| /* | 
 |  * Copyright (C) 2001, 2002 Jeff Dike (jdike@karaya.com) | 
 |  * Licensed under the GPL | 
 |  */ | 
 |  | 
 | #include "linux/stddef.h" | 
 | #include "linux/sched.h" | 
 | #include "linux/slab.h" | 
 | #include "linux/types.h" | 
 | #include "linux/errno.h" | 
 | #include "asm/uaccess.h" | 
 | #include "asm/smp.h" | 
 | #include "asm/ldt.h" | 
 | #include "asm/unistd.h" | 
 | #include "choose-mode.h" | 
 | #include "kern.h" | 
 | #include "mode_kern.h" | 
 | #include "os.h" | 
 |  | 
 | extern int modify_ldt(int func, void *ptr, unsigned long bytecount); | 
 |  | 
 | #ifdef CONFIG_MODE_TT | 
 |  | 
 | static long do_modify_ldt_tt(int func, void __user *ptr, | 
 | 			      unsigned long bytecount) | 
 | { | 
 | 	struct user_desc info; | 
 | 	int res = 0; | 
 | 	void *buf = NULL; | 
 | 	void *p = NULL; /* What we pass to host. */ | 
 |  | 
 | 	switch(func){ | 
 | 	case 1: | 
 | 	case 0x11: /* write_ldt */ | 
 | 		/* Do this check now to avoid overflows. */ | 
 | 		if (bytecount != sizeof(struct user_desc)) { | 
 | 			res = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if(copy_from_user(&info, ptr, sizeof(info))) { | 
 | 			res = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		p = &info; | 
 | 		break; | 
 | 	case 0: | 
 | 	case 2: /* read_ldt */ | 
 |  | 
 | 		/* The use of info avoids kmalloc on the write case, not on the | 
 | 		 * read one. */ | 
 | 		buf = kmalloc(bytecount, GFP_KERNEL); | 
 | 		if (!buf) { | 
 | 			res = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		p = buf; | 
 | 		break; | 
 | 	default: | 
 | 		res = -ENOSYS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	res = modify_ldt(func, p, bytecount); | 
 | 	if(res < 0) | 
 | 		goto out; | 
 |  | 
 | 	switch(func){ | 
 | 	case 0: | 
 | 	case 2: | 
 | 		/* Modify_ldt was for reading and returned the number of read | 
 | 		 * bytes.*/ | 
 | 		if(copy_to_user(ptr, p, res)) | 
 | 			res = -EFAULT; | 
 | 		break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(buf); | 
 | 	return res; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MODE_SKAS | 
 |  | 
 | #include "skas.h" | 
 | #include "skas_ptrace.h" | 
 | #include "asm/mmu_context.h" | 
 | #include "proc_mm.h" | 
 |  | 
 | long write_ldt_entry(struct mm_id * mm_idp, int func, struct user_desc * desc, | 
 | 		     void **addr, int done) | 
 | { | 
 | 	long res; | 
 |  | 
 | 	if(proc_mm){ | 
 | 		/* This is a special handling for the case, that the mm to | 
 | 		 * modify isn't current->active_mm. | 
 | 		 * If this is called directly by modify_ldt, | 
 | 		 *     (current->active_mm->context.skas.u == mm_idp) | 
 | 		 * will be true. So no call to switch_mm_skas(mm_idp) is done. | 
 | 		 * If this is called in case of init_new_ldt or PTRACE_LDT, | 
 | 		 * mm_idp won't belong to current->active_mm, but child->mm. | 
 | 		 * So we need to switch child's mm into our userspace, then | 
 | 		 * later switch back. | 
 | 		 * | 
 | 		 * Note: I'm unsure: should interrupts be disabled here? | 
 | 		 */ | 
 | 		if(!current->active_mm || current->active_mm == &init_mm || | 
 | 		   mm_idp != ¤t->active_mm->context.skas.id) | 
 | 			switch_mm_skas(mm_idp); | 
 | 	} | 
 |  | 
 | 	if(ptrace_ldt) { | 
 | 		struct ptrace_ldt ldt_op = (struct ptrace_ldt) { | 
 | 			.func = func, | 
 | 			.ptr = desc, | 
 | 			.bytecount = sizeof(*desc)}; | 
 | 		u32 cpu; | 
 | 		int pid; | 
 |  | 
 | 		if(!proc_mm) | 
 | 			pid = mm_idp->u.pid; | 
 | 		else { | 
 | 			cpu = get_cpu(); | 
 | 			pid = userspace_pid[cpu]; | 
 | 		} | 
 |  | 
 | 		res = os_ptrace_ldt(pid, 0, (unsigned long) &ldt_op); | 
 |  | 
 | 		if(proc_mm) | 
 | 			put_cpu(); | 
 | 	} | 
 | 	else { | 
 | 		void *stub_addr; | 
 | 		res = syscall_stub_data(mm_idp, (unsigned long *)desc, | 
 | 					(sizeof(*desc) + sizeof(long) - 1) & | 
 | 					    ~(sizeof(long) - 1), | 
 | 					addr, &stub_addr); | 
 | 		if(!res){ | 
 | 			unsigned long args[] = { func, | 
 | 						 (unsigned long)stub_addr, | 
 | 						 sizeof(*desc), | 
 | 						 0, 0, 0 }; | 
 | 			res = run_syscall_stub(mm_idp, __NR_modify_ldt, args, | 
 | 					       0, addr, done); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if(proc_mm){ | 
 | 		/* This is the second part of special handling, that makes | 
 | 		 * PTRACE_LDT possible to implement. | 
 | 		 */ | 
 | 		if(current->active_mm && current->active_mm != &init_mm && | 
 | 		   mm_idp != ¤t->active_mm->context.skas.id) | 
 | 			switch_mm_skas(¤t->active_mm->context.skas.id); | 
 | 	} | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static long read_ldt_from_host(void __user * ptr, unsigned long bytecount) | 
 | { | 
 | 	int res, n; | 
 | 	struct ptrace_ldt ptrace_ldt = (struct ptrace_ldt) { | 
 | 			.func = 0, | 
 | 			.bytecount = bytecount, | 
 | 			.ptr = (void *)kmalloc(bytecount, GFP_KERNEL)}; | 
 | 	u32 cpu; | 
 |  | 
 | 	if(ptrace_ldt.ptr == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* This is called from sys_modify_ldt only, so userspace_pid gives | 
 | 	 * us the right number | 
 | 	 */ | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	res = os_ptrace_ldt(userspace_pid[cpu], 0, (unsigned long) &ptrace_ldt); | 
 | 	put_cpu(); | 
 | 	if(res < 0) | 
 | 		goto out; | 
 |  | 
 | 	n = copy_to_user(ptr, ptrace_ldt.ptr, res); | 
 | 	if(n != 0) | 
 | 		res = -EFAULT; | 
 |  | 
 |   out: | 
 | 	kfree(ptrace_ldt.ptr); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * In skas mode, we hold our own ldt data in UML. | 
 |  * Thus, the code implementing sys_modify_ldt_skas | 
 |  * is very similar to (and mostly stolen from) sys_modify_ldt | 
 |  * for arch/i386/kernel/ldt.c | 
 |  * The routines copied and modified in part are: | 
 |  * - read_ldt | 
 |  * - read_default_ldt | 
 |  * - write_ldt | 
 |  * - sys_modify_ldt_skas | 
 |  */ | 
 |  | 
 | static int read_ldt(void __user * ptr, unsigned long bytecount) | 
 | { | 
 | 	int i, err = 0; | 
 | 	unsigned long size; | 
 | 	uml_ldt_t * ldt = ¤t->mm->context.skas.ldt; | 
 |  | 
 | 	if(!ldt->entry_count) | 
 | 		goto out; | 
 | 	if(bytecount > LDT_ENTRY_SIZE*LDT_ENTRIES) | 
 | 		bytecount = LDT_ENTRY_SIZE*LDT_ENTRIES; | 
 | 	err = bytecount; | 
 |  | 
 | 	if(ptrace_ldt){ | 
 | 		return read_ldt_from_host(ptr, bytecount); | 
 | 	} | 
 |  | 
 | 	down(&ldt->semaphore); | 
 | 	if(ldt->entry_count <= LDT_DIRECT_ENTRIES){ | 
 | 		size = LDT_ENTRY_SIZE*LDT_DIRECT_ENTRIES; | 
 | 		if(size > bytecount) | 
 | 			size = bytecount; | 
 | 		if(copy_to_user(ptr, ldt->u.entries, size)) | 
 | 			err = -EFAULT; | 
 | 		bytecount -= size; | 
 | 		ptr += size; | 
 | 	} | 
 | 	else { | 
 | 		for(i=0; i<ldt->entry_count/LDT_ENTRIES_PER_PAGE && bytecount; | 
 | 			 i++){ | 
 | 			size = PAGE_SIZE; | 
 | 			if(size > bytecount) | 
 | 				size = bytecount; | 
 | 			if(copy_to_user(ptr, ldt->u.pages[i], size)){ | 
 | 				err = -EFAULT; | 
 | 				break; | 
 | 			} | 
 | 			bytecount -= size; | 
 | 			ptr += size; | 
 | 		} | 
 | 	} | 
 | 	up(&ldt->semaphore); | 
 |  | 
 | 	if(bytecount == 0 || err == -EFAULT) | 
 | 		goto out; | 
 |  | 
 | 	if(clear_user(ptr, bytecount)) | 
 | 		err = -EFAULT; | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int read_default_ldt(void __user * ptr, unsigned long bytecount) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if(bytecount > 5*LDT_ENTRY_SIZE) | 
 | 		bytecount = 5*LDT_ENTRY_SIZE; | 
 |  | 
 | 	err = bytecount; | 
 | 	/* UML doesn't support lcall7 and lcall27. | 
 | 	 * So, we don't really have a default ldt, but emulate | 
 | 	 * an empty ldt of common host default ldt size. | 
 | 	 */ | 
 | 	if(clear_user(ptr, bytecount)) | 
 | 		err = -EFAULT; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int write_ldt(void __user * ptr, unsigned long bytecount, int func) | 
 | { | 
 | 	uml_ldt_t * ldt = ¤t->mm->context.skas.ldt; | 
 | 	struct mm_id * mm_idp = ¤t->mm->context.skas.id; | 
 | 	int i, err; | 
 | 	struct user_desc ldt_info; | 
 | 	struct ldt_entry entry0, *ldt_p; | 
 | 	void *addr = NULL; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if(bytecount != sizeof(ldt_info)) | 
 | 		goto out; | 
 | 	err = -EFAULT; | 
 | 	if(copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) | 
 | 		goto out; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if(ldt_info.entry_number >= LDT_ENTRIES) | 
 | 		goto out; | 
 | 	if(ldt_info.contents == 3){ | 
 | 		if (func == 1) | 
 | 			goto out; | 
 | 		if (ldt_info.seg_not_present == 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 |         if(!ptrace_ldt) | 
 |                 down(&ldt->semaphore); | 
 |  | 
 | 	err = write_ldt_entry(mm_idp, func, &ldt_info, &addr, 1); | 
 | 	if(err) | 
 | 		goto out_unlock; | 
 |         else if(ptrace_ldt) { | 
 | 	/* With PTRACE_LDT available, this is used as a flag only */ | 
 |                 ldt->entry_count = 1; | 
 |                 goto out; | 
 |         } | 
 |  | 
 | 	if(ldt_info.entry_number >= ldt->entry_count && | 
 | 	   ldt_info.entry_number >= LDT_DIRECT_ENTRIES){ | 
 | 		for(i=ldt->entry_count/LDT_ENTRIES_PER_PAGE; | 
 | 		    i*LDT_ENTRIES_PER_PAGE <= ldt_info.entry_number; | 
 | 		    i++){ | 
 | 			if(i == 0) | 
 | 				memcpy(&entry0, ldt->u.entries, | 
 | 				       sizeof(entry0)); | 
 | 			ldt->u.pages[i] = (struct ldt_entry *) | 
 | 				__get_free_page(GFP_KERNEL|__GFP_ZERO); | 
 | 			if(!ldt->u.pages[i]){ | 
 | 				err = -ENOMEM; | 
 | 				/* Undo the change in host */ | 
 | 				memset(&ldt_info, 0, sizeof(ldt_info)); | 
 | 				write_ldt_entry(mm_idp, 1, &ldt_info, &addr, 1); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 			if(i == 0) { | 
 | 				memcpy(ldt->u.pages[0], &entry0, | 
 | 				       sizeof(entry0)); | 
 | 				memcpy(ldt->u.pages[0]+1, ldt->u.entries+1, | 
 | 				       sizeof(entry0)*(LDT_DIRECT_ENTRIES-1)); | 
 | 			} | 
 | 			ldt->entry_count = (i + 1) * LDT_ENTRIES_PER_PAGE; | 
 | 		} | 
 | 	} | 
 | 	if(ldt->entry_count <= ldt_info.entry_number) | 
 | 		ldt->entry_count = ldt_info.entry_number + 1; | 
 |  | 
 | 	if(ldt->entry_count <= LDT_DIRECT_ENTRIES) | 
 | 		ldt_p = ldt->u.entries + ldt_info.entry_number; | 
 | 	else | 
 | 		ldt_p = ldt->u.pages[ldt_info.entry_number/LDT_ENTRIES_PER_PAGE] + | 
 | 			ldt_info.entry_number%LDT_ENTRIES_PER_PAGE; | 
 |  | 
 | 	if(ldt_info.base_addr == 0 && ldt_info.limit == 0 && | 
 | 	   (func == 1 || LDT_empty(&ldt_info))){ | 
 | 		ldt_p->a = 0; | 
 | 		ldt_p->b = 0; | 
 | 	} | 
 | 	else{ | 
 | 		if (func == 1) | 
 | 			ldt_info.useable = 0; | 
 | 		ldt_p->a = LDT_entry_a(&ldt_info); | 
 | 		ldt_p->b = LDT_entry_b(&ldt_info); | 
 | 	} | 
 | 	err = 0; | 
 |  | 
 | out_unlock: | 
 | 	up(&ldt->semaphore); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static long do_modify_ldt_skas(int func, void __user *ptr, | 
 | 			       unsigned long bytecount) | 
 | { | 
 | 	int ret = -ENOSYS; | 
 |  | 
 | 	switch (func) { | 
 | 		case 0: | 
 | 			ret = read_ldt(ptr, bytecount); | 
 | 			break; | 
 | 		case 1: | 
 | 		case 0x11: | 
 | 			ret = write_ldt(ptr, bytecount, func); | 
 | 			break; | 
 | 		case 2: | 
 | 			ret = read_default_ldt(ptr, bytecount); | 
 | 			break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | short dummy_list[9] = {0, -1}; | 
 | short * host_ldt_entries = NULL; | 
 |  | 
 | void ldt_get_host_info(void) | 
 | { | 
 | 	long ret; | 
 | 	struct ldt_entry * ldt; | 
 | 	int i, size, k, order; | 
 |  | 
 | 	host_ldt_entries = dummy_list+1; | 
 |  | 
 | 	for(i = LDT_PAGES_MAX-1, order=0; i; i>>=1, order++); | 
 |  | 
 | 	ldt = (struct ldt_entry *) | 
 | 	      __get_free_pages(GFP_KERNEL|__GFP_ZERO, order); | 
 | 	if(ldt == NULL) { | 
 | 		printk("ldt_get_host_info: couldn't allocate buffer for host ldt\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = modify_ldt(0, ldt, (1<<order)*PAGE_SIZE); | 
 | 	if(ret < 0) { | 
 | 		printk("ldt_get_host_info: couldn't read host ldt\n"); | 
 | 		goto out_free; | 
 | 	} | 
 | 	if(ret == 0) { | 
 | 		/* default_ldt is active, simply write an empty entry 0 */ | 
 | 		host_ldt_entries = dummy_list; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	for(i=0, size=0; i<ret/LDT_ENTRY_SIZE; i++){ | 
 | 		if(ldt[i].a != 0 || ldt[i].b != 0) | 
 | 			size++; | 
 | 	} | 
 |  | 
 | 	if(size < ARRAY_SIZE(dummy_list)) | 
 | 		host_ldt_entries = dummy_list; | 
 | 	else { | 
 | 		size = (size + 1) * sizeof(dummy_list[0]); | 
 | 		host_ldt_entries = (short *)kmalloc(size, GFP_KERNEL); | 
 | 		if(host_ldt_entries == NULL) { | 
 | 			printk("ldt_get_host_info: couldn't allocate host ldt list\n"); | 
 | 			goto out_free; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for(i=0, k=0; i<ret/LDT_ENTRY_SIZE; i++){ | 
 | 		if(ldt[i].a != 0 || ldt[i].b != 0) { | 
 | 			host_ldt_entries[k++] = i; | 
 | 		} | 
 | 	} | 
 | 	host_ldt_entries[k] = -1; | 
 |  | 
 | out_free: | 
 | 	free_pages((unsigned long)ldt, order); | 
 | } | 
 |  | 
 | long init_new_ldt(struct mmu_context_skas * new_mm, | 
 | 		  struct mmu_context_skas * from_mm) | 
 | { | 
 | 	struct user_desc desc; | 
 | 	short * num_p; | 
 | 	int i; | 
 | 	long page, err=0; | 
 | 	void *addr = NULL; | 
 | 	struct proc_mm_op copy; | 
 |  | 
 |  | 
 | 	if(!ptrace_ldt) | 
 | 		init_MUTEX(&new_mm->ldt.semaphore); | 
 |  | 
 | 	if(!from_mm){ | 
 | 		memset(&desc, 0, sizeof(desc)); | 
 | 		/* | 
 | 		 * We have to initialize a clean ldt. | 
 | 		 */ | 
 | 		if(proc_mm) { | 
 | 			/* | 
 | 			 * If the new mm was created using proc_mm, host's | 
 | 			 * default-ldt currently is assigned, which normally | 
 | 			 * contains the call-gates for lcall7 and lcall27. | 
 | 			 * To remove these gates, we simply write an empty | 
 | 			 * entry as number 0 to the host. | 
 | 			 */ | 
 | 			err = write_ldt_entry(&new_mm->id, 1, &desc, | 
 | 					      &addr, 1); | 
 | 		} | 
 | 		else{ | 
 | 			/* | 
 | 			 * Now we try to retrieve info about the ldt, we | 
 | 			 * inherited from the host. All ldt-entries found | 
 | 			 * will be reset in the following loop | 
 | 			 */ | 
 | 			if(host_ldt_entries == NULL) | 
 | 				ldt_get_host_info(); | 
 | 			for(num_p=host_ldt_entries; *num_p != -1; num_p++){ | 
 | 				desc.entry_number = *num_p; | 
 | 				err = write_ldt_entry(&new_mm->id, 1, &desc, | 
 | 						      &addr, *(num_p + 1) == -1); | 
 | 				if(err) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 		new_mm->ldt.entry_count = 0; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if(proc_mm){ | 
 | 		/* We have a valid from_mm, so we now have to copy the LDT of | 
 | 		 * from_mm to new_mm, because using proc_mm an new mm with | 
 | 		 * an empty/default LDT was created in new_mm() | 
 | 		 */ | 
 | 		copy = ((struct proc_mm_op) { .op 	= MM_COPY_SEGMENTS, | 
 | 					      .u 	= | 
 | 					      { .copy_segments = | 
 | 							from_mm->id.u.mm_fd } } ); | 
 | 		i = os_write_file(new_mm->id.u.mm_fd, ©, sizeof(copy)); | 
 | 		if(i != sizeof(copy)) | 
 | 			printk("new_mm : /proc/mm copy_segments failed, " | 
 | 			       "err = %d\n", -i); | 
 | 	} | 
 |  | 
 | 	if(!ptrace_ldt) { | 
 | 		/* Our local LDT is used to supply the data for | 
 | 		 * modify_ldt(READLDT), if PTRACE_LDT isn't available, | 
 | 		 * i.e., we have to use the stub for modify_ldt, which | 
 | 		 * can't handle the big read buffer of up to 64kB. | 
 | 		 */ | 
 | 		down(&from_mm->ldt.semaphore); | 
 | 		if(from_mm->ldt.entry_count <= LDT_DIRECT_ENTRIES){ | 
 | 			memcpy(new_mm->ldt.u.entries, from_mm->ldt.u.entries, | 
 | 			       sizeof(new_mm->ldt.u.entries)); | 
 | 		} | 
 | 		else{ | 
 | 			i = from_mm->ldt.entry_count / LDT_ENTRIES_PER_PAGE; | 
 | 			while(i-->0){ | 
 | 				page = __get_free_page(GFP_KERNEL|__GFP_ZERO); | 
 | 				if (!page){ | 
 | 					err = -ENOMEM; | 
 | 					break; | 
 | 				} | 
 | 				new_mm->ldt.u.pages[i] = | 
 | 					(struct ldt_entry *) page; | 
 | 				memcpy(new_mm->ldt.u.pages[i], | 
 | 				       from_mm->ldt.u.pages[i], PAGE_SIZE); | 
 | 			} | 
 | 		} | 
 | 		new_mm->ldt.entry_count = from_mm->ldt.entry_count; | 
 | 		up(&from_mm->ldt.semaphore); | 
 | 	} | 
 |  | 
 |     out: | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | void free_ldt(struct mmu_context_skas * mm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if(!ptrace_ldt && mm->ldt.entry_count > LDT_DIRECT_ENTRIES){ | 
 | 		i = mm->ldt.entry_count / LDT_ENTRIES_PER_PAGE; | 
 | 		while(i-- > 0){ | 
 | 			free_page((long )mm->ldt.u.pages[i]); | 
 | 		} | 
 | 	} | 
 | 	mm->ldt.entry_count = 0; | 
 | } | 
 | #endif | 
 |  | 
 | int sys_modify_ldt(int func, void __user *ptr, unsigned long bytecount) | 
 | { | 
 | 	return(CHOOSE_MODE_PROC(do_modify_ldt_tt, do_modify_ldt_skas, func, | 
 | 	                        ptr, bytecount)); | 
 | } |