|  | /* | 
|  | *  linux/arch/arm/kernel/ptrace.c | 
|  | * | 
|  | *  By Ross Biro 1/23/92 | 
|  | * edited by Linus Torvalds | 
|  | * ARM modifications Copyright (C) 2000 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  | #include <linux/regset.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/traps.h> | 
|  |  | 
|  | #define REG_PC	15 | 
|  | #define REG_PSR	16 | 
|  | /* | 
|  | * does not yet catch signals sent when the child dies. | 
|  | * in exit.c or in signal.c. | 
|  | */ | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Breakpoint SWI instruction: SWI &9F0001 | 
|  | */ | 
|  | #define BREAKINST_ARM	0xef9f0001 | 
|  | #define BREAKINST_THUMB	0xdf00		/* fill this in later */ | 
|  | #else | 
|  | /* | 
|  | * New breakpoints - use an undefined instruction.  The ARM architecture | 
|  | * reference manual guarantees that the following instruction space | 
|  | * will produce an undefined instruction exception on all CPUs: | 
|  | * | 
|  | *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx | 
|  | *  Thumb: 1101 1110 xxxx xxxx | 
|  | */ | 
|  | #define BREAKINST_ARM	0xe7f001f0 | 
|  | #define BREAKINST_THUMB	0xde01 | 
|  | #endif | 
|  |  | 
|  | struct pt_regs_offset { | 
|  | const char *name; | 
|  | int offset; | 
|  | }; | 
|  |  | 
|  | #define REG_OFFSET_NAME(r) \ | 
|  | {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)} | 
|  | #define REG_OFFSET_END {.name = NULL, .offset = 0} | 
|  |  | 
|  | static const struct pt_regs_offset regoffset_table[] = { | 
|  | REG_OFFSET_NAME(r0), | 
|  | REG_OFFSET_NAME(r1), | 
|  | REG_OFFSET_NAME(r2), | 
|  | REG_OFFSET_NAME(r3), | 
|  | REG_OFFSET_NAME(r4), | 
|  | REG_OFFSET_NAME(r5), | 
|  | REG_OFFSET_NAME(r6), | 
|  | REG_OFFSET_NAME(r7), | 
|  | REG_OFFSET_NAME(r8), | 
|  | REG_OFFSET_NAME(r9), | 
|  | REG_OFFSET_NAME(r10), | 
|  | REG_OFFSET_NAME(fp), | 
|  | REG_OFFSET_NAME(ip), | 
|  | REG_OFFSET_NAME(sp), | 
|  | REG_OFFSET_NAME(lr), | 
|  | REG_OFFSET_NAME(pc), | 
|  | REG_OFFSET_NAME(cpsr), | 
|  | REG_OFFSET_NAME(ORIG_r0), | 
|  | REG_OFFSET_END, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * regs_query_register_offset() - query register offset from its name | 
|  | * @name:	the name of a register | 
|  | * | 
|  | * regs_query_register_offset() returns the offset of a register in struct | 
|  | * pt_regs from its name. If the name is invalid, this returns -EINVAL; | 
|  | */ | 
|  | int regs_query_register_offset(const char *name) | 
|  | { | 
|  | const struct pt_regs_offset *roff; | 
|  | for (roff = regoffset_table; roff->name != NULL; roff++) | 
|  | if (!strcmp(roff->name, name)) | 
|  | return roff->offset; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_query_register_name() - query register name from its offset | 
|  | * @offset:	the offset of a register in struct pt_regs. | 
|  | * | 
|  | * regs_query_register_name() returns the name of a register from its | 
|  | * offset in struct pt_regs. If the @offset is invalid, this returns NULL; | 
|  | */ | 
|  | const char *regs_query_register_name(unsigned int offset) | 
|  | { | 
|  | const struct pt_regs_offset *roff; | 
|  | for (roff = regoffset_table; roff->name != NULL; roff++) | 
|  | if (roff->offset == offset) | 
|  | return roff->name; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_within_kernel_stack() - check the address in the stack | 
|  | * @regs:      pt_regs which contains kernel stack pointer. | 
|  | * @addr:      address which is checked. | 
|  | * | 
|  | * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). | 
|  | * If @addr is within the kernel stack, it returns true. If not, returns false. | 
|  | */ | 
|  | bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) | 
|  | { | 
|  | return ((addr & ~(THREAD_SIZE - 1))  == | 
|  | (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regs_get_kernel_stack_nth() - get Nth entry of the stack | 
|  | * @regs:	pt_regs which contains kernel stack pointer. | 
|  | * @n:		stack entry number. | 
|  | * | 
|  | * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which | 
|  | * is specified by @regs. If the @n th entry is NOT in the kernel stack, | 
|  | * this returns 0. | 
|  | */ | 
|  | unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) | 
|  | { | 
|  | unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); | 
|  | addr += n; | 
|  | if (regs_within_kernel_stack(regs, (unsigned long)addr)) | 
|  | return *addr; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine will get a word off of the processes privileged stack. | 
|  | * the offset is how far from the base addr as stored in the THREAD. | 
|  | * this routine assumes that all the privileged stacks are in our | 
|  | * data space. | 
|  | */ | 
|  | static inline long get_user_reg(struct task_struct *task, int offset) | 
|  | { | 
|  | return task_pt_regs(task)->uregs[offset]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine will put a word on the processes privileged stack. | 
|  | * the offset is how far from the base addr as stored in the THREAD. | 
|  | * this routine assumes that all the privileged stacks are in our | 
|  | * data space. | 
|  | */ | 
|  | static inline int | 
|  | put_user_reg(struct task_struct *task, int offset, long data) | 
|  | { | 
|  | struct pt_regs newregs, *regs = task_pt_regs(task); | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | newregs = *regs; | 
|  | newregs.uregs[offset] = data; | 
|  |  | 
|  | if (valid_user_regs(&newregs)) { | 
|  | regs->uregs[offset] = data; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by kernel/ptrace.c when detaching.. | 
|  | */ | 
|  | void ptrace_disable(struct task_struct *child) | 
|  | { | 
|  | /* Nothing to do. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle hitting a breakpoint. | 
|  | */ | 
|  | void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = TRAP_BRKPT; | 
|  | info.si_addr  = (void __user *)instruction_pointer(regs); | 
|  |  | 
|  | force_sig_info(SIGTRAP, &info, tsk); | 
|  | } | 
|  |  | 
|  | static int break_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | ptrace_break(current, regs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct undef_hook arm_break_hook = { | 
|  | .instr_mask	= 0x0fffffff, | 
|  | .instr_val	= 0x07f001f0, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= 0, | 
|  | .fn		= break_trap, | 
|  | }; | 
|  |  | 
|  | static struct undef_hook thumb_break_hook = { | 
|  | .instr_mask	= 0xffff, | 
|  | .instr_val	= 0xde01, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= PSR_T_BIT, | 
|  | .fn		= break_trap, | 
|  | }; | 
|  |  | 
|  | static int thumb2_break_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | unsigned int instr2; | 
|  | void __user *pc; | 
|  |  | 
|  | /* Check the second half of the instruction.  */ | 
|  | pc = (void __user *)(instruction_pointer(regs) + 2); | 
|  |  | 
|  | if (processor_mode(regs) == SVC_MODE) { | 
|  | instr2 = *(u16 *) pc; | 
|  | } else { | 
|  | get_user(instr2, (u16 __user *)pc); | 
|  | } | 
|  |  | 
|  | if (instr2 == 0xa000) { | 
|  | ptrace_break(current, regs); | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct undef_hook thumb2_break_hook = { | 
|  | .instr_mask	= 0xffff, | 
|  | .instr_val	= 0xf7f0, | 
|  | .cpsr_mask	= PSR_T_BIT, | 
|  | .cpsr_val	= PSR_T_BIT, | 
|  | .fn		= thumb2_break_trap, | 
|  | }; | 
|  |  | 
|  | static int __init ptrace_break_init(void) | 
|  | { | 
|  | register_undef_hook(&arm_break_hook); | 
|  | register_undef_hook(&thumb_break_hook); | 
|  | register_undef_hook(&thumb2_break_hook); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(ptrace_break_init); | 
|  |  | 
|  | /* | 
|  | * Read the word at offset "off" into the "struct user".  We | 
|  | * actually access the pt_regs stored on the kernel stack. | 
|  | */ | 
|  | static int ptrace_read_user(struct task_struct *tsk, unsigned long off, | 
|  | unsigned long __user *ret) | 
|  | { | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (off & 3 || off >= sizeof(struct user)) | 
|  | return -EIO; | 
|  |  | 
|  | tmp = 0; | 
|  | if (off == PT_TEXT_ADDR) | 
|  | tmp = tsk->mm->start_code; | 
|  | else if (off == PT_DATA_ADDR) | 
|  | tmp = tsk->mm->start_data; | 
|  | else if (off == PT_TEXT_END_ADDR) | 
|  | tmp = tsk->mm->end_code; | 
|  | else if (off < sizeof(struct pt_regs)) | 
|  | tmp = get_user_reg(tsk, off >> 2); | 
|  |  | 
|  | return put_user(tmp, ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the word at offset "off" into "struct user".  We | 
|  | * actually access the pt_regs stored on the kernel stack. | 
|  | */ | 
|  | static int ptrace_write_user(struct task_struct *tsk, unsigned long off, | 
|  | unsigned long val) | 
|  | { | 
|  | if (off & 3 || off >= sizeof(struct user)) | 
|  | return -EIO; | 
|  |  | 
|  | if (off >= sizeof(struct pt_regs)) | 
|  | return 0; | 
|  |  | 
|  | return put_user_reg(tsk, off >> 2, val); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IWMMXT | 
|  |  | 
|  | /* | 
|  | * Get the child iWMMXt state. | 
|  | */ | 
|  | static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) | 
|  | return -ENODATA; | 
|  | iwmmxt_task_disable(thread);  /* force it to ram */ | 
|  | return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child iWMMXt state. | 
|  | */ | 
|  | static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT)) | 
|  | return -EACCES; | 
|  | iwmmxt_task_release(thread);  /* force a reload */ | 
|  | return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CRUNCH | 
|  | /* | 
|  | * Get the child Crunch state. | 
|  | */ | 
|  | static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | crunch_task_disable(thread);  /* force it to ram */ | 
|  | return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the child Crunch state. | 
|  | */ | 
|  | static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(tsk); | 
|  |  | 
|  | crunch_task_release(thread);  /* force a reload */ | 
|  | return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | /* | 
|  | * Convert a virtual register number into an index for a thread_info | 
|  | * breakpoint array. Breakpoints are identified using positive numbers | 
|  | * whilst watchpoints are negative. The registers are laid out as pairs | 
|  | * of (address, control), each pair mapping to a unique hw_breakpoint struct. | 
|  | * Register 0 is reserved for describing resource information. | 
|  | */ | 
|  | static int ptrace_hbp_num_to_idx(long num) | 
|  | { | 
|  | if (num < 0) | 
|  | num = (ARM_MAX_BRP << 1) - num; | 
|  | return (num - 1) >> 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the virtual register number for the address of the | 
|  | * breakpoint at index idx. | 
|  | */ | 
|  | static long ptrace_hbp_idx_to_num(int idx) | 
|  | { | 
|  | long mid = ARM_MAX_BRP << 1; | 
|  | long num = (idx << 1) + 1; | 
|  | return num > mid ? mid - num : num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle hitting a HW-breakpoint. | 
|  | */ | 
|  | static void ptrace_hbptriggered(struct perf_event *bp, int unused, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); | 
|  | long num; | 
|  | int i; | 
|  | siginfo_t info; | 
|  |  | 
|  | for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i) | 
|  | if (current->thread.debug.hbp[i] == bp) | 
|  | break; | 
|  |  | 
|  | num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i); | 
|  |  | 
|  | info.si_signo	= SIGTRAP; | 
|  | info.si_errno	= (int)num; | 
|  | info.si_code	= TRAP_HWBKPT; | 
|  | info.si_addr	= (void __user *)(bkpt->trigger); | 
|  |  | 
|  | force_sig_info(SIGTRAP, &info, current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set ptrace breakpoint pointers to zero for this task. | 
|  | * This is required in order to prevent child processes from unregistering | 
|  | * breakpoints held by their parent. | 
|  | */ | 
|  | void clear_ptrace_hw_breakpoint(struct task_struct *tsk) | 
|  | { | 
|  | memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister breakpoints from this task and reset the pointers in | 
|  | * the thread_struct. | 
|  | */ | 
|  | void flush_ptrace_hw_breakpoint(struct task_struct *tsk) | 
|  | { | 
|  | int i; | 
|  | struct thread_struct *t = &tsk->thread; | 
|  |  | 
|  | for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) { | 
|  | if (t->debug.hbp[i]) { | 
|  | unregister_hw_breakpoint(t->debug.hbp[i]); | 
|  | t->debug.hbp[i] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 ptrace_get_hbp_resource_info(void) | 
|  | { | 
|  | u8 num_brps, num_wrps, debug_arch, wp_len; | 
|  | u32 reg = 0; | 
|  |  | 
|  | num_brps	= hw_breakpoint_slots(TYPE_INST); | 
|  | num_wrps	= hw_breakpoint_slots(TYPE_DATA); | 
|  | debug_arch	= arch_get_debug_arch(); | 
|  | wp_len		= arch_get_max_wp_len(); | 
|  |  | 
|  | reg		|= debug_arch; | 
|  | reg		<<= 8; | 
|  | reg		|= wp_len; | 
|  | reg		<<= 8; | 
|  | reg		|= num_wrps; | 
|  | reg		<<= 8; | 
|  | reg		|= num_brps; | 
|  |  | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type) | 
|  | { | 
|  | struct perf_event_attr attr; | 
|  |  | 
|  | ptrace_breakpoint_init(&attr); | 
|  |  | 
|  | /* Initialise fields to sane defaults. */ | 
|  | attr.bp_addr	= 0; | 
|  | attr.bp_len	= HW_BREAKPOINT_LEN_4; | 
|  | attr.bp_type	= type; | 
|  | attr.disabled	= 1; | 
|  |  | 
|  | return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, tsk); | 
|  | } | 
|  |  | 
|  | static int ptrace_gethbpregs(struct task_struct *tsk, long num, | 
|  | unsigned long  __user *data) | 
|  | { | 
|  | u32 reg; | 
|  | int idx, ret = 0; | 
|  | struct perf_event *bp; | 
|  | struct arch_hw_breakpoint_ctrl arch_ctrl; | 
|  |  | 
|  | if (num == 0) { | 
|  | reg = ptrace_get_hbp_resource_info(); | 
|  | } else { | 
|  | idx = ptrace_hbp_num_to_idx(num); | 
|  | if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bp = tsk->thread.debug.hbp[idx]; | 
|  | if (!bp) { | 
|  | reg = 0; | 
|  | goto put; | 
|  | } | 
|  |  | 
|  | arch_ctrl = counter_arch_bp(bp)->ctrl; | 
|  |  | 
|  | /* | 
|  | * Fix up the len because we may have adjusted it | 
|  | * to compensate for an unaligned address. | 
|  | */ | 
|  | while (!(arch_ctrl.len & 0x1)) | 
|  | arch_ctrl.len >>= 1; | 
|  |  | 
|  | if (num & 0x1) | 
|  | reg = bp->attr.bp_addr; | 
|  | else | 
|  | reg = encode_ctrl_reg(arch_ctrl); | 
|  | } | 
|  |  | 
|  | put: | 
|  | if (put_user(reg, data)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ptrace_sethbpregs(struct task_struct *tsk, long num, | 
|  | unsigned long __user *data) | 
|  | { | 
|  | int idx, gen_len, gen_type, implied_type, ret = 0; | 
|  | u32 user_val; | 
|  | struct perf_event *bp; | 
|  | struct arch_hw_breakpoint_ctrl ctrl; | 
|  | struct perf_event_attr attr; | 
|  |  | 
|  | if (num == 0) | 
|  | goto out; | 
|  | else if (num < 0) | 
|  | implied_type = HW_BREAKPOINT_RW; | 
|  | else | 
|  | implied_type = HW_BREAKPOINT_X; | 
|  |  | 
|  | idx = ptrace_hbp_num_to_idx(num); | 
|  | if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (get_user(user_val, data)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bp = tsk->thread.debug.hbp[idx]; | 
|  | if (!bp) { | 
|  | bp = ptrace_hbp_create(tsk, implied_type); | 
|  | if (IS_ERR(bp)) { | 
|  | ret = PTR_ERR(bp); | 
|  | goto out; | 
|  | } | 
|  | tsk->thread.debug.hbp[idx] = bp; | 
|  | } | 
|  |  | 
|  | attr = bp->attr; | 
|  |  | 
|  | if (num & 0x1) { | 
|  | /* Address */ | 
|  | attr.bp_addr	= user_val; | 
|  | } else { | 
|  | /* Control */ | 
|  | decode_ctrl_reg(user_val, &ctrl); | 
|  | ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if ((gen_type & implied_type) != gen_type) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | attr.bp_len	= gen_len; | 
|  | attr.bp_type	= gen_type; | 
|  | attr.disabled	= !ctrl.enabled; | 
|  | } | 
|  |  | 
|  | ret = modify_user_hw_breakpoint(bp, &attr); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* regset get/set implementations */ | 
|  |  | 
|  | static int gpr_get(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | struct pt_regs *regs = task_pt_regs(target); | 
|  |  | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | regs, | 
|  | 0, sizeof(*regs)); | 
|  | } | 
|  |  | 
|  | static int gpr_set(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  | struct pt_regs newregs; | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &newregs, | 
|  | 0, sizeof(newregs)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!valid_user_regs(&newregs)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *task_pt_regs(target) = newregs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fpa_get(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &task_thread_info(target)->fpstate, | 
|  | 0, sizeof(struct user_fp)); | 
|  | } | 
|  |  | 
|  | static int fpa_set(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | struct thread_info *thread = task_thread_info(target); | 
|  |  | 
|  | thread->used_cp[1] = thread->used_cp[2] = 1; | 
|  |  | 
|  | return user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &thread->fpstate, | 
|  | 0, sizeof(struct user_fp)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VFP | 
|  | /* | 
|  | * VFP register get/set implementations. | 
|  | * | 
|  | * With respect to the kernel, struct user_fp is divided into three chunks: | 
|  | * 16 or 32 real VFP registers (d0-d15 or d0-31) | 
|  | *	These are transferred to/from the real registers in the task's | 
|  | *	vfp_hard_struct.  The number of registers depends on the kernel | 
|  | *	configuration. | 
|  | * | 
|  | * 16 or 0 fake VFP registers (d16-d31 or empty) | 
|  | *	i.e., the user_vfp structure has space for 32 registers even if | 
|  | *	the kernel doesn't have them all. | 
|  | * | 
|  | *	vfp_get() reads this chunk as zero where applicable | 
|  | *	vfp_set() ignores this chunk | 
|  | * | 
|  | * 1 word for the FPSCR | 
|  | * | 
|  | * The bounds-checking logic built into user_regset_copyout and friends | 
|  | * means that we can make a simple sequence of calls to map the relevant data | 
|  | * to/from the specified slice of the user regset structure. | 
|  | */ | 
|  | static int vfp_get(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  | struct thread_info *thread = task_thread_info(target); | 
|  | struct vfp_hard_struct const *vfp = &thread->vfpstate.hard; | 
|  | const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); | 
|  | const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); | 
|  |  | 
|  | vfp_sync_hwstate(thread); | 
|  |  | 
|  | ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &vfp->fpregs, | 
|  | user_fpregs_offset, | 
|  | user_fpregs_offset + sizeof(vfp->fpregs)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, | 
|  | user_fpregs_offset + sizeof(vfp->fpregs), | 
|  | user_fpscr_offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &vfp->fpscr, | 
|  | user_fpscr_offset, | 
|  | user_fpscr_offset + sizeof(vfp->fpscr)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For vfp_set() a read-modify-write is done on the VFP registers, | 
|  | * in order to avoid writing back a half-modified set of registers on | 
|  | * failure. | 
|  | */ | 
|  | static int vfp_set(struct task_struct *target, | 
|  | const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  | struct thread_info *thread = task_thread_info(target); | 
|  | struct vfp_hard_struct new_vfp = thread->vfpstate.hard; | 
|  | const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs); | 
|  | const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr); | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &new_vfp.fpregs, | 
|  | user_fpregs_offset, | 
|  | user_fpregs_offset + sizeof(new_vfp.fpregs)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, | 
|  | user_fpregs_offset + sizeof(new_vfp.fpregs), | 
|  | user_fpscr_offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &new_vfp.fpscr, | 
|  | user_fpscr_offset, | 
|  | user_fpscr_offset + sizeof(new_vfp.fpscr)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | vfp_sync_hwstate(thread); | 
|  | thread->vfpstate.hard = new_vfp; | 
|  | vfp_flush_hwstate(thread); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_VFP */ | 
|  |  | 
|  | enum arm_regset { | 
|  | REGSET_GPR, | 
|  | REGSET_FPR, | 
|  | #ifdef CONFIG_VFP | 
|  | REGSET_VFP, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct user_regset arm_regsets[] = { | 
|  | [REGSET_GPR] = { | 
|  | .core_note_type = NT_PRSTATUS, | 
|  | .n = ELF_NGREG, | 
|  | .size = sizeof(u32), | 
|  | .align = sizeof(u32), | 
|  | .get = gpr_get, | 
|  | .set = gpr_set | 
|  | }, | 
|  | [REGSET_FPR] = { | 
|  | /* | 
|  | * For the FPA regs in fpstate, the real fields are a mixture | 
|  | * of sizes, so pretend that the registers are word-sized: | 
|  | */ | 
|  | .core_note_type = NT_PRFPREG, | 
|  | .n = sizeof(struct user_fp) / sizeof(u32), | 
|  | .size = sizeof(u32), | 
|  | .align = sizeof(u32), | 
|  | .get = fpa_get, | 
|  | .set = fpa_set | 
|  | }, | 
|  | #ifdef CONFIG_VFP | 
|  | [REGSET_VFP] = { | 
|  | /* | 
|  | * Pretend that the VFP regs are word-sized, since the FPSCR is | 
|  | * a single word dangling at the end of struct user_vfp: | 
|  | */ | 
|  | .core_note_type = NT_ARM_VFP, | 
|  | .n = ARM_VFPREGS_SIZE / sizeof(u32), | 
|  | .size = sizeof(u32), | 
|  | .align = sizeof(u32), | 
|  | .get = vfp_get, | 
|  | .set = vfp_set | 
|  | }, | 
|  | #endif /* CONFIG_VFP */ | 
|  | }; | 
|  |  | 
|  | static const struct user_regset_view user_arm_view = { | 
|  | .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, | 
|  | .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets) | 
|  | }; | 
|  |  | 
|  | const struct user_regset_view *task_user_regset_view(struct task_struct *task) | 
|  | { | 
|  | return &user_arm_view; | 
|  | } | 
|  |  | 
|  | long arch_ptrace(struct task_struct *child, long request, | 
|  | unsigned long addr, unsigned long data) | 
|  | { | 
|  | int ret; | 
|  | unsigned long __user *datap = (unsigned long __user *) data; | 
|  |  | 
|  | switch (request) { | 
|  | case PTRACE_PEEKUSR: | 
|  | ret = ptrace_read_user(child, addr, datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_POKEUSR: | 
|  | ret = ptrace_write_user(child, addr, data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_GETREGS: | 
|  | ret = copy_regset_to_user(child, | 
|  | &user_arm_view, REGSET_GPR, | 
|  | 0, sizeof(struct pt_regs), | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETREGS: | 
|  | ret = copy_regset_from_user(child, | 
|  | &user_arm_view, REGSET_GPR, | 
|  | 0, sizeof(struct pt_regs), | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_GETFPREGS: | 
|  | ret = copy_regset_to_user(child, | 
|  | &user_arm_view, REGSET_FPR, | 
|  | 0, sizeof(union fp_state), | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETFPREGS: | 
|  | ret = copy_regset_from_user(child, | 
|  | &user_arm_view, REGSET_FPR, | 
|  | 0, sizeof(union fp_state), | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_IWMMXT | 
|  | case PTRACE_GETWMMXREGS: | 
|  | ret = ptrace_getwmmxregs(child, datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETWMMXREGS: | 
|  | ret = ptrace_setwmmxregs(child, datap); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case PTRACE_GET_THREAD_AREA: | 
|  | ret = put_user(task_thread_info(child)->tp_value, | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SET_SYSCALL: | 
|  | task_thread_info(child)->syscall = data; | 
|  | ret = 0; | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_CRUNCH | 
|  | case PTRACE_GETCRUNCHREGS: | 
|  | ret = ptrace_getcrunchregs(child, datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETCRUNCHREGS: | 
|  | ret = ptrace_setcrunchregs(child, datap); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_VFP | 
|  | case PTRACE_GETVFPREGS: | 
|  | ret = copy_regset_to_user(child, | 
|  | &user_arm_view, REGSET_VFP, | 
|  | 0, ARM_VFPREGS_SIZE, | 
|  | datap); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SETVFPREGS: | 
|  | ret = copy_regset_from_user(child, | 
|  | &user_arm_view, REGSET_VFP, | 
|  | 0, ARM_VFPREGS_SIZE, | 
|  | datap); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
|  | case PTRACE_GETHBPREGS: | 
|  | if (ptrace_get_breakpoints(child) < 0) | 
|  | return -ESRCH; | 
|  |  | 
|  | ret = ptrace_gethbpregs(child, addr, | 
|  | (unsigned long __user *)data); | 
|  | ptrace_put_breakpoints(child); | 
|  | break; | 
|  | case PTRACE_SETHBPREGS: | 
|  | if (ptrace_get_breakpoints(child) < 0) | 
|  | return -ESRCH; | 
|  |  | 
|  | ret = ptrace_sethbpregs(child, addr, | 
|  | (unsigned long __user *)data); | 
|  | ptrace_put_breakpoints(child); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | ret = ptrace_request(child, request, addr, data); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno) | 
|  | { | 
|  | unsigned long ip; | 
|  |  | 
|  | if (!test_thread_flag(TIF_SYSCALL_TRACE)) | 
|  | return scno; | 
|  | if (!(current->ptrace & PT_PTRACED)) | 
|  | return scno; | 
|  |  | 
|  | /* | 
|  | * Save IP.  IP is used to denote syscall entry/exit: | 
|  | *  IP = 0 -> entry, = 1 -> exit | 
|  | */ | 
|  | ip = regs->ARM_ip; | 
|  | regs->ARM_ip = why; | 
|  |  | 
|  | current_thread_info()->syscall = scno; | 
|  |  | 
|  | /* the 0x80 provides a way for the tracing parent to distinguish | 
|  | between a syscall stop and SIGTRAP delivery */ | 
|  | ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) | 
|  | ? 0x80 : 0)); | 
|  | /* | 
|  | * this isn't the same as continuing with a signal, but it will do | 
|  | * for normal use.  strace only continues with a signal if the | 
|  | * stopping signal is not SIGTRAP.  -brl | 
|  | */ | 
|  | if (current->exit_code) { | 
|  | send_sig(current->exit_code, current, 1); | 
|  | current->exit_code = 0; | 
|  | } | 
|  | regs->ARM_ip = ip; | 
|  |  | 
|  | return current_thread_info()->syscall; | 
|  | } |