|  | /* | 
|  | * Itanium 2-optimized version of memcpy and copy_user function | 
|  | * | 
|  | * Inputs: | 
|  | * 	in0:	destination address | 
|  | *	in1:	source address | 
|  | *	in2:	number of bytes to copy | 
|  | * Output: | 
|  | *	for memcpy:    return dest | 
|  | * 	for copy_user: return 0 if success, | 
|  | *		       or number of byte NOT copied if error occurred. | 
|  | * | 
|  | * Copyright (C) 2002 Intel Corp. | 
|  | * Copyright (C) 2002 Ken Chen <kenneth.w.chen@intel.com> | 
|  | */ | 
|  | #include <asm/asmmacro.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | #define EK(y...) EX(y) | 
|  |  | 
|  | /* McKinley specific optimization */ | 
|  |  | 
|  | #define retval		r8 | 
|  | #define saved_pfs	r31 | 
|  | #define saved_lc	r10 | 
|  | #define saved_pr	r11 | 
|  | #define saved_in0	r14 | 
|  | #define saved_in1	r15 | 
|  | #define saved_in2	r16 | 
|  |  | 
|  | #define src0		r2 | 
|  | #define src1		r3 | 
|  | #define dst0		r17 | 
|  | #define dst1		r18 | 
|  | #define cnt		r9 | 
|  |  | 
|  | /* r19-r30 are temp for each code section */ | 
|  | #define PREFETCH_DIST	8 | 
|  | #define src_pre_mem	r19 | 
|  | #define dst_pre_mem	r20 | 
|  | #define src_pre_l2	r21 | 
|  | #define dst_pre_l2	r22 | 
|  | #define t1		r23 | 
|  | #define t2		r24 | 
|  | #define t3		r25 | 
|  | #define t4		r26 | 
|  | #define t5		t1	// alias! | 
|  | #define t6		t2	// alias! | 
|  | #define t7		t3	// alias! | 
|  | #define n8		r27 | 
|  | #define t9		t5	// alias! | 
|  | #define t10		t4	// alias! | 
|  | #define t11		t7	// alias! | 
|  | #define t12		t6	// alias! | 
|  | #define t14		t10	// alias! | 
|  | #define t13		r28 | 
|  | #define t15		r29 | 
|  | #define tmp		r30 | 
|  |  | 
|  | /* defines for long_copy block */ | 
|  | #define	A	0 | 
|  | #define B	(PREFETCH_DIST) | 
|  | #define C	(B + PREFETCH_DIST) | 
|  | #define D	(C + 1) | 
|  | #define N	(D + 1) | 
|  | #define Nrot	((N + 7) & ~7) | 
|  |  | 
|  | /* alias */ | 
|  | #define in0		r32 | 
|  | #define in1		r33 | 
|  | #define in2		r34 | 
|  |  | 
|  | GLOBAL_ENTRY(memcpy) | 
|  | and	r28=0x7,in0 | 
|  | and	r29=0x7,in1 | 
|  | mov	f6=f0 | 
|  | mov	retval=in0 | 
|  | br.cond.sptk .common_code | 
|  | ;; | 
|  | END(memcpy) | 
|  | GLOBAL_ENTRY(__copy_user) | 
|  | .prologue | 
|  | // check dest alignment | 
|  | and	r28=0x7,in0 | 
|  | and	r29=0x7,in1 | 
|  | mov	f6=f1 | 
|  | mov	saved_in0=in0	// save dest pointer | 
|  | mov	saved_in1=in1	// save src pointer | 
|  | mov	retval=r0	// initialize return value | 
|  | ;; | 
|  | .common_code: | 
|  | cmp.gt	p15,p0=8,in2	// check for small size | 
|  | cmp.ne	p13,p0=0,r28	// check dest alignment | 
|  | cmp.ne	p14,p0=0,r29	// check src alignment | 
|  | add	src0=0,in1 | 
|  | sub	r30=8,r28	// for .align_dest | 
|  | mov	saved_in2=in2	// save len | 
|  | ;; | 
|  | add	dst0=0,in0 | 
|  | add	dst1=1,in0	// dest odd index | 
|  | cmp.le	p6,p0 = 1,r30	// for .align_dest | 
|  | (p15)	br.cond.dpnt .memcpy_short | 
|  | (p13)	br.cond.dpnt .align_dest | 
|  | (p14)	br.cond.dpnt .unaligned_src | 
|  | ;; | 
|  |  | 
|  | // both dest and src are aligned on 8-byte boundary | 
|  | .aligned_src: | 
|  | .save ar.pfs, saved_pfs | 
|  | alloc	saved_pfs=ar.pfs,3,Nrot-3,0,Nrot | 
|  | .save pr, saved_pr | 
|  | mov	saved_pr=pr | 
|  |  | 
|  | shr.u	cnt=in2,7	// this much cache line | 
|  | ;; | 
|  | cmp.lt	p6,p0=2*PREFETCH_DIST,cnt | 
|  | cmp.lt	p7,p8=1,cnt | 
|  | .save ar.lc, saved_lc | 
|  | mov	saved_lc=ar.lc | 
|  | .body | 
|  | add	cnt=-1,cnt | 
|  | add	src_pre_mem=0,in1	// prefetch src pointer | 
|  | add	dst_pre_mem=0,in0	// prefetch dest pointer | 
|  | ;; | 
|  | (p7)	mov	ar.lc=cnt	// prefetch count | 
|  | (p8)	mov	ar.lc=r0 | 
|  | (p6)	br.cond.dpnt .long_copy | 
|  | ;; | 
|  |  | 
|  | .prefetch: | 
|  | lfetch.fault	  [src_pre_mem], 128 | 
|  | lfetch.fault.excl [dst_pre_mem], 128 | 
|  | br.cloop.dptk.few .prefetch | 
|  | ;; | 
|  |  | 
|  | .medium_copy: | 
|  | and	tmp=31,in2	// copy length after iteration | 
|  | shr.u	r29=in2,5	// number of 32-byte iteration | 
|  | add	dst1=8,dst0	// 2nd dest pointer | 
|  | ;; | 
|  | add	cnt=-1,r29	// ctop iteration adjustment | 
|  | cmp.eq	p10,p0=r29,r0	// do we really need to loop? | 
|  | add	src1=8,src0	// 2nd src pointer | 
|  | cmp.le	p6,p0=8,tmp | 
|  | ;; | 
|  | cmp.le	p7,p0=16,tmp | 
|  | mov	ar.lc=cnt	// loop setup | 
|  | cmp.eq	p16,p17 = r0,r0 | 
|  | mov	ar.ec=2 | 
|  | (p10)	br.dpnt.few .aligned_src_tail | 
|  | ;; | 
|  | TEXT_ALIGN(32) | 
|  | 1: | 
|  | EX(.ex_handler, (p16)	ld8	r34=[src0],16) | 
|  | EK(.ex_handler, (p16)	ld8	r38=[src1],16) | 
|  | EX(.ex_handler, (p17)	st8	[dst0]=r33,16) | 
|  | EK(.ex_handler, (p17)	st8	[dst1]=r37,16) | 
|  | ;; | 
|  | EX(.ex_handler, (p16)	ld8	r32=[src0],16) | 
|  | EK(.ex_handler, (p16)	ld8	r36=[src1],16) | 
|  | EX(.ex_handler, (p16)	st8	[dst0]=r34,16) | 
|  | EK(.ex_handler, (p16)	st8	[dst1]=r38,16) | 
|  | br.ctop.dptk.few 1b | 
|  | ;; | 
|  |  | 
|  | .aligned_src_tail: | 
|  | EX(.ex_handler, (p6)	ld8	t1=[src0]) | 
|  | mov	ar.lc=saved_lc | 
|  | mov	ar.pfs=saved_pfs | 
|  | EX(.ex_hndlr_s, (p7)	ld8	t2=[src1],8) | 
|  | cmp.le	p8,p0=24,tmp | 
|  | and	r21=-8,tmp | 
|  | ;; | 
|  | EX(.ex_hndlr_s, (p8)	ld8	t3=[src1]) | 
|  | EX(.ex_handler, (p6)	st8	[dst0]=t1)	// store byte 1 | 
|  | and	in2=7,tmp	// remaining length | 
|  | EX(.ex_hndlr_d, (p7)	st8	[dst1]=t2,8)	// store byte 2 | 
|  | add	src0=src0,r21	// setting up src pointer | 
|  | add	dst0=dst0,r21	// setting up dest pointer | 
|  | ;; | 
|  | EX(.ex_handler, (p8)	st8	[dst1]=t3)	// store byte 3 | 
|  | mov	pr=saved_pr,-1 | 
|  | br.dptk.many .memcpy_short | 
|  | ;; | 
|  |  | 
|  | /* code taken from copy_page_mck */ | 
|  | .long_copy: | 
|  | .rotr v[2*PREFETCH_DIST] | 
|  | .rotp p[N] | 
|  |  | 
|  | mov src_pre_mem = src0 | 
|  | mov pr.rot = 0x10000 | 
|  | mov ar.ec = 1				// special unrolled loop | 
|  |  | 
|  | mov dst_pre_mem = dst0 | 
|  |  | 
|  | add src_pre_l2 = 8*8, src0 | 
|  | add dst_pre_l2 = 8*8, dst0 | 
|  | ;; | 
|  | add src0 = 8, src_pre_mem		// first t1 src | 
|  | mov ar.lc = 2*PREFETCH_DIST - 1 | 
|  | shr.u cnt=in2,7				// number of lines | 
|  | add src1 = 3*8, src_pre_mem		// first t3 src | 
|  | add dst0 = 8, dst_pre_mem		// first t1 dst | 
|  | add dst1 = 3*8, dst_pre_mem		// first t3 dst | 
|  | ;; | 
|  | and tmp=127,in2				// remaining bytes after this block | 
|  | add cnt = -(2*PREFETCH_DIST) - 1, cnt | 
|  | // same as .line_copy loop, but with all predicated-off instructions removed: | 
|  | .prefetch_loop: | 
|  | EX(.ex_hndlr_lcpy_1, (p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 | 
|  | EK(.ex_hndlr_lcpy_1, (p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 | 
|  | br.ctop.sptk .prefetch_loop | 
|  | ;; | 
|  | cmp.eq p16, p0 = r0, r0			// reset p16 to 1 | 
|  | mov ar.lc = cnt | 
|  | mov ar.ec = N				// # of stages in pipeline | 
|  | ;; | 
|  | .line_copy: | 
|  | EX(.ex_handler,	(p[D])	ld8 t2 = [src0], 3*8)			// M0 | 
|  | EK(.ex_handler,	(p[D])	ld8 t4 = [src1], 3*8)			// M1 | 
|  | EX(.ex_handler_lcpy,	(p[B])	st8 [dst_pre_mem] = v[B], 128)		// M2 prefetch dst from memory | 
|  | EK(.ex_handler_lcpy,	(p[D])	st8 [dst_pre_l2] = n8, 128)		// M3 prefetch dst from L2 | 
|  | ;; | 
|  | EX(.ex_handler_lcpy,	(p[A])	ld8 v[A] = [src_pre_mem], 128)		// M0 prefetch src from memory | 
|  | EK(.ex_handler_lcpy,	(p[C])	ld8 n8 = [src_pre_l2], 128)		// M1 prefetch src from L2 | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] =  t1, 8)			// M2 | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] =  t3, 8)			// M3 | 
|  | ;; | 
|  | EX(.ex_handler,	(p[D])	ld8  t5 = [src0], 8) | 
|  | EK(.ex_handler,	(p[D])	ld8  t7 = [src1], 3*8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] =  t2, 3*8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] =  t4, 3*8) | 
|  | ;; | 
|  | EX(.ex_handler,	(p[D])	ld8  t6 = [src0], 3*8) | 
|  | EK(.ex_handler,	(p[D])	ld8 t10 = [src1], 8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] =  t5, 8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] =  t7, 3*8) | 
|  | ;; | 
|  | EX(.ex_handler,	(p[D])	ld8  t9 = [src0], 3*8) | 
|  | EK(.ex_handler,	(p[D])	ld8 t11 = [src1], 3*8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] =  t6, 3*8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] = t10, 8) | 
|  | ;; | 
|  | EX(.ex_handler,	(p[D])	ld8 t12 = [src0], 8) | 
|  | EK(.ex_handler,	(p[D])	ld8 t14 = [src1], 8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] =  t9, 3*8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] = t11, 3*8) | 
|  | ;; | 
|  | EX(.ex_handler,	(p[D])	ld8 t13 = [src0], 4*8) | 
|  | EK(.ex_handler,	(p[D])	ld8 t15 = [src1], 4*8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] = t12, 8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] = t14, 8) | 
|  | ;; | 
|  | EX(.ex_handler,	(p[C])	ld8  t1 = [src0], 8) | 
|  | EK(.ex_handler,	(p[C])	ld8  t3 = [src1], 8) | 
|  | EX(.ex_handler,	(p[D])	st8 [dst0] = t13, 4*8) | 
|  | EK(.ex_handler,	(p[D])	st8 [dst1] = t15, 4*8) | 
|  | br.ctop.sptk .line_copy | 
|  | ;; | 
|  |  | 
|  | add dst0=-8,dst0 | 
|  | add src0=-8,src0 | 
|  | mov in2=tmp | 
|  | .restore sp | 
|  | br.sptk.many .medium_copy | 
|  | ;; | 
|  |  | 
|  | #define BLOCK_SIZE	128*32 | 
|  | #define blocksize	r23 | 
|  | #define curlen		r24 | 
|  |  | 
|  | // dest is on 8-byte boundary, src is not. We need to do | 
|  | // ld8-ld8, shrp, then st8.  Max 8 byte copy per cycle. | 
|  | .unaligned_src: | 
|  | .prologue | 
|  | .save ar.pfs, saved_pfs | 
|  | alloc	saved_pfs=ar.pfs,3,5,0,8 | 
|  | .save ar.lc, saved_lc | 
|  | mov	saved_lc=ar.lc | 
|  | .save pr, saved_pr | 
|  | mov	saved_pr=pr | 
|  | .body | 
|  | .4k_block: | 
|  | mov	saved_in0=dst0	// need to save all input arguments | 
|  | mov	saved_in2=in2 | 
|  | mov	blocksize=BLOCK_SIZE | 
|  | ;; | 
|  | cmp.lt	p6,p7=blocksize,in2 | 
|  | mov	saved_in1=src0 | 
|  | ;; | 
|  | (p6)	mov	in2=blocksize | 
|  | ;; | 
|  | shr.u	r21=in2,7	// this much cache line | 
|  | shr.u	r22=in2,4	// number of 16-byte iteration | 
|  | and	curlen=15,in2	// copy length after iteration | 
|  | and	r30=7,src0	// source alignment | 
|  | ;; | 
|  | cmp.lt	p7,p8=1,r21 | 
|  | add	cnt=-1,r21 | 
|  | ;; | 
|  |  | 
|  | add	src_pre_mem=0,src0	// prefetch src pointer | 
|  | add	dst_pre_mem=0,dst0	// prefetch dest pointer | 
|  | and	src0=-8,src0		// 1st src pointer | 
|  | (p7)	mov	ar.lc = cnt | 
|  | (p8)	mov	ar.lc = r0 | 
|  | ;; | 
|  | TEXT_ALIGN(32) | 
|  | 1:	lfetch.fault	  [src_pre_mem], 128 | 
|  | lfetch.fault.excl [dst_pre_mem], 128 | 
|  | br.cloop.dptk.few 1b | 
|  | ;; | 
|  |  | 
|  | shladd	dst1=r22,3,dst0	// 2nd dest pointer | 
|  | shladd	src1=r22,3,src0	// 2nd src pointer | 
|  | cmp.eq	p8,p9=r22,r0	// do we really need to loop? | 
|  | cmp.le	p6,p7=8,curlen;	// have at least 8 byte remaining? | 
|  | add	cnt=-1,r22	// ctop iteration adjustment | 
|  | ;; | 
|  | EX(.ex_handler, (p9)	ld8	r33=[src0],8)	// loop primer | 
|  | EK(.ex_handler, (p9)	ld8	r37=[src1],8) | 
|  | (p8)	br.dpnt.few .noloop | 
|  | ;; | 
|  |  | 
|  | // The jump address is calculated based on src alignment. The COPYU | 
|  | // macro below need to confine its size to power of two, so an entry | 
|  | // can be caulated using shl instead of an expensive multiply. The | 
|  | // size is then hard coded by the following #define to match the | 
|  | // actual size.  This make it somewhat tedious when COPYU macro gets | 
|  | // changed and this need to be adjusted to match. | 
|  | #define LOOP_SIZE 6 | 
|  | 1: | 
|  | mov	r29=ip		// jmp_table thread | 
|  | mov	ar.lc=cnt | 
|  | ;; | 
|  | add	r29=.jump_table - 1b - (.jmp1-.jump_table), r29 | 
|  | shl	r28=r30, LOOP_SIZE	// jmp_table thread | 
|  | mov	ar.ec=2		// loop setup | 
|  | ;; | 
|  | add	r29=r29,r28		// jmp_table thread | 
|  | cmp.eq	p16,p17=r0,r0 | 
|  | ;; | 
|  | mov	b6=r29			// jmp_table thread | 
|  | ;; | 
|  | br.cond.sptk.few b6 | 
|  |  | 
|  | // for 8-15 byte case | 
|  | // We will skip the loop, but need to replicate the side effect | 
|  | // that the loop produces. | 
|  | .noloop: | 
|  | EX(.ex_handler, (p6)	ld8	r37=[src1],8) | 
|  | add	src0=8,src0 | 
|  | (p6)	shl	r25=r30,3 | 
|  | ;; | 
|  | EX(.ex_handler, (p6)	ld8	r27=[src1]) | 
|  | (p6)	shr.u	r28=r37,r25 | 
|  | (p6)	sub	r26=64,r25 | 
|  | ;; | 
|  | (p6)	shl	r27=r27,r26 | 
|  | ;; | 
|  | (p6)	or	r21=r28,r27 | 
|  |  | 
|  | .unaligned_src_tail: | 
|  | /* check if we have more than blocksize to copy, if so go back */ | 
|  | cmp.gt	p8,p0=saved_in2,blocksize | 
|  | ;; | 
|  | (p8)	add	dst0=saved_in0,blocksize | 
|  | (p8)	add	src0=saved_in1,blocksize | 
|  | (p8)	sub	in2=saved_in2,blocksize | 
|  | (p8)	br.dpnt	.4k_block | 
|  | ;; | 
|  |  | 
|  | /* we have up to 15 byte to copy in the tail. | 
|  | * part of work is already done in the jump table code | 
|  | * we are at the following state. | 
|  | * src side: | 
|  | * | 
|  | *   xxxxxx xx                   <----- r21 has xxxxxxxx already | 
|  | * -------- -------- -------- | 
|  | * 0        8        16 | 
|  | *          ^ | 
|  | *          | | 
|  | *          src1 | 
|  | * | 
|  | * dst | 
|  | * -------- -------- -------- | 
|  | * ^ | 
|  | * | | 
|  | * dst1 | 
|  | */ | 
|  | EX(.ex_handler, (p6)	st8	[dst1]=r21,8)	// more than 8 byte to copy | 
|  | (p6)	add	curlen=-8,curlen	// update length | 
|  | mov	ar.pfs=saved_pfs | 
|  | ;; | 
|  | mov	ar.lc=saved_lc | 
|  | mov	pr=saved_pr,-1 | 
|  | mov	in2=curlen	// remaining length | 
|  | mov	dst0=dst1	// dest pointer | 
|  | add	src0=src1,r30	// forward by src alignment | 
|  | ;; | 
|  |  | 
|  | // 7 byte or smaller. | 
|  | .memcpy_short: | 
|  | cmp.le	p8,p9   = 1,in2 | 
|  | cmp.le	p10,p11 = 2,in2 | 
|  | cmp.le	p12,p13 = 3,in2 | 
|  | cmp.le	p14,p15 = 4,in2 | 
|  | add	src1=1,src0	// second src pointer | 
|  | add	dst1=1,dst0	// second dest pointer | 
|  | ;; | 
|  |  | 
|  | EX(.ex_handler_short, (p8)	ld1	t1=[src0],2) | 
|  | EK(.ex_handler_short, (p10)	ld1	t2=[src1],2) | 
|  | (p9)	br.ret.dpnt rp		// 0 byte copy | 
|  | ;; | 
|  |  | 
|  | EX(.ex_handler_short, (p8)	st1	[dst0]=t1,2) | 
|  | EK(.ex_handler_short, (p10)	st1	[dst1]=t2,2) | 
|  | (p11)	br.ret.dpnt rp		// 1 byte copy | 
|  |  | 
|  | EX(.ex_handler_short, (p12)	ld1	t3=[src0],2) | 
|  | EK(.ex_handler_short, (p14)	ld1	t4=[src1],2) | 
|  | (p13)	br.ret.dpnt rp		// 2 byte copy | 
|  | ;; | 
|  |  | 
|  | cmp.le	p6,p7   = 5,in2 | 
|  | cmp.le	p8,p9   = 6,in2 | 
|  | cmp.le	p10,p11 = 7,in2 | 
|  |  | 
|  | EX(.ex_handler_short, (p12)	st1	[dst0]=t3,2) | 
|  | EK(.ex_handler_short, (p14)	st1	[dst1]=t4,2) | 
|  | (p15)	br.ret.dpnt rp		// 3 byte copy | 
|  | ;; | 
|  |  | 
|  | EX(.ex_handler_short, (p6)	ld1	t5=[src0],2) | 
|  | EK(.ex_handler_short, (p8)	ld1	t6=[src1],2) | 
|  | (p7)	br.ret.dpnt rp		// 4 byte copy | 
|  | ;; | 
|  |  | 
|  | EX(.ex_handler_short, (p6)	st1	[dst0]=t5,2) | 
|  | EK(.ex_handler_short, (p8)	st1	[dst1]=t6,2) | 
|  | (p9)	br.ret.dptk rp		// 5 byte copy | 
|  |  | 
|  | EX(.ex_handler_short, (p10)	ld1	t7=[src0],2) | 
|  | (p11)	br.ret.dptk rp		// 6 byte copy | 
|  | ;; | 
|  |  | 
|  | EX(.ex_handler_short, (p10)	st1	[dst0]=t7,2) | 
|  | br.ret.dptk rp		// done all cases | 
|  |  | 
|  |  | 
|  | /* Align dest to nearest 8-byte boundary. We know we have at | 
|  | * least 7 bytes to copy, enough to crawl to 8-byte boundary. | 
|  | * Actual number of byte to crawl depend on the dest alignment. | 
|  | * 7 byte or less is taken care at .memcpy_short | 
|  |  | 
|  | * src0 - source even index | 
|  | * src1 - source  odd index | 
|  | * dst0 - dest even index | 
|  | * dst1 - dest  odd index | 
|  | * r30  - distance to 8-byte boundary | 
|  | */ | 
|  |  | 
|  | .align_dest: | 
|  | add	src1=1,in1	// source odd index | 
|  | cmp.le	p7,p0 = 2,r30	// for .align_dest | 
|  | cmp.le	p8,p0 = 3,r30	// for .align_dest | 
|  | EX(.ex_handler_short, (p6)	ld1	t1=[src0],2) | 
|  | cmp.le	p9,p0 = 4,r30	// for .align_dest | 
|  | cmp.le	p10,p0 = 5,r30 | 
|  | ;; | 
|  | EX(.ex_handler_short, (p7)	ld1	t2=[src1],2) | 
|  | EK(.ex_handler_short, (p8)	ld1	t3=[src0],2) | 
|  | cmp.le	p11,p0 = 6,r30 | 
|  | EX(.ex_handler_short, (p6)	st1	[dst0] = t1,2) | 
|  | cmp.le	p12,p0 = 7,r30 | 
|  | ;; | 
|  | EX(.ex_handler_short, (p9)	ld1	t4=[src1],2) | 
|  | EK(.ex_handler_short, (p10)	ld1	t5=[src0],2) | 
|  | EX(.ex_handler_short, (p7)	st1	[dst1] = t2,2) | 
|  | EK(.ex_handler_short, (p8)	st1	[dst0] = t3,2) | 
|  | ;; | 
|  | EX(.ex_handler_short, (p11)	ld1	t6=[src1],2) | 
|  | EK(.ex_handler_short, (p12)	ld1	t7=[src0],2) | 
|  | cmp.eq	p6,p7=r28,r29 | 
|  | EX(.ex_handler_short, (p9)	st1	[dst1] = t4,2) | 
|  | EK(.ex_handler_short, (p10)	st1	[dst0] = t5,2) | 
|  | sub	in2=in2,r30 | 
|  | ;; | 
|  | EX(.ex_handler_short, (p11)	st1	[dst1] = t6,2) | 
|  | EK(.ex_handler_short, (p12)	st1	[dst0] = t7) | 
|  | add	dst0=in0,r30	// setup arguments | 
|  | add	src0=in1,r30 | 
|  | (p6)	br.cond.dptk .aligned_src | 
|  | (p7)	br.cond.dpnt .unaligned_src | 
|  | ;; | 
|  |  | 
|  | /* main loop body in jump table format */ | 
|  | #define COPYU(shift)									\ | 
|  | 1:											\ | 
|  | EX(.ex_handler,  (p16)	ld8	r32=[src0],8);		/* 1 */				\ | 
|  | EK(.ex_handler,  (p16)	ld8	r36=[src1],8);						\ | 
|  | (p17)	shrp	r35=r33,r34,shift;;	/* 1 */				\ | 
|  | EX(.ex_handler,  (p6)	ld8	r22=[src1]);	/* common, prime for tail section */	\ | 
|  | nop.m	0;								\ | 
|  | (p16)	shrp	r38=r36,r37,shift;					\ | 
|  | EX(.ex_handler,  (p17)	st8	[dst0]=r35,8);		/* 1 */				\ | 
|  | EK(.ex_handler,  (p17)	st8	[dst1]=r39,8);						\ | 
|  | br.ctop.dptk.few 1b;;							\ | 
|  | (p7)	add	src1=-8,src1;	/* back out for <8 byte case */		\ | 
|  | shrp	r21=r22,r38,shift;	/* speculative work */			\ | 
|  | br.sptk.few .unaligned_src_tail /* branch out of jump table */		\ | 
|  | ;; | 
|  | TEXT_ALIGN(32) | 
|  | .jump_table: | 
|  | COPYU(8)	// unaligned cases | 
|  | .jmp1: | 
|  | COPYU(16) | 
|  | COPYU(24) | 
|  | COPYU(32) | 
|  | COPYU(40) | 
|  | COPYU(48) | 
|  | COPYU(56) | 
|  |  | 
|  | #undef A | 
|  | #undef B | 
|  | #undef C | 
|  | #undef D | 
|  |  | 
|  | /* | 
|  | * Due to lack of local tag support in gcc 2.x assembler, it is not clear which | 
|  | * instruction failed in the bundle.  The exception algorithm is that we | 
|  | * first figure out the faulting address, then detect if there is any | 
|  | * progress made on the copy, if so, redo the copy from last known copied | 
|  | * location up to the faulting address (exclusive). In the copy_from_user | 
|  | * case, remaining byte in kernel buffer will be zeroed. | 
|  | * | 
|  | * Take copy_from_user as an example, in the code there are multiple loads | 
|  | * in a bundle and those multiple loads could span over two pages, the | 
|  | * faulting address is calculated as page_round_down(max(src0, src1)). | 
|  | * This is based on knowledge that if we can access one byte in a page, we | 
|  | * can access any byte in that page. | 
|  | * | 
|  | * predicate used in the exception handler: | 
|  | * p6-p7: direction | 
|  | * p10-p11: src faulting addr calculation | 
|  | * p12-p13: dst faulting addr calculation | 
|  | */ | 
|  |  | 
|  | #define A	r19 | 
|  | #define B	r20 | 
|  | #define C	r21 | 
|  | #define D	r22 | 
|  | #define F	r28 | 
|  |  | 
|  | #define memset_arg0	r32 | 
|  | #define memset_arg2	r33 | 
|  |  | 
|  | #define saved_retval	loc0 | 
|  | #define saved_rtlink	loc1 | 
|  | #define saved_pfs_stack	loc2 | 
|  |  | 
|  | .ex_hndlr_s: | 
|  | add	src0=8,src0 | 
|  | br.sptk .ex_handler | 
|  | ;; | 
|  | .ex_hndlr_d: | 
|  | add	dst0=8,dst0 | 
|  | br.sptk .ex_handler | 
|  | ;; | 
|  | .ex_hndlr_lcpy_1: | 
|  | mov	src1=src_pre_mem | 
|  | mov	dst1=dst_pre_mem | 
|  | cmp.gtu	p10,p11=src_pre_mem,saved_in1 | 
|  | cmp.gtu	p12,p13=dst_pre_mem,saved_in0 | 
|  | ;; | 
|  | (p10)	add	src0=8,saved_in1 | 
|  | (p11)	mov	src0=saved_in1 | 
|  | (p12)	add	dst0=8,saved_in0 | 
|  | (p13)	mov	dst0=saved_in0 | 
|  | br.sptk	.ex_handler | 
|  | .ex_handler_lcpy: | 
|  | // in line_copy block, the preload addresses should always ahead | 
|  | // of the other two src/dst pointers.  Furthermore, src1/dst1 should | 
|  | // always ahead of src0/dst0. | 
|  | mov	src1=src_pre_mem | 
|  | mov	dst1=dst_pre_mem | 
|  | .ex_handler: | 
|  | mov	pr=saved_pr,-1		// first restore pr, lc, and pfs | 
|  | mov	ar.lc=saved_lc | 
|  | mov	ar.pfs=saved_pfs | 
|  | ;; | 
|  | .ex_handler_short: // fault occurred in these sections didn't change pr, lc, pfs | 
|  | cmp.ltu	p6,p7=saved_in0, saved_in1	// get the copy direction | 
|  | cmp.ltu	p10,p11=src0,src1 | 
|  | cmp.ltu	p12,p13=dst0,dst1 | 
|  | fcmp.eq	p8,p0=f6,f0		// is it memcpy? | 
|  | mov	tmp = dst0 | 
|  | ;; | 
|  | (p11)	mov	src1 = src0		// pick the larger of the two | 
|  | (p13)	mov	dst0 = dst1		// make dst0 the smaller one | 
|  | (p13)	mov	dst1 = tmp		// and dst1 the larger one | 
|  | ;; | 
|  | (p6)	dep	F = r0,dst1,0,PAGE_SHIFT // usr dst round down to page boundary | 
|  | (p7)	dep	F = r0,src1,0,PAGE_SHIFT // usr src round down to page boundary | 
|  | ;; | 
|  | (p6)	cmp.le	p14,p0=dst0,saved_in0	// no progress has been made on store | 
|  | (p7)	cmp.le	p14,p0=src0,saved_in1	// no progress has been made on load | 
|  | mov	retval=saved_in2 | 
|  | (p8)	ld1	tmp=[src1]		// force an oops for memcpy call | 
|  | (p8)	st1	[dst1]=r0		// force an oops for memcpy call | 
|  | (p14)	br.ret.sptk.many rp | 
|  |  | 
|  | /* | 
|  | * The remaining byte to copy is calculated as: | 
|  | * | 
|  | * A =	(faulting_addr - orig_src)	-> len to faulting ld address | 
|  | *	or | 
|  | * 	(faulting_addr - orig_dst)	-> len to faulting st address | 
|  | * B =	(cur_dst - orig_dst)		-> len copied so far | 
|  | * C =	A - B				-> len need to be copied | 
|  | * D =	orig_len - A			-> len need to be zeroed | 
|  | */ | 
|  | (p6)	sub	A = F, saved_in0 | 
|  | (p7)	sub	A = F, saved_in1 | 
|  | clrrrb | 
|  | ;; | 
|  | alloc	saved_pfs_stack=ar.pfs,3,3,3,0 | 
|  | cmp.lt	p8,p0=A,r0 | 
|  | sub	B = dst0, saved_in0	// how many byte copied so far | 
|  | ;; | 
|  | (p8)	mov	A = 0;			// A shouldn't be negative, cap it | 
|  | ;; | 
|  | sub	C = A, B | 
|  | sub	D = saved_in2, A | 
|  | ;; | 
|  | cmp.gt	p8,p0=C,r0		// more than 1 byte? | 
|  | add	memset_arg0=saved_in0, A | 
|  | (p6)	mov	memset_arg2=0		// copy_to_user should not call memset | 
|  | (p7)	mov	memset_arg2=D		// copy_from_user need to have kbuf zeroed | 
|  | mov	r8=0 | 
|  | mov	saved_retval = D | 
|  | mov	saved_rtlink = b0 | 
|  |  | 
|  | add	out0=saved_in0, B | 
|  | add	out1=saved_in1, B | 
|  | mov	out2=C | 
|  | (p8)	br.call.sptk.few b0=__copy_user	// recursive call | 
|  | ;; | 
|  |  | 
|  | add	saved_retval=saved_retval,r8	// above might return non-zero value | 
|  | cmp.gt	p8,p0=memset_arg2,r0	// more than 1 byte? | 
|  | mov	out0=memset_arg0	// *s | 
|  | mov	out1=r0			// c | 
|  | mov	out2=memset_arg2	// n | 
|  | (p8)	br.call.sptk.few b0=memset | 
|  | ;; | 
|  |  | 
|  | mov	retval=saved_retval | 
|  | mov	ar.pfs=saved_pfs_stack | 
|  | mov	b0=saved_rtlink | 
|  | br.ret.sptk.many rp | 
|  |  | 
|  | /* end of McKinley specific optimization */ | 
|  | END(__copy_user) |