|  | /* | 
|  | * | 
|  | * Optmized version of the standard do_csum() function | 
|  | * | 
|  | * Return: a 64bit quantity containing the 16bit Internet checksum | 
|  | * | 
|  | * Inputs: | 
|  | *	in0: address of buffer to checksum (char *) | 
|  | *	in1: length of the buffer (int) | 
|  | * | 
|  | * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * | 
|  | * 02/04/22	Ken Chen <kenneth.w.chen@intel.com> | 
|  | *		Data locality study on the checksum buffer. | 
|  | *		More optimization cleanup - remove excessive stop bits. | 
|  | * 02/04/08	David Mosberger <davidm@hpl.hp.com> | 
|  | *		More cleanup and tuning. | 
|  | * 01/04/18	Jun Nakajima <jun.nakajima@intel.com> | 
|  | *		Clean up and optimize and the software pipeline, loading two | 
|  | *		back-to-back 8-byte words per loop. Clean up the initialization | 
|  | *		for the loop. Support the cases where load latency = 1 or 2. | 
|  | *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default). | 
|  | */ | 
|  |  | 
|  | #include <asm/asmmacro.h> | 
|  |  | 
|  | // | 
|  | // Theory of operations: | 
|  | //	The goal is to go as quickly as possible to the point where | 
|  | //	we can checksum 16 bytes/loop. Before reaching that point we must | 
|  | //	take care of incorrect alignment of first byte. | 
|  | // | 
|  | //	The code hereafter also takes care of the "tail" part of the buffer | 
|  | //	before entering the core loop, if any. The checksum is a sum so it | 
|  | //	allows us to commute operations. So we do the "head" and "tail" | 
|  | //	first to finish at full speed in the body. Once we get the head and | 
|  | //	tail values, we feed them into the pipeline, very handy initialization. | 
|  | // | 
|  | //	Of course we deal with the special case where the whole buffer fits | 
|  | //	into one 8 byte word. In this case we have only one entry in the pipeline. | 
|  | // | 
|  | //	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for | 
|  | //	possible load latency and also to accommodate for head and tail. | 
|  | // | 
|  | //	The end of the function deals with folding the checksum from 64bits | 
|  | //	down to 16bits taking care of the carry. | 
|  | // | 
|  | //	This version avoids synchronization in the core loop by also using a | 
|  | //	pipeline for the accumulation of the checksum in resultx[] (x=1,2). | 
|  | // | 
|  | //	 wordx[] (x=1,2) | 
|  | //	|---| | 
|  | //      |   | 0			: new value loaded in pipeline | 
|  | //	|---| | 
|  | //      |   | -			: in transit data | 
|  | //	|---| | 
|  | //      |   | LOAD_LATENCY	: current value to add to checksum | 
|  | //	|---| | 
|  | //      |   | LOAD_LATENCY+1	: previous value added to checksum | 
|  | //      |---|			(previous iteration) | 
|  | // | 
|  | //	resultx[] (x=1,2) | 
|  | //	|---| | 
|  | //      |   | 0			: initial value | 
|  | //	|---| | 
|  | //      |   | LOAD_LATENCY-1	: new checksum | 
|  | //	|---| | 
|  | //      |   | LOAD_LATENCY	: previous value of checksum | 
|  | //	|---| | 
|  | //      |   | LOAD_LATENCY+1	: final checksum when out of the loop | 
|  | //      |---| | 
|  | // | 
|  | // | 
|  | //	See RFC1071 "Computing the Internet Checksum" for various techniques for | 
|  | //	calculating the Internet checksum. | 
|  | // | 
|  | // NOT YET DONE: | 
|  | //	- Maybe another algorithm which would take care of the folding at the | 
|  | //	  end in a different manner | 
|  | //	- Work with people more knowledgeable than me on the network stack | 
|  | //	  to figure out if we could not split the function depending on the | 
|  | //	  type of packet or alignment we get. Like the ip_fast_csum() routine | 
|  | //	  where we know we have at least 20bytes worth of data to checksum. | 
|  | //	- Do a better job of handling small packets. | 
|  | //	- Note on prefetching: it was found that under various load, i.e. ftp read/write, | 
|  | //	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8% | 
|  | //	  on the data that buffer points to (partly because the checksum is often preceded by | 
|  | //	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since | 
|  | //	  the data is already in the cache. | 
|  | // | 
|  |  | 
|  | #define saved_pfs	r11 | 
|  | #define hmask		r16 | 
|  | #define tmask		r17 | 
|  | #define first1		r18 | 
|  | #define firstval	r19 | 
|  | #define firstoff	r20 | 
|  | #define last		r21 | 
|  | #define lastval		r22 | 
|  | #define lastoff		r23 | 
|  | #define saved_lc	r24 | 
|  | #define saved_pr	r25 | 
|  | #define tmp1		r26 | 
|  | #define tmp2		r27 | 
|  | #define tmp3		r28 | 
|  | #define carry1		r29 | 
|  | #define carry2		r30 | 
|  | #define first2		r31 | 
|  |  | 
|  | #define buf		in0 | 
|  | #define len		in1 | 
|  |  | 
|  | #define LOAD_LATENCY	2	// XXX fix me | 
|  |  | 
|  | #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2) | 
|  | # error "Only 1 or 2 is supported/tested for LOAD_LATENCY." | 
|  | #endif | 
|  |  | 
|  | #define PIPE_DEPTH			(LOAD_LATENCY+2) | 
|  | #define ELD	p[LOAD_LATENCY]		// end of load | 
|  | #define ELD_1	p[LOAD_LATENCY+1]	// and next stage | 
|  |  | 
|  | // unsigned long do_csum(unsigned char *buf,long len) | 
|  |  | 
|  | GLOBAL_ENTRY(do_csum) | 
|  | .prologue | 
|  | .save ar.pfs, saved_pfs | 
|  | alloc saved_pfs=ar.pfs,2,16,0,16 | 
|  | .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2] | 
|  | .rotp p[PIPE_DEPTH], pC1[2], pC2[2] | 
|  | mov ret0=r0		// in case we have zero length | 
|  | cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len) | 
|  | ;; | 
|  | add tmp1=buf,len	// last byte's address | 
|  | .save pr, saved_pr | 
|  | mov saved_pr=pr		// preserve predicates (rotation) | 
|  | (p6)	br.ret.spnt.many rp	// return if zero or negative length | 
|  |  | 
|  | mov hmask=-1		// initialize head mask | 
|  | tbit.nz p15,p0=buf,0	// is buf an odd address? | 
|  | and first1=-8,buf	// 8-byte align down address of first1 element | 
|  |  | 
|  | and firstoff=7,buf	// how many bytes off for first1 element | 
|  | mov tmask=-1		// initialize tail mask | 
|  |  | 
|  | ;; | 
|  | adds tmp2=-1,tmp1	// last-1 | 
|  | and lastoff=7,tmp1	// how many bytes off for last element | 
|  | ;; | 
|  | sub tmp1=8,lastoff	// complement to lastoff | 
|  | and last=-8,tmp2	// address of word containing last byte | 
|  | ;; | 
|  | sub tmp3=last,first1	// tmp3=distance from first1 to last | 
|  | .save ar.lc, saved_lc | 
|  | mov saved_lc=ar.lc	// save lc | 
|  | cmp.eq p8,p9=last,first1	// everything fits in one word ? | 
|  |  | 
|  | ld8 firstval=[first1],8	// load, ahead of time, "first1" word | 
|  | and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0 | 
|  | shl tmp2=firstoff,3	// number of bits | 
|  | ;; | 
|  | (p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed | 
|  | shl tmp1=tmp1,3		// number of bits | 
|  | (p9)	adds tmp3=-8,tmp3	// effectively loaded | 
|  | ;; | 
|  | (p8)	mov lastval=r0		// we don't need lastval if first1==last | 
|  | shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[ | 
|  | shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff] | 
|  | ;; | 
|  | .body | 
|  | #define count tmp3 | 
|  |  | 
|  | (p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only | 
|  | (p9)	and word2[0]=lastval,tmask	// mask last it as appropriate | 
|  | shr.u count=count,3	// how many 8-byte? | 
|  | ;; | 
|  | // If count is odd, finish this 8-byte word so that we can | 
|  | // load two back-to-back 8-byte words per loop thereafter. | 
|  | and word1[0]=firstval,hmask	// and mask it as appropriate | 
|  | tbit.nz p10,p11=count,0		// if (count is odd) | 
|  | ;; | 
|  | (p8)	mov result1[0]=word1[0] | 
|  | (p9)	add result1[0]=word1[0],word2[0] | 
|  | ;; | 
|  | cmp.ltu p6,p0=result1[0],word1[0]	// check the carry | 
|  | cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte | 
|  | ;; | 
|  | (p6)	adds result1[0]=1,result1[0] | 
|  | (p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word) | 
|  | (p11)	br.cond.dptk .do_csum16		// if (count is even) | 
|  |  | 
|  | // Here count is odd. | 
|  | ld8 word1[1]=[first1],8		// load an 8-byte word | 
|  | cmp.eq p9,p10=1,count		// if (count == 1) | 
|  | adds count=-1,count		// loaded an 8-byte word | 
|  | ;; | 
|  | add result1[0]=result1[0],word1[1] | 
|  | ;; | 
|  | cmp.ltu p6,p0=result1[0],word1[1] | 
|  | ;; | 
|  | (p6)	adds result1[0]=1,result1[0] | 
|  | (p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit | 
|  | // Fall through to calculate the checksum, feeding result1[0] as | 
|  | // the initial value in result1[0]. | 
|  | // | 
|  | // Calculate the checksum loading two 8-byte words per loop. | 
|  | // | 
|  | .do_csum16: | 
|  | add first2=8,first1 | 
|  | shr.u count=count,1	// we do 16 bytes per loop | 
|  | ;; | 
|  | adds count=-1,count | 
|  | mov carry1=r0 | 
|  | mov carry2=r0 | 
|  | brp.loop.imp 1f,2f | 
|  | ;; | 
|  | mov ar.ec=PIPE_DEPTH | 
|  | mov ar.lc=count	// set lc | 
|  | mov pr.rot=1<<16 | 
|  | // result1[0] must be initialized in advance. | 
|  | mov result2[0]=r0 | 
|  | ;; | 
|  | .align 32 | 
|  | 1: | 
|  | (ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1] | 
|  | (pC1[1])adds carry1=1,carry1 | 
|  | (ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1] | 
|  | (pC2[1])adds carry2=1,carry2 | 
|  | (ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY] | 
|  | (ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY] | 
|  | 2: | 
|  | (p[0])	ld8 word1[0]=[first1],16 | 
|  | (p[0])	ld8 word2[0]=[first2],16 | 
|  | br.ctop.sptk 1b | 
|  | ;; | 
|  | // Since len is a 32-bit value, carry cannot be larger than a 64-bit value. | 
|  | (pC1[1])adds carry1=1,carry1	// since we miss the last one | 
|  | (pC2[1])adds carry2=1,carry2 | 
|  | ;; | 
|  | add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1 | 
|  | add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2 | 
|  | ;; | 
|  | cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1 | 
|  | cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2 | 
|  | ;; | 
|  | (p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1] | 
|  | (p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1] | 
|  | ;; | 
|  | add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1] | 
|  | ;; | 
|  | cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1] | 
|  | ;; | 
|  | (p6)	adds result1[0]=1,result1[0] | 
|  | ;; | 
|  | .do_csum_exit: | 
|  | // | 
|  | // now fold 64 into 16 bits taking care of carry | 
|  | // that's not very good because it has lots of sequentiality | 
|  | // | 
|  | mov tmp3=0xffff | 
|  | zxt4 tmp1=result1[0] | 
|  | shr.u tmp2=result1[0],32 | 
|  | ;; | 
|  | add result1[0]=tmp1,tmp2 | 
|  | ;; | 
|  | and tmp1=result1[0],tmp3 | 
|  | shr.u tmp2=result1[0],16 | 
|  | ;; | 
|  | add result1[0]=tmp1,tmp2 | 
|  | ;; | 
|  | and tmp1=result1[0],tmp3 | 
|  | shr.u tmp2=result1[0],16 | 
|  | ;; | 
|  | add result1[0]=tmp1,tmp2 | 
|  | ;; | 
|  | and tmp1=result1[0],tmp3 | 
|  | shr.u tmp2=result1[0],16 | 
|  | ;; | 
|  | add ret0=tmp1,tmp2 | 
|  | mov pr=saved_pr,0xffffffffffff0000 | 
|  | ;; | 
|  | // if buf was odd then swap bytes | 
|  | mov ar.pfs=saved_pfs		// restore ar.ec | 
|  | (p15)	mux1 ret0=ret0,@rev		// reverse word | 
|  | ;; | 
|  | mov ar.lc=saved_lc | 
|  | (p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | //	I (Jun Nakajima) wrote an equivalent code (see below), but it was | 
|  | //	not much better than the original. So keep the original there so that | 
|  | //	someone else can challenge. | 
|  | // | 
|  | //	shr.u word1[0]=result1[0],32 | 
|  | //	zxt4 result1[0]=result1[0] | 
|  | //	;; | 
|  | //	add result1[0]=result1[0],word1[0] | 
|  | //	;; | 
|  | //	zxt2 result2[0]=result1[0] | 
|  | //	extr.u word1[0]=result1[0],16,16 | 
|  | //	shr.u carry1=result1[0],32 | 
|  | //	;; | 
|  | //	add result2[0]=result2[0],word1[0] | 
|  | //	;; | 
|  | //	add result2[0]=result2[0],carry1 | 
|  | //	;; | 
|  | //	extr.u ret0=result2[0],16,16 | 
|  | //	;; | 
|  | //	add ret0=ret0,result2[0] | 
|  | //	;; | 
|  | //	zxt2 ret0=ret0 | 
|  | //	mov ar.pfs=saved_pfs		 // restore ar.ec | 
|  | //	mov pr=saved_pr,0xffffffffffff0000 | 
|  | //	;; | 
|  | //	// if buf was odd then swap bytes | 
|  | //	mov ar.lc=saved_lc | 
|  | //(p15)	mux1 ret0=ret0,@rev		// reverse word | 
|  | //	;; | 
|  | //(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes | 
|  | //	br.ret.sptk.many rp | 
|  |  | 
|  | END(do_csum) |