | struct rt_rq *rt_rq) | 
|  | { | 
|  | struct rt_prio_array *array = &rt_rq->active; | 
|  | struct sched_rt_entity *next = NULL; | 
|  | struct list_head *queue; | 
|  | int idx; | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | BUG_ON(idx >= MAX_RT_PRIO); | 
|  |  | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, struct sched_rt_entity, run_list); | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static struct task_struct *pick_next_task_rt(struct rq *rq) | 
|  | { | 
|  | struct sched_rt_entity *rt_se; | 
|  | struct task_struct *p; | 
|  | struct rt_rq *rt_rq; | 
|  |  | 
|  | rt_rq = &rq->rt; | 
|  |  | 
|  | if (unlikely(!rt_rq->rt_nr_running)) | 
|  | return NULL; | 
|  |  | 
|  | if (rt_rq_throttled(rt_rq)) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | rt_se = pick_next_rt_entity(rq, rt_rq); | 
|  | BUG_ON(!rt_se); | 
|  | rt_rq = group_rt_rq(rt_se); | 
|  | } while (rt_rq); | 
|  |  | 
|  | p = rt_task_of(rt_se); | 
|  | p->se.exec_start = rq->clock; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  | p->se.exec_start = 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* Only try algorithms three times */ | 
|  | #define RT_MAX_TRIES 3 | 
|  |  | 
|  | static int double_lock_balance(struct rq *this_rq, struct rq *busiest); | 
|  | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); | 
|  |  | 
|  | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && | 
|  | (p->rt.nr_cpus_allowed > 1)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the second highest RT task, NULL otherwise */ | 
|  | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) | 
|  | { | 
|  | struct task_struct *next = NULL; | 
|  | struct sched_rt_entity *rt_se; | 
|  | struct rt_prio_array *array; | 
|  | struct rt_rq *rt_rq; | 
|  | int idx; | 
|  |  | 
|  | for_each_leaf_rt_rq(rt_rq, rq) { | 
|  | array = &rt_rq->active; | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | next_idx: | 
|  | if (idx >= MAX_RT_PRIO) | 
|  | continue; | 
|  | if (next && next->prio < idx) | 
|  | continue; | 
|  | list_for_each_entry(rt_se, array->queue + idx, run_list) { | 
|  | struct task_struct *p = rt_task_of(rt_se); | 
|  | if (pick_rt_task(rq, p, cpu)) { | 
|  | next = p; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!next) { | 
|  | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | 
|  | goto next_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); | 
|  |  | 
|  | static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask) | 
|  | { | 
|  | int       lowest_prio = -1; | 
|  | int       lowest_cpu  = -1; | 
|  | int       count       = 0; | 
|  | int       cpu; | 
|  |  | 
|  | cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * Scan each rq for the lowest prio. | 
|  | */ | 
|  | for_each_cpu_mask(cpu, *lowest_mask) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | /* We look for lowest RT prio or non-rt CPU */ | 
|  | if (rq->rt.highest_prio >= MAX_RT_PRIO) { | 
|  | /* | 
|  | * if we already found a low RT queue | 
|  | * and now we found this non-rt queue | 
|  | * clear the mask and set our bit. | 
|  | * Otherwise just return the queue as is | 
|  | * and the count==1 will cause the algorithm | 
|  | * to use the first bit found. | 
|  | */ | 
|  | if (lowest_cpu != -1) { | 
|  | cpus_clear(*lowest_mask); | 
|  | cpu_set(rq->cpu, *lowest_mask); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* no locking for now */ | 
|  | if ((rq->rt.highest_prio > task->prio) | 
|  | && (rq->rt.highest_prio >= lowest_prio)) { | 
|  | if (rq->rt.highest_prio > lowest_prio) { | 
|  | /* new low - clear old data */ | 
|  | lowest_prio = rq->rt.highest_prio; | 
|  | lowest_cpu = cpu; | 
|  | count = 0; | 
|  | } | 
|  | count++; | 
|  | } else | 
|  | cpu_clear(cpu, *lowest_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear out all the set bits that represent | 
|  | * runqueues that were of higher prio than | 
|  | * the lowest_prio. | 
|  | */ | 
|  | if (lowest_cpu > 0) { | 
|  | /* | 
|  | * Perhaps we could add another cpumask op to | 
|  | * zero out bits. Like cpu_zero_bits(cpumask, nrbits); | 
|  | * Then that could be optimized to use memset and such. | 
|  | */ | 
|  | for_each_cpu_mask(cpu, *lowest_mask) { | 
|  | if (cpu >= lowest_cpu) | 
|  | break; | 
|  | cpu_clear(cpu, *lowest_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) | 
|  | { | 
|  | int first; | 
|  |  | 
|  | /* "this_cpu" is cheaper to preempt than a remote processor */ | 
|  | if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) | 
|  | return this_cpu; | 
|  |  | 
|  | first = first_cpu(*mask); | 
|  | if (first != NR_CPUS) | 
|  | return first; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int find_lowest_rq(struct task_struct *task) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); | 
|  | int this_cpu = smp_processor_id(); | 
|  | int cpu      = task_cpu(task); | 
|  | int count    = find_lowest_cpus(task, lowest_mask); | 
|  |  | 
|  | if (!count) | 
|  | return -1; /* No targets found */ | 
|  |  | 
|  | /* | 
|  | * There is no sense in performing an optimal search if only one | 
|  | * target is found. | 
|  | */ | 
|  | if (count == 1) | 
|  | return first_cpu(*lowest_mask); | 
|  |  | 
|  | /* | 
|  | * At this point we have built a mask of cpus representing the | 
|  | * lowest priority tasks in the system.  Now we want to elect | 
|  | * the best one based on our affinity and topology. | 
|  | * | 
|  | * We prioritize the last cpu that the task executed on since | 
|  | * it is most likely cache-hot in that location. | 
|  | */ | 
|  | if (cpu_isset(cpu, *lowest_mask)) | 
|  | return cpu; | 
|  |  | 
|  | /* | 
|  | * Otherwise, we consult the sched_domains span maps to figure | 
|  | * out which cpu is logically closest to our hot cache data. | 
|  | */ | 
|  | if (this_cpu == cpu) | 
|  | this_cpu = -1; /* Skip this_cpu opt if the same */ | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & SD_WAKE_AFFINE) { | 
|  | cpumask_t domain_mask; | 
|  | int       best_cpu; | 
|  |  | 
|  | cpus_and(domain_mask, sd->span, *lowest_mask); | 
|  |  | 
|  | best_cpu = pick_optimal_cpu(this_cpu, | 
|  | &domain_mask); | 
|  | if (best_cpu != -1) | 
|  | return best_cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * And finally, if there were no matches within the domains | 
|  | * just give the caller *something* to work with from the compatible | 
|  | * locations. | 
|  | */ | 
|  | return pick_optimal_cpu(this_cpu, lowest_mask); | 
|  | } | 
|  |  | 
|  | /* Will lock the rq it finds */ | 
|  | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) | 
|  | { | 
|  | struct rq *lowest_rq = NULL; | 
|  | int tries; | 
|  | int cpu; | 
|  |  | 
|  | for (tries = 0; tries < RT_MAX_TRIES; tries++) { | 
|  | cpu = find_lowest_rq(task); | 
|  |  | 
|  | if ((cpu == -1) || (cpu == rq->cpu)) | 
|  | break; | 
|  |  | 
|  | lowest_rq = cpu_rq(cpu); | 
|  |  | 
|  | /* if the prio of this runqueue changed, try again */ | 
|  | if (double_lock_balance(rq, lowest_rq)) { | 
|  | /* | 
|  | * We had to unlock the run queue. In | 
|  | * the mean time, task could have | 
|  | * migrated already or had its affinity changed. | 
|  | * Also make sure that it wasn't scheduled on its rq. | 
|  | */ | 
|  | if (unlikely(task_rq(task) != rq || | 
|  | !cpu_isset(lowest_rq->cpu, | 
|  | task->cpus_allowed) || | 
|  | task_running(rq, task) || | 
|  | !task->se.on_rq)) { | 
|  |  | 
|  | spin_unlock(&lowest_rq->lock); | 
|  | lowest_rq = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this rq is still suitable use it. */ | 
|  | if (lowest_rq->rt.highest_prio > task->prio) | 
|  | break; | 
|  |  | 
|  | /* try again */ | 
|  | spin_unlock(&lowest_rq->lock); | 
|  | lowest_rq = NULL; | 
|  | } | 
|  |  | 
|  | return lowest_rq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current CPU has more than one RT task, see if the non | 
|  | * running task can migrate over to a CPU that is running a task | 
|  | * of lesser priority. | 
|  | */ | 
|  | static int push_rt_task(struct rq *rq) | 
|  | { | 
|  | struct task_struct *next_task; | 
|  | struct rq *lowest_rq; | 
|  | int ret = 0; | 
|  | int paranoid = RT_MAX_TRIES; | 
|  |  | 
|  | if (!rq->rt.overloaded) | 
|  | return 0; | 
|  |  | 
|  | next_task = pick_next_highest_task_rt(rq, -1); | 
|  | if (!next_task) | 
|  | return 0; | 
|  |  | 
|  | retry: | 
|  | if (unlikely(next_task == rq->curr)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's possible that the next_task slipped in of | 
|  | * higher priority than current. If that's the case | 
|  | * just reschedule current. | 
|  | */ | 
|  | if (unlikely(next_task->prio < rq->curr->prio)) { | 
|  | resched_task(rq->curr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We might release rq lock */ | 
|  | get_task_struct(next_task); | 
|  |  | 
|  | /* find_lock_lowest_rq locks the rq if found */ | 
|  | lowest_rq = find_lock_lowest_rq(next_task, rq); | 
|  | if (!lowest_rq) { | 
|  | struct task_struct *task; | 
|  | /* | 
|  | * find lock_lowest_rq releases rq->lock | 
|  | * so it is possible that next_task has changed. | 
|  | * If it has, then try again. | 
|  | */ | 
|  | task = pick_next_highest_task_rt(rq, -1); | 
|  | if (unlikely(task != next_task) && task && paranoid--) { | 
|  | put_task_struct(next_task); | 
|  | next_task = task; | 
|  | goto retry; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | deactivate_task(rq, next_task, 0); | 
|  | set_task_cpu(next_task, lowest_rq->cpu); | 
|  | activate_task(lowest_rq, next_task, 0); | 
|  |  | 
|  | resched_task(lowest_rq->curr); | 
|  |  | 
|  | spin_unlock(&lowest_rq->lock); | 
|  |  | 
|  | ret = 1; | 
|  | out: | 
|  | put_task_struct(next_task); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: Currently we just use the second highest prio task on | 
|  | *       the queue, and stop when it can't migrate (or there's | 
|  | *       no more RT tasks).  There may be a case where a lower | 
|  | *       priority RT task has a different affinity than the | 
|  | *       higher RT task. In this case the lower RT task could | 
|  | *       possibly be able to migrate where as the higher priority | 
|  | *       RT task could not.  We currently ignore this issue. | 
|  | *       Enhancements are welcome! | 
|  | */ | 
|  | static void push_rt_tasks(struct rq *rq) | 
|  | { | 
|  | /* push_rt_task will return true if it moved an RT */ | 
|  | while (push_rt_task(rq)) | 
|  | ; | 
|  | } | 
|  |  | 
|  | static int pull_rt_task(struct rq *this_rq) | 
|  | { | 
|  | int this_cpu = this_rq->cpu, ret = 0, cpu; | 
|  | struct task_struct *p, *next; | 
|  | struct rq *src_rq; | 
|  |  | 
|  | if (likely(!rt_overloaded(this_rq))) | 
|  | return 0; | 
|  |  | 
|  | next = pick_next_task_rt(this_rq); | 
|  |  | 
|  | for_each_cpu_mask(cpu, this_rq->rd->rto_mask) { | 
|  | if (this_cpu == cpu) | 
|  | continue; | 
|  |  | 
|  | src_rq = cpu_rq(cpu); | 
|  | /* | 
|  | * We can potentially drop this_rq's lock in | 
|  | * double_lock_balance, and another CPU could | 
|  | * steal our next task - hence we must cause | 
|  | * the caller to recalculate the next task | 
|  | * in that case: | 
|  | */ | 
|  | if (double_lock_balance(this_rq, src_rq)) { | 
|  | struct task_struct *old_next = next; | 
|  |  | 
|  | next = pick_next_task_rt(this_rq); | 
|  | if (next != old_next) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are there still pullable RT tasks? | 
|  | */ | 
|  | if (src_rq->rt.rt_nr_running <= 1) | 
|  | goto skip; | 
|  |  | 
|  | p = pick_next_highest_task_rt(src_rq, this_cpu); | 
|  |  | 
|  | /* | 
|  | * Do we have an RT task that preempts | 
|  | * the to-be-scheduled task? | 
|  | */ | 
|  | if (p && (!next || (p->prio < next->prio))) { | 
|  | WARN_ON(p == src_rq->curr); | 
|  | WARN_ON(!p->se.on_rq); | 
|  |  | 
|  | /* | 
|  | * There's a chance that p is higher in priority | 
|  | * than what's currently running on its cpu. | 
|  | * This is just that p is wakeing up and hasn't | 
|  | * had a chance to schedule. We only pull | 
|  | * p if it is lower in priority than the | 
|  | * current task on the run queue or | 
|  | * this_rq next task is lower in prio than | 
|  | * the current task on that rq. | 
|  | */ | 
|  | if (p->prio < src_rq->curr->prio || | 
|  | (next && next->prio < src_rq->curr->prio)) | 
|  | goto skip; | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | deactivate_task(src_rq, p, 0); | 
|  | set_task_cpu(p, this_cpu); | 
|  | activate_task(this_rq, p, 0); | 
|  | /* | 
|  | * We continue with the search, just in | 
|  | * case there's an even higher prio task | 
|  | * in another runqueue. (low likelyhood | 
|  | * but possible) | 
|  | * | 
|  | * Update next so that we won't pick a task | 
|  | * on another cpu with a priority lower (or equal) | 
|  | * than the one we just picked. | 
|  | */ | 
|  | next = p; | 
|  |  | 
|  | } | 
|  | skip: | 
|  | spin_unlock(&src_rq->lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | /* Try to pull RT tasks here if we lower this rq's prio */ | 
|  | if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) | 
|  | pull_rt_task(rq); | 
|  | } | 
|  |  | 
|  | static void post_schedule_rt(struct rq *rq) | 
|  | { | 
|  | /* | 
|  | * If we have more than one rt_task queued, then | 
|  | * see if we can push the other rt_tasks off to other CPUS. | 
|  | * Note we may release the rq lock, and since | 
|  | * the lock was owned by prev, we need to release it | 
|  | * first via finish_lock_switch and then reaquire it here. | 
|  | */ | 
|  | if (unlikely(rq->rt.overloaded)) { | 
|  | spin_lock_irq(&rq->lock); | 
|  | push_rt_tasks(rq); | 
|  | spin_unlock_irq(&rq->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not running and we are not going to reschedule soon, we should | 
|  | * try to push tasks away now | 
|  | */ | 
|  | static void task_wake_up_rt(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | if (!task_running(rq, p) && | 
|  | !test_tsk_need_resched(rq->curr) && | 
|  | rq->rt.overloaded) | 
|  | push_rt_tasks(rq); | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned, int *this_best_prio) | 
|  | { | 
|  | /* don't touch RT tasks */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle) | 
|  | { | 
|  | /* don't touch RT tasks */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_cpus_allowed_rt(struct task_struct *p, | 
|  | const cpumask_t *new_mask) | 
|  | { | 
|  | int weight = cpus_weight(*new_mask); | 
|  |  | 
|  | BUG_ON(!rt_task(p)); | 
|  |  | 
|  | /* | 
|  | * Update the migration status of the RQ if we have an RT task | 
|  | * which is running AND changing its weight value. | 
|  | */ | 
|  | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { | 
|  | rq->rt.rt_nr_migratory++; | 
|  | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { | 
|  | BUG_ON(!rq->rt.rt_nr_migratory); | 
|  | rq->rt.rt_nr_migratory--; | 
|  | } | 
|  |  | 
|  | update_rt_migration(rq); | 
|  | } | 
|  |  | 
|  | p->cpus_allowed    = *new_mask; | 
|  | p->rt.nr_cpus_allowed = weight; | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void join_domain_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_set_overload(rq); | 
|  | } | 
|  |  | 
|  | /* Assumes rq->lock is held */ | 
|  | static void leave_domain_rt(struct rq *rq) | 
|  | { | 
|  | if (rq->rt.overloaded) | 
|  | rt_clear_overload(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When switch from the rt queue, we bring ourselves to a position | 
|  | * that we might want to pull RT tasks from other runqueues. | 
|  | */ | 
|  | static void switched_from_rt(struct rq *rq, struct task_struct *p, | 
|  | int running) | 
|  | { | 
|  | /* | 
|  | * If there are other RT tasks then we will reschedule | 
|  | * and the scheduling of the other RT tasks will handle | 
|  | * the balancing. But if we are the last RT task | 
|  | * we may need to handle the pulling of RT tasks | 
|  | * now. | 
|  | */ | 
|  | if (!rq->rt.rt_nr_running) | 
|  | pull_rt_task(rq); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * When switching a task to RT, we may overload the runqueue | 
|  | * with RT tasks. In this case we try to push them off to | 
|  | * other runqueues. | 
|  | */ | 
|  | static void switched_to_rt(struct rq *rq, struct task_struct *p, | 
|  | int running) | 
|  | { | 
|  | int check_resched = 1; | 
|  |  | 
|  | /* | 
|  | * If we are already running, then there's nothing | 
|  | * that needs to be done. But if we are not running | 
|  | * we may need to preempt the current running task. | 
|  | * If that current running task is also an RT task | 
|  | * then see if we can move to another run queue. | 
|  | */ | 
|  | if (!running) { | 
|  | #ifdef CONFIG_SMP | 
|  | if (rq->rt.overloaded && push_rt_task(rq) && | 
|  | /* Don't resched if we changed runqueues */ | 
|  | rq != task_rq(p)) | 
|  | check_resched = 0; | 
|  | #endif /* CONFIG_SMP */ | 
|  | if (check_resched && p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Priority of the task has changed. This may cause | 
|  | * us to initiate a push or pull. | 
|  | */ | 
|  | static void prio_changed_rt(struct rq *rq, struct task_struct *p, | 
|  | int oldprio, int running) | 
|  | { | 
|  | if (running) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * If our priority decreases while running, we | 
|  | * may need to pull tasks to this runqueue. | 
|  | */ | 
|  | if (oldprio < p->prio) | 
|  | pull_rt_task(rq); | 
|  | /* | 
|  | * If there's a higher priority task waiting to run | 
|  | * then reschedule. Note, the above pull_rt_task | 
|  | * can release the rq lock and p could migrate. | 
|  | * Only reschedule if p is still on the same runqueue. | 
|  | */ | 
|  | if (p->prio > rq->rt.highest_prio && rq->curr == p) | 
|  | resched_task(p); | 
|  | #else | 
|  | /* For UP simply resched on drop of prio */ | 
|  | if (oldprio < p->prio) | 
|  | resched_task(p); | 
|  | #endif /* CONFIG_SMP */ | 
|  | } else { | 
|  | /* | 
|  | * This task is not running, but if it is | 
|  | * greater than the current running task | 
|  | * then reschedule. | 
|  | */ | 
|  | if (p->prio < rq->curr->prio) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void watchdog(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | unsigned long soft, hard; | 
|  |  | 
|  | if (!p->signal) | 
|  | return; | 
|  |  | 
|  | soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; | 
|  | hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; | 
|  |  | 
|  | if (soft != RLIM_INFINITY) { | 
|  | unsigned long next; | 
|  |  | 
|  | p->rt.timeout++; | 
|  | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | 
|  | if (p->rt.timeout > next) | 
|  | p->it_sched_expires = p->se.sum_exec_runtime; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) | 
|  | { | 
|  | update_curr_rt(rq); | 
|  |  | 
|  | watchdog(rq, p); | 
|  |  | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if (p->policy != SCHED_RR) | 
|  | return; | 
|  |  | 
|  | if (--p->rt.time_slice) | 
|  | return; | 
|  |  | 
|  | p->rt.time_slice = DEF_TIMESLICE; | 
|  |  | 
|  | /* | 
|  | * Requeue to the end of queue if we are not the only element | 
|  | * on the queue: | 
|  | */ | 
|  | if (p->rt.run_list.prev != p->rt.run_list.next) { | 
|  | requeue_task_rt(rq, p); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_curr_task_rt(struct rq *rq) | 
|  | { | 
|  | struct task_struct *p = rq->curr; | 
|  |  | 
|  | p->se.exec_start = rq->clock; | 
|  | } | 
|  |  | 
|  | static const struct sched_class rt_sched_class = { | 
|  | .next			= &fair_sched_class, | 
|  | .enqueue_task		= enqueue_task_rt, | 
|  | .dequeue_task		= dequeue_task_rt, | 
|  | .yield_task		= yield_task_rt, | 
|  | #ifdef CONFIG_SMP | 
|  | .select_task_rq		= select_task_rq_rt, | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | .check_preempt_curr	= check_preempt_curr_rt, | 
|  |  | 
|  | .pick_next_task		= pick_next_task_rt, | 
|  | .put_prev_task		= put_prev_task_rt, | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | .load_balance		= load_balance_rt, | 
|  | .move_one_task		= move_one_task_rt, | 
|  | .set_cpus_allowed       = set_cpus_allowed_rt, | 
|  | .join_domain            = join_domain_rt, | 
|  | .leave_domain           = leave_domain_rt, | 
|  | .pre_schedule		= pre_schedule_rt, | 
|  | .post_schedule		= post_schedule_rt, | 
|  | .task_wake_up		= task_wake_up_rt, | 
|  | .switched_from		= switched_from_rt, | 
|  | #endif | 
|  |  | 
|  | .set_curr_task          = set_curr_task_rt, | 
|  | .task_tick		= task_tick_rt, | 
|  |  | 
|  | .prio_changed		= prio_changed_rt, | 
|  | .switched_to		= switched_to_rt, | 
|  | }; |