|  | /* align.c - handle alignment exceptions for the Power PC. | 
|  | * | 
|  | * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au> | 
|  | * Copyright (c) 1998-1999 TiVo, Inc. | 
|  | *   PowerPC 403GCX modifications. | 
|  | * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu> | 
|  | *   PowerPC 403GCX/405GP modifications. | 
|  | * Copyright (c) 2001-2002 PPC64 team, IBM Corp | 
|  | *   64-bit and Power4 support | 
|  | * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp | 
|  | *                    <benh@kernel.crashing.org> | 
|  | *   Merge ppc32 and ppc64 implementations | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/emulated_ops.h> | 
|  |  | 
|  | struct aligninfo { | 
|  | unsigned char len; | 
|  | unsigned char flags; | 
|  | }; | 
|  |  | 
|  | #define IS_XFORM(inst)	(((inst) >> 26) == 31) | 
|  | #define IS_DSFORM(inst)	(((inst) >> 26) >= 56) | 
|  |  | 
|  | #define INVALID	{ 0, 0 } | 
|  |  | 
|  | /* Bits in the flags field */ | 
|  | #define LD	0	/* load */ | 
|  | #define ST	1	/* store */ | 
|  | #define SE	2	/* sign-extend value, or FP ld/st as word */ | 
|  | #define F	4	/* to/from fp regs */ | 
|  | #define U	8	/* update index register */ | 
|  | #define M	0x10	/* multiple load/store */ | 
|  | #define SW	0x20	/* byte swap */ | 
|  | #define S	0x40	/* single-precision fp or... */ | 
|  | #define SX	0x40	/* ... byte count in XER */ | 
|  | #define HARD	0x80	/* string, stwcx. */ | 
|  | #define E4	0x40	/* SPE endianness is word */ | 
|  | #define E8	0x80	/* SPE endianness is double word */ | 
|  | #define SPLT	0x80	/* VSX SPLAT load */ | 
|  |  | 
|  | /* DSISR bits reported for a DCBZ instruction: */ | 
|  | #define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */ | 
|  |  | 
|  | #define SWAP(a, b)	(t = (a), (a) = (b), (b) = t) | 
|  |  | 
|  | /* | 
|  | * The PowerPC stores certain bits of the instruction that caused the | 
|  | * alignment exception in the DSISR register.  This array maps those | 
|  | * bits to information about the operand length and what the | 
|  | * instruction would do. | 
|  | */ | 
|  | static struct aligninfo aligninfo[128] = { | 
|  | { 4, LD },		/* 00 0 0000: lwz / lwarx */ | 
|  | INVALID,		/* 00 0 0001 */ | 
|  | { 4, ST },		/* 00 0 0010: stw */ | 
|  | INVALID,		/* 00 0 0011 */ | 
|  | { 2, LD },		/* 00 0 0100: lhz */ | 
|  | { 2, LD+SE },		/* 00 0 0101: lha */ | 
|  | { 2, ST },		/* 00 0 0110: sth */ | 
|  | { 4, LD+M },		/* 00 0 0111: lmw */ | 
|  | { 4, LD+F+S },		/* 00 0 1000: lfs */ | 
|  | { 8, LD+F },		/* 00 0 1001: lfd */ | 
|  | { 4, ST+F+S },		/* 00 0 1010: stfs */ | 
|  | { 8, ST+F },		/* 00 0 1011: stfd */ | 
|  | INVALID,		/* 00 0 1100 */ | 
|  | { 8, LD },		/* 00 0 1101: ld/ldu/lwa */ | 
|  | INVALID,		/* 00 0 1110 */ | 
|  | { 8, ST },		/* 00 0 1111: std/stdu */ | 
|  | { 4, LD+U },		/* 00 1 0000: lwzu */ | 
|  | INVALID,		/* 00 1 0001 */ | 
|  | { 4, ST+U },		/* 00 1 0010: stwu */ | 
|  | INVALID,		/* 00 1 0011 */ | 
|  | { 2, LD+U },		/* 00 1 0100: lhzu */ | 
|  | { 2, LD+SE+U },		/* 00 1 0101: lhau */ | 
|  | { 2, ST+U },		/* 00 1 0110: sthu */ | 
|  | { 4, ST+M },		/* 00 1 0111: stmw */ | 
|  | { 4, LD+F+S+U },	/* 00 1 1000: lfsu */ | 
|  | { 8, LD+F+U },		/* 00 1 1001: lfdu */ | 
|  | { 4, ST+F+S+U },	/* 00 1 1010: stfsu */ | 
|  | { 8, ST+F+U },		/* 00 1 1011: stfdu */ | 
|  | { 16, LD+F },		/* 00 1 1100: lfdp */ | 
|  | INVALID,		/* 00 1 1101 */ | 
|  | { 16, ST+F },		/* 00 1 1110: stfdp */ | 
|  | INVALID,		/* 00 1 1111 */ | 
|  | { 8, LD },		/* 01 0 0000: ldx */ | 
|  | INVALID,		/* 01 0 0001 */ | 
|  | { 8, ST },		/* 01 0 0010: stdx */ | 
|  | INVALID,		/* 01 0 0011 */ | 
|  | INVALID,		/* 01 0 0100 */ | 
|  | { 4, LD+SE },		/* 01 0 0101: lwax */ | 
|  | INVALID,		/* 01 0 0110 */ | 
|  | INVALID,		/* 01 0 0111 */ | 
|  | { 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */ | 
|  | { 4, LD+M+HARD },	/* 01 0 1001: lswi */ | 
|  | { 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */ | 
|  | { 4, ST+M+HARD },	/* 01 0 1011: stswi */ | 
|  | INVALID,		/* 01 0 1100 */ | 
|  | { 8, LD+U },		/* 01 0 1101: ldu */ | 
|  | INVALID,		/* 01 0 1110 */ | 
|  | { 8, ST+U },		/* 01 0 1111: stdu */ | 
|  | { 8, LD+U },		/* 01 1 0000: ldux */ | 
|  | INVALID,		/* 01 1 0001 */ | 
|  | { 8, ST+U },		/* 01 1 0010: stdux */ | 
|  | INVALID,		/* 01 1 0011 */ | 
|  | INVALID,		/* 01 1 0100 */ | 
|  | { 4, LD+SE+U },		/* 01 1 0101: lwaux */ | 
|  | INVALID,		/* 01 1 0110 */ | 
|  | INVALID,		/* 01 1 0111 */ | 
|  | INVALID,		/* 01 1 1000 */ | 
|  | INVALID,		/* 01 1 1001 */ | 
|  | INVALID,		/* 01 1 1010 */ | 
|  | INVALID,		/* 01 1 1011 */ | 
|  | INVALID,		/* 01 1 1100 */ | 
|  | INVALID,		/* 01 1 1101 */ | 
|  | INVALID,		/* 01 1 1110 */ | 
|  | INVALID,		/* 01 1 1111 */ | 
|  | INVALID,		/* 10 0 0000 */ | 
|  | INVALID,		/* 10 0 0001 */ | 
|  | INVALID,		/* 10 0 0010: stwcx. */ | 
|  | INVALID,		/* 10 0 0011 */ | 
|  | INVALID,		/* 10 0 0100 */ | 
|  | INVALID,		/* 10 0 0101 */ | 
|  | INVALID,		/* 10 0 0110 */ | 
|  | INVALID,		/* 10 0 0111 */ | 
|  | { 4, LD+SW },		/* 10 0 1000: lwbrx */ | 
|  | INVALID,		/* 10 0 1001 */ | 
|  | { 4, ST+SW },		/* 10 0 1010: stwbrx */ | 
|  | INVALID,		/* 10 0 1011 */ | 
|  | { 2, LD+SW },		/* 10 0 1100: lhbrx */ | 
|  | { 4, LD+SE },		/* 10 0 1101  lwa */ | 
|  | { 2, ST+SW },		/* 10 0 1110: sthbrx */ | 
|  | INVALID,		/* 10 0 1111 */ | 
|  | INVALID,		/* 10 1 0000 */ | 
|  | INVALID,		/* 10 1 0001 */ | 
|  | INVALID,		/* 10 1 0010 */ | 
|  | INVALID,		/* 10 1 0011 */ | 
|  | INVALID,		/* 10 1 0100 */ | 
|  | INVALID,		/* 10 1 0101 */ | 
|  | INVALID,		/* 10 1 0110 */ | 
|  | INVALID,		/* 10 1 0111 */ | 
|  | INVALID,		/* 10 1 1000 */ | 
|  | INVALID,		/* 10 1 1001 */ | 
|  | INVALID,		/* 10 1 1010 */ | 
|  | INVALID,		/* 10 1 1011 */ | 
|  | INVALID,		/* 10 1 1100 */ | 
|  | INVALID,		/* 10 1 1101 */ | 
|  | INVALID,		/* 10 1 1110 */ | 
|  | { 0, ST+HARD },		/* 10 1 1111: dcbz */ | 
|  | { 4, LD },		/* 11 0 0000: lwzx */ | 
|  | INVALID,		/* 11 0 0001 */ | 
|  | { 4, ST },		/* 11 0 0010: stwx */ | 
|  | INVALID,		/* 11 0 0011 */ | 
|  | { 2, LD },		/* 11 0 0100: lhzx */ | 
|  | { 2, LD+SE },		/* 11 0 0101: lhax */ | 
|  | { 2, ST },		/* 11 0 0110: sthx */ | 
|  | INVALID,		/* 11 0 0111 */ | 
|  | { 4, LD+F+S },		/* 11 0 1000: lfsx */ | 
|  | { 8, LD+F },		/* 11 0 1001: lfdx */ | 
|  | { 4, ST+F+S },		/* 11 0 1010: stfsx */ | 
|  | { 8, ST+F },		/* 11 0 1011: stfdx */ | 
|  | { 16, LD+F },		/* 11 0 1100: lfdpx */ | 
|  | { 4, LD+F+SE },		/* 11 0 1101: lfiwax */ | 
|  | { 16, ST+F },		/* 11 0 1110: stfdpx */ | 
|  | { 4, ST+F },		/* 11 0 1111: stfiwx */ | 
|  | { 4, LD+U },		/* 11 1 0000: lwzux */ | 
|  | INVALID,		/* 11 1 0001 */ | 
|  | { 4, ST+U },		/* 11 1 0010: stwux */ | 
|  | INVALID,		/* 11 1 0011 */ | 
|  | { 2, LD+U },		/* 11 1 0100: lhzux */ | 
|  | { 2, LD+SE+U },		/* 11 1 0101: lhaux */ | 
|  | { 2, ST+U },		/* 11 1 0110: sthux */ | 
|  | INVALID,		/* 11 1 0111 */ | 
|  | { 4, LD+F+S+U },	/* 11 1 1000: lfsux */ | 
|  | { 8, LD+F+U },		/* 11 1 1001: lfdux */ | 
|  | { 4, ST+F+S+U },	/* 11 1 1010: stfsux */ | 
|  | { 8, ST+F+U },		/* 11 1 1011: stfdux */ | 
|  | INVALID,		/* 11 1 1100 */ | 
|  | { 4, LD+F },		/* 11 1 1101: lfiwzx */ | 
|  | INVALID,		/* 11 1 1110 */ | 
|  | INVALID,		/* 11 1 1111 */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Create a DSISR value from the instruction | 
|  | */ | 
|  | static inline unsigned make_dsisr(unsigned instr) | 
|  | { | 
|  | unsigned dsisr; | 
|  |  | 
|  |  | 
|  | /* bits  6:15 --> 22:31 */ | 
|  | dsisr = (instr & 0x03ff0000) >> 16; | 
|  |  | 
|  | if (IS_XFORM(instr)) { | 
|  | /* bits 29:30 --> 15:16 */ | 
|  | dsisr |= (instr & 0x00000006) << 14; | 
|  | /* bit     25 -->    17 */ | 
|  | dsisr |= (instr & 0x00000040) << 8; | 
|  | /* bits 21:24 --> 18:21 */ | 
|  | dsisr |= (instr & 0x00000780) << 3; | 
|  | } else { | 
|  | /* bit      5 -->    17 */ | 
|  | dsisr |= (instr & 0x04000000) >> 12; | 
|  | /* bits  1: 4 --> 18:21 */ | 
|  | dsisr |= (instr & 0x78000000) >> 17; | 
|  | /* bits 30:31 --> 12:13 */ | 
|  | if (IS_DSFORM(instr)) | 
|  | dsisr |= (instr & 0x00000003) << 18; | 
|  | } | 
|  |  | 
|  | return dsisr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The dcbz (data cache block zero) instruction | 
|  | * gives an alignment fault if used on non-cacheable | 
|  | * memory.  We handle the fault mainly for the | 
|  | * case when we are running with the cache disabled | 
|  | * for debugging. | 
|  | */ | 
|  | static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr) | 
|  | { | 
|  | long __user *p; | 
|  | int i, size; | 
|  |  | 
|  | #ifdef __powerpc64__ | 
|  | size = ppc64_caches.dline_size; | 
|  | #else | 
|  | size = L1_CACHE_BYTES; | 
|  | #endif | 
|  | p = (long __user *) (regs->dar & -size); | 
|  | if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size)) | 
|  | return -EFAULT; | 
|  | for (i = 0; i < size / sizeof(long); ++i) | 
|  | if (__put_user_inatomic(0, p+i)) | 
|  | return -EFAULT; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate load & store multiple instructions | 
|  | * On 64-bit machines, these instructions only affect/use the | 
|  | * bottom 4 bytes of each register, and the loads clear the | 
|  | * top 4 bytes of the affected register. | 
|  | */ | 
|  | #ifdef CONFIG_PPC64 | 
|  | #define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4) | 
|  | #else | 
|  | #define REG_BYTE(rp, i)		*((u8 *)(rp) + (i)) | 
|  | #endif | 
|  |  | 
|  | #define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz)) | 
|  |  | 
|  | static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, | 
|  | unsigned int reg, unsigned int nb, | 
|  | unsigned int flags, unsigned int instr, | 
|  | unsigned long swiz) | 
|  | { | 
|  | unsigned long *rptr; | 
|  | unsigned int nb0, i, bswiz; | 
|  | unsigned long p; | 
|  |  | 
|  | /* | 
|  | * We do not try to emulate 8 bytes multiple as they aren't really | 
|  | * available in our operating environments and we don't try to | 
|  | * emulate multiples operations in kernel land as they should never | 
|  | * be used/generated there at least not on unaligned boundaries | 
|  | */ | 
|  | if (unlikely((nb > 4) || !user_mode(regs))) | 
|  | return 0; | 
|  |  | 
|  | /* lmw, stmw, lswi/x, stswi/x */ | 
|  | nb0 = 0; | 
|  | if (flags & HARD) { | 
|  | if (flags & SX) { | 
|  | nb = regs->xer & 127; | 
|  | if (nb == 0) | 
|  | return 1; | 
|  | } else { | 
|  | unsigned long pc = regs->nip ^ (swiz & 4); | 
|  |  | 
|  | if (__get_user_inatomic(instr, | 
|  | (unsigned int __user *)pc)) | 
|  | return -EFAULT; | 
|  | if (swiz == 0 && (flags & SW)) | 
|  | instr = cpu_to_le32(instr); | 
|  | nb = (instr >> 11) & 0x1f; | 
|  | if (nb == 0) | 
|  | nb = 32; | 
|  | } | 
|  | if (nb + reg * 4 > 128) { | 
|  | nb0 = nb + reg * 4 - 128; | 
|  | nb = 128 - reg * 4; | 
|  | } | 
|  | } else { | 
|  | /* lwm, stmw */ | 
|  | nb = (32 - reg) * 4; | 
|  | } | 
|  |  | 
|  | if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0)) | 
|  | return -EFAULT;	/* bad address */ | 
|  |  | 
|  | rptr = ®s->gpr[reg]; | 
|  | p = (unsigned long) addr; | 
|  | bswiz = (flags & SW)? 3: 0; | 
|  |  | 
|  | if (!(flags & ST)) { | 
|  | /* | 
|  | * This zeroes the top 4 bytes of the affected registers | 
|  | * in 64-bit mode, and also zeroes out any remaining | 
|  | * bytes of the last register for lsw*. | 
|  | */ | 
|  | memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long)); | 
|  | if (nb0 > 0) | 
|  | memset(®s->gpr[0], 0, | 
|  | ((nb0 + 3) / 4) * sizeof(unsigned long)); | 
|  |  | 
|  | for (i = 0; i < nb; ++i, ++p) | 
|  | if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz), | 
|  | SWIZ_PTR(p))) | 
|  | return -EFAULT; | 
|  | if (nb0 > 0) { | 
|  | rptr = ®s->gpr[0]; | 
|  | addr += nb; | 
|  | for (i = 0; i < nb0; ++i, ++p) | 
|  | if (__get_user_inatomic(REG_BYTE(rptr, | 
|  | i ^ bswiz), | 
|  | SWIZ_PTR(p))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | for (i = 0; i < nb; ++i, ++p) | 
|  | if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz), | 
|  | SWIZ_PTR(p))) | 
|  | return -EFAULT; | 
|  | if (nb0 > 0) { | 
|  | rptr = ®s->gpr[0]; | 
|  | addr += nb; | 
|  | for (i = 0; i < nb0; ++i, ++p) | 
|  | if (__put_user_inatomic(REG_BYTE(rptr, | 
|  | i ^ bswiz), | 
|  | SWIZ_PTR(p))) | 
|  | return -EFAULT; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate floating-point pair loads and stores. | 
|  | * Only POWER6 has these instructions, and it does true little-endian, | 
|  | * so we don't need the address swizzling. | 
|  | */ | 
|  | static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg, | 
|  | unsigned int flags) | 
|  | { | 
|  | char *ptr0 = (char *) ¤t->thread.TS_FPR(reg); | 
|  | char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1); | 
|  | int i, ret, sw = 0; | 
|  |  | 
|  | if (!(flags & F)) | 
|  | return 0; | 
|  | if (reg & 1) | 
|  | return 0;	/* invalid form: FRS/FRT must be even */ | 
|  | if (flags & SW) | 
|  | sw = 7; | 
|  | ret = 0; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | if (!(flags & ST)) { | 
|  | ret |= __get_user(ptr0[i^sw], addr + i); | 
|  | ret |= __get_user(ptr1[i^sw], addr + i + 8); | 
|  | } else { | 
|  | ret |= __put_user(ptr0[i^sw], addr + i); | 
|  | ret |= __put_user(ptr1[i^sw], addr + i + 8); | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | return -EFAULT; | 
|  | return 1;	/* exception handled and fixed up */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPE | 
|  |  | 
|  | static struct aligninfo spe_aligninfo[32] = { | 
|  | { 8, LD+E8 },		/* 0 00 00: evldd[x] */ | 
|  | { 8, LD+E4 },		/* 0 00 01: evldw[x] */ | 
|  | { 8, LD },		/* 0 00 10: evldh[x] */ | 
|  | INVALID,		/* 0 00 11 */ | 
|  | { 2, LD },		/* 0 01 00: evlhhesplat[x] */ | 
|  | INVALID,		/* 0 01 01 */ | 
|  | { 2, LD },		/* 0 01 10: evlhhousplat[x] */ | 
|  | { 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */ | 
|  | { 4, LD },		/* 0 10 00: evlwhe[x] */ | 
|  | INVALID,		/* 0 10 01 */ | 
|  | { 4, LD },		/* 0 10 10: evlwhou[x] */ | 
|  | { 4, LD+SE },		/* 0 10 11: evlwhos[x] */ | 
|  | { 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */ | 
|  | INVALID,		/* 0 11 01 */ | 
|  | { 4, LD },		/* 0 11 10: evlwhsplat[x] */ | 
|  | INVALID,		/* 0 11 11 */ | 
|  |  | 
|  | { 8, ST+E8 },		/* 1 00 00: evstdd[x] */ | 
|  | { 8, ST+E4 },		/* 1 00 01: evstdw[x] */ | 
|  | { 8, ST },		/* 1 00 10: evstdh[x] */ | 
|  | INVALID,		/* 1 00 11 */ | 
|  | INVALID,		/* 1 01 00 */ | 
|  | INVALID,		/* 1 01 01 */ | 
|  | INVALID,		/* 1 01 10 */ | 
|  | INVALID,		/* 1 01 11 */ | 
|  | { 4, ST },		/* 1 10 00: evstwhe[x] */ | 
|  | INVALID,		/* 1 10 01 */ | 
|  | { 4, ST },		/* 1 10 10: evstwho[x] */ | 
|  | INVALID,		/* 1 10 11 */ | 
|  | { 4, ST+E4 },		/* 1 11 00: evstwwe[x] */ | 
|  | INVALID,		/* 1 11 01 */ | 
|  | { 4, ST+E4 },		/* 1 11 10: evstwwo[x] */ | 
|  | INVALID,		/* 1 11 11 */ | 
|  | }; | 
|  |  | 
|  | #define	EVLDD		0x00 | 
|  | #define	EVLDW		0x01 | 
|  | #define	EVLDH		0x02 | 
|  | #define	EVLHHESPLAT	0x04 | 
|  | #define	EVLHHOUSPLAT	0x06 | 
|  | #define	EVLHHOSSPLAT	0x07 | 
|  | #define	EVLWHE		0x08 | 
|  | #define	EVLWHOU		0x0A | 
|  | #define	EVLWHOS		0x0B | 
|  | #define	EVLWWSPLAT	0x0C | 
|  | #define	EVLWHSPLAT	0x0E | 
|  | #define	EVSTDD		0x10 | 
|  | #define	EVSTDW		0x11 | 
|  | #define	EVSTDH		0x12 | 
|  | #define	EVSTWHE		0x18 | 
|  | #define	EVSTWHO		0x1A | 
|  | #define	EVSTWWE		0x1C | 
|  | #define	EVSTWWO		0x1E | 
|  |  | 
|  | /* | 
|  | * Emulate SPE loads and stores. | 
|  | * Only Book-E has these instructions, and it does true little-endian, | 
|  | * so we don't need the address swizzling. | 
|  | */ | 
|  | static int emulate_spe(struct pt_regs *regs, unsigned int reg, | 
|  | unsigned int instr) | 
|  | { | 
|  | int t, ret; | 
|  | union { | 
|  | u64 ll; | 
|  | u32 w[2]; | 
|  | u16 h[4]; | 
|  | u8 v[8]; | 
|  | } data, temp; | 
|  | unsigned char __user *p, *addr; | 
|  | unsigned long *evr = ¤t->thread.evr[reg]; | 
|  | unsigned int nb, flags; | 
|  |  | 
|  | instr = (instr >> 1) & 0x1f; | 
|  |  | 
|  | /* DAR has the operand effective address */ | 
|  | addr = (unsigned char __user *)regs->dar; | 
|  |  | 
|  | nb = spe_aligninfo[instr].len; | 
|  | flags = spe_aligninfo[instr].flags; | 
|  |  | 
|  | /* Verify the address of the operand */ | 
|  | if (unlikely(user_mode(regs) && | 
|  | !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), | 
|  | addr, nb))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* userland only */ | 
|  | if (unlikely(!user_mode(regs))) | 
|  | return 0; | 
|  |  | 
|  | flush_spe_to_thread(current); | 
|  |  | 
|  | /* If we are loading, get the data from user space, else | 
|  | * get it from register values | 
|  | */ | 
|  | if (flags & ST) { | 
|  | data.ll = 0; | 
|  | switch (instr) { | 
|  | case EVSTDD: | 
|  | case EVSTDW: | 
|  | case EVSTDH: | 
|  | data.w[0] = *evr; | 
|  | data.w[1] = regs->gpr[reg]; | 
|  | break; | 
|  | case EVSTWHE: | 
|  | data.h[2] = *evr >> 16; | 
|  | data.h[3] = regs->gpr[reg] >> 16; | 
|  | break; | 
|  | case EVSTWHO: | 
|  | data.h[2] = *evr & 0xffff; | 
|  | data.h[3] = regs->gpr[reg] & 0xffff; | 
|  | break; | 
|  | case EVSTWWE: | 
|  | data.w[1] = *evr; | 
|  | break; | 
|  | case EVSTWWO: | 
|  | data.w[1] = regs->gpr[reg]; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | temp.ll = data.ll = 0; | 
|  | ret = 0; | 
|  | p = addr; | 
|  |  | 
|  | switch (nb) { | 
|  | case 8: | 
|  | ret |= __get_user_inatomic(temp.v[0], p++); | 
|  | ret |= __get_user_inatomic(temp.v[1], p++); | 
|  | ret |= __get_user_inatomic(temp.v[2], p++); | 
|  | ret |= __get_user_inatomic(temp.v[3], p++); | 
|  | case 4: | 
|  | ret |= __get_user_inatomic(temp.v[4], p++); | 
|  | ret |= __get_user_inatomic(temp.v[5], p++); | 
|  | case 2: | 
|  | ret |= __get_user_inatomic(temp.v[6], p++); | 
|  | ret |= __get_user_inatomic(temp.v[7], p++); | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | switch (instr) { | 
|  | case EVLDD: | 
|  | case EVLDW: | 
|  | case EVLDH: | 
|  | data.ll = temp.ll; | 
|  | break; | 
|  | case EVLHHESPLAT: | 
|  | data.h[0] = temp.h[3]; | 
|  | data.h[2] = temp.h[3]; | 
|  | break; | 
|  | case EVLHHOUSPLAT: | 
|  | case EVLHHOSSPLAT: | 
|  | data.h[1] = temp.h[3]; | 
|  | data.h[3] = temp.h[3]; | 
|  | break; | 
|  | case EVLWHE: | 
|  | data.h[0] = temp.h[2]; | 
|  | data.h[2] = temp.h[3]; | 
|  | break; | 
|  | case EVLWHOU: | 
|  | case EVLWHOS: | 
|  | data.h[1] = temp.h[2]; | 
|  | data.h[3] = temp.h[3]; | 
|  | break; | 
|  | case EVLWWSPLAT: | 
|  | data.w[0] = temp.w[1]; | 
|  | data.w[1] = temp.w[1]; | 
|  | break; | 
|  | case EVLWHSPLAT: | 
|  | data.h[0] = temp.h[2]; | 
|  | data.h[1] = temp.h[2]; | 
|  | data.h[2] = temp.h[3]; | 
|  | data.h[3] = temp.h[3]; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flags & SW) { | 
|  | switch (flags & 0xf0) { | 
|  | case E8: | 
|  | SWAP(data.v[0], data.v[7]); | 
|  | SWAP(data.v[1], data.v[6]); | 
|  | SWAP(data.v[2], data.v[5]); | 
|  | SWAP(data.v[3], data.v[4]); | 
|  | break; | 
|  | case E4: | 
|  |  | 
|  | SWAP(data.v[0], data.v[3]); | 
|  | SWAP(data.v[1], data.v[2]); | 
|  | SWAP(data.v[4], data.v[7]); | 
|  | SWAP(data.v[5], data.v[6]); | 
|  | break; | 
|  | /* Its half word endian */ | 
|  | default: | 
|  | SWAP(data.v[0], data.v[1]); | 
|  | SWAP(data.v[2], data.v[3]); | 
|  | SWAP(data.v[4], data.v[5]); | 
|  | SWAP(data.v[6], data.v[7]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flags & SE) { | 
|  | data.w[0] = (s16)data.h[1]; | 
|  | data.w[1] = (s16)data.h[3]; | 
|  | } | 
|  |  | 
|  | /* Store result to memory or update registers */ | 
|  | if (flags & ST) { | 
|  | ret = 0; | 
|  | p = addr; | 
|  | switch (nb) { | 
|  | case 8: | 
|  | ret |= __put_user_inatomic(data.v[0], p++); | 
|  | ret |= __put_user_inatomic(data.v[1], p++); | 
|  | ret |= __put_user_inatomic(data.v[2], p++); | 
|  | ret |= __put_user_inatomic(data.v[3], p++); | 
|  | case 4: | 
|  | ret |= __put_user_inatomic(data.v[4], p++); | 
|  | ret |= __put_user_inatomic(data.v[5], p++); | 
|  | case 2: | 
|  | ret |= __put_user_inatomic(data.v[6], p++); | 
|  | ret |= __put_user_inatomic(data.v[7], p++); | 
|  | } | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  | } else { | 
|  | *evr = data.w[0]; | 
|  | regs->gpr[reg] = data.w[1]; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_SPE */ | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | /* | 
|  | * Emulate VSX instructions... | 
|  | */ | 
|  | static int emulate_vsx(unsigned char __user *addr, unsigned int reg, | 
|  | unsigned int areg, struct pt_regs *regs, | 
|  | unsigned int flags, unsigned int length, | 
|  | unsigned int elsize) | 
|  | { | 
|  | char *ptr; | 
|  | unsigned long *lptr; | 
|  | int ret = 0; | 
|  | int sw = 0; | 
|  | int i, j; | 
|  |  | 
|  | flush_vsx_to_thread(current); | 
|  |  | 
|  | if (reg < 32) | 
|  | ptr = (char *) ¤t->thread.TS_FPR(reg); | 
|  | else | 
|  | ptr = (char *) ¤t->thread.vr[reg - 32]; | 
|  |  | 
|  | lptr = (unsigned long *) ptr; | 
|  |  | 
|  | if (flags & SW) | 
|  | sw = elsize-1; | 
|  |  | 
|  | for (j = 0; j < length; j += elsize) { | 
|  | for (i = 0; i < elsize; ++i) { | 
|  | if (flags & ST) | 
|  | ret |= __put_user(ptr[i^sw], addr + i); | 
|  | else | 
|  | ret |= __get_user(ptr[i^sw], addr + i); | 
|  | } | 
|  | ptr  += elsize; | 
|  | addr += elsize; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | if (flags & U) | 
|  | regs->gpr[areg] = regs->dar; | 
|  |  | 
|  | /* Splat load copies the same data to top and bottom 8 bytes */ | 
|  | if (flags & SPLT) | 
|  | lptr[1] = lptr[0]; | 
|  | /* For 8 byte loads, zero the top 8 bytes */ | 
|  | else if (!(flags & ST) && (8 == length)) | 
|  | lptr[1] = 0; | 
|  | } else | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called on alignment exception. Attempts to fixup | 
|  | * | 
|  | * Return 1 on success | 
|  | * Return 0 if unable to handle the interrupt | 
|  | * Return -EFAULT if data address is bad | 
|  | */ | 
|  |  | 
|  | int fix_alignment(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int instr, nb, flags, instruction = 0; | 
|  | unsigned int reg, areg; | 
|  | unsigned int dsisr; | 
|  | unsigned char __user *addr; | 
|  | unsigned long p, swiz; | 
|  | int ret, t; | 
|  | union { | 
|  | u64 ll; | 
|  | double dd; | 
|  | unsigned char v[8]; | 
|  | struct { | 
|  | unsigned hi32; | 
|  | int	 low32; | 
|  | } x32; | 
|  | struct { | 
|  | unsigned char hi48[6]; | 
|  | short	      low16; | 
|  | } x16; | 
|  | } data; | 
|  |  | 
|  | /* | 
|  | * We require a complete register set, if not, then our assembly | 
|  | * is broken | 
|  | */ | 
|  | CHECK_FULL_REGS(regs); | 
|  |  | 
|  | dsisr = regs->dsisr; | 
|  |  | 
|  | /* Some processors don't provide us with a DSISR we can use here, | 
|  | * let's make one up from the instruction | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) { | 
|  | unsigned long pc = regs->nip; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE)) | 
|  | pc ^= 4; | 
|  | if (unlikely(__get_user_inatomic(instr, | 
|  | (unsigned int __user *)pc))) | 
|  | return -EFAULT; | 
|  | if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE)) | 
|  | instr = cpu_to_le32(instr); | 
|  | dsisr = make_dsisr(instr); | 
|  | instruction = instr; | 
|  | } | 
|  |  | 
|  | /* extract the operation and registers from the dsisr */ | 
|  | reg = (dsisr >> 5) & 0x1f;	/* source/dest register */ | 
|  | areg = dsisr & 0x1f;		/* register to update */ | 
|  |  | 
|  | #ifdef CONFIG_SPE | 
|  | if ((instr >> 26) == 0x4) { | 
|  | PPC_WARN_ALIGNMENT(spe, regs); | 
|  | return emulate_spe(regs, reg, instr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | instr = (dsisr >> 10) & 0x7f; | 
|  | instr |= (dsisr >> 13) & 0x60; | 
|  |  | 
|  | /* Lookup the operation in our table */ | 
|  | nb = aligninfo[instr].len; | 
|  | flags = aligninfo[instr].flags; | 
|  |  | 
|  | /* Byteswap little endian loads and stores */ | 
|  | swiz = 0; | 
|  | if (regs->msr & MSR_LE) { | 
|  | flags ^= SW; | 
|  | /* | 
|  | * So-called "PowerPC little endian" mode works by | 
|  | * swizzling addresses rather than by actually doing | 
|  | * any byte-swapping.  To emulate this, we XOR each | 
|  | * byte address with 7.  We also byte-swap, because | 
|  | * the processor's address swizzling depends on the | 
|  | * operand size (it xors the address with 7 for bytes, | 
|  | * 6 for halfwords, 4 for words, 0 for doublewords) but | 
|  | * we will xor with 7 and load/store each byte separately. | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_PPC_LE)) | 
|  | swiz = 7; | 
|  | } | 
|  |  | 
|  | /* DAR has the operand effective address */ | 
|  | addr = (unsigned char __user *)regs->dar; | 
|  |  | 
|  | #ifdef CONFIG_VSX | 
|  | if ((instruction & 0xfc00003e) == 0x7c000018) { | 
|  | unsigned int elsize; | 
|  |  | 
|  | /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */ | 
|  | reg |= (instruction & 0x1) << 5; | 
|  | /* Simple inline decoder instead of a table */ | 
|  | /* VSX has only 8 and 16 byte memory accesses */ | 
|  | nb = 8; | 
|  | if (instruction & 0x200) | 
|  | nb = 16; | 
|  |  | 
|  | /* Vector stores in little-endian mode swap individual | 
|  | elements, so process them separately */ | 
|  | elsize = 4; | 
|  | if (instruction & 0x80) | 
|  | elsize = 8; | 
|  |  | 
|  | flags = 0; | 
|  | if (regs->msr & MSR_LE) | 
|  | flags |= SW; | 
|  | if (instruction & 0x100) | 
|  | flags |= ST; | 
|  | if (instruction & 0x040) | 
|  | flags |= U; | 
|  | /* splat load needs a special decoder */ | 
|  | if ((instruction & 0x400) == 0){ | 
|  | flags |= SPLT; | 
|  | nb = 8; | 
|  | } | 
|  | PPC_WARN_ALIGNMENT(vsx, regs); | 
|  | return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize); | 
|  | } | 
|  | #endif | 
|  | /* A size of 0 indicates an instruction we don't support, with | 
|  | * the exception of DCBZ which is handled as a special case here | 
|  | */ | 
|  | if (instr == DCBZ) { | 
|  | PPC_WARN_ALIGNMENT(dcbz, regs); | 
|  | return emulate_dcbz(regs, addr); | 
|  | } | 
|  | if (unlikely(nb == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* Load/Store Multiple instructions are handled in their own | 
|  | * function | 
|  | */ | 
|  | if (flags & M) { | 
|  | PPC_WARN_ALIGNMENT(multiple, regs); | 
|  | return emulate_multiple(regs, addr, reg, nb, | 
|  | flags, instr, swiz); | 
|  | } | 
|  |  | 
|  | /* Verify the address of the operand */ | 
|  | if (unlikely(user_mode(regs) && | 
|  | !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), | 
|  | addr, nb))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Force the fprs into the save area so we can reference them */ | 
|  | if (flags & F) { | 
|  | /* userland only */ | 
|  | if (unlikely(!user_mode(regs))) | 
|  | return 0; | 
|  | flush_fp_to_thread(current); | 
|  | } | 
|  |  | 
|  | /* Special case for 16-byte FP loads and stores */ | 
|  | if (nb == 16) { | 
|  | PPC_WARN_ALIGNMENT(fp_pair, regs); | 
|  | return emulate_fp_pair(addr, reg, flags); | 
|  | } | 
|  |  | 
|  | PPC_WARN_ALIGNMENT(unaligned, regs); | 
|  |  | 
|  | /* If we are loading, get the data from user space, else | 
|  | * get it from register values | 
|  | */ | 
|  | if (!(flags & ST)) { | 
|  | data.ll = 0; | 
|  | ret = 0; | 
|  | p = (unsigned long) addr; | 
|  | switch (nb) { | 
|  | case 8: | 
|  | ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++)); | 
|  | ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++)); | 
|  | ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++)); | 
|  | ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++)); | 
|  | case 4: | 
|  | ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++)); | 
|  | ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++)); | 
|  | case 2: | 
|  | ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++)); | 
|  | ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++)); | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  | } | 
|  | } else if (flags & F) { | 
|  | data.dd = current->thread.TS_FPR(reg); | 
|  | if (flags & S) { | 
|  | /* Single-precision FP store requires conversion... */ | 
|  | #ifdef CONFIG_PPC_FPU | 
|  | preempt_disable(); | 
|  | enable_kernel_fp(); | 
|  | cvt_df(&data.dd, (float *)&data.v[4]); | 
|  | preempt_enable(); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | } else | 
|  | data.ll = regs->gpr[reg]; | 
|  |  | 
|  | if (flags & SW) { | 
|  | switch (nb) { | 
|  | case 8: | 
|  | SWAP(data.v[0], data.v[7]); | 
|  | SWAP(data.v[1], data.v[6]); | 
|  | SWAP(data.v[2], data.v[5]); | 
|  | SWAP(data.v[3], data.v[4]); | 
|  | break; | 
|  | case 4: | 
|  | SWAP(data.v[4], data.v[7]); | 
|  | SWAP(data.v[5], data.v[6]); | 
|  | break; | 
|  | case 2: | 
|  | SWAP(data.v[6], data.v[7]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perform other misc operations like sign extension | 
|  | * or floating point single precision conversion | 
|  | */ | 
|  | switch (flags & ~(U|SW)) { | 
|  | case LD+SE:	/* sign extending integer loads */ | 
|  | case LD+F+SE:	/* sign extend for lfiwax */ | 
|  | if ( nb == 2 ) | 
|  | data.ll = data.x16.low16; | 
|  | else	/* nb must be 4 */ | 
|  | data.ll = data.x32.low32; | 
|  | break; | 
|  |  | 
|  | /* Single-precision FP load requires conversion... */ | 
|  | case LD+F+S: | 
|  | #ifdef CONFIG_PPC_FPU | 
|  | preempt_disable(); | 
|  | enable_kernel_fp(); | 
|  | cvt_fd((float *)&data.v[4], &data.dd); | 
|  | preempt_enable(); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Store result to memory or update registers */ | 
|  | if (flags & ST) { | 
|  | ret = 0; | 
|  | p = (unsigned long) addr; | 
|  | switch (nb) { | 
|  | case 8: | 
|  | ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++)); | 
|  | ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++)); | 
|  | ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++)); | 
|  | ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++)); | 
|  | case 4: | 
|  | ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++)); | 
|  | ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++)); | 
|  | case 2: | 
|  | ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++)); | 
|  | ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++)); | 
|  | } | 
|  | if (unlikely(ret)) | 
|  | return -EFAULT; | 
|  | } else if (flags & F) | 
|  | current->thread.TS_FPR(reg) = data.dd; | 
|  | else | 
|  | regs->gpr[reg] = data.ll; | 
|  |  | 
|  | /* Update RA as needed */ | 
|  | if (flags & U) | 
|  | regs->gpr[areg] = regs->dar; | 
|  |  | 
|  | return 1; | 
|  | } |