|  | /* | 
|  | * apb_timer.c: Driver for Langwell APB timers | 
|  | * | 
|  | * (C) Copyright 2009 Intel Corporation | 
|  | * Author: Jacob Pan (jacob.jun.pan@intel.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | * | 
|  | * Note: | 
|  | * Langwell is the south complex of Intel Moorestown MID platform. There are | 
|  | * eight external timers in total that can be used by the operating system. | 
|  | * The timer information, such as frequency and addresses, is provided to the | 
|  | * OS via SFI tables. | 
|  | * Timer interrupts are routed via FW/HW emulated IOAPIC independently via | 
|  | * individual redirection table entries (RTE). | 
|  | * Unlike HPET, there is no master counter, therefore one of the timers are | 
|  | * used as clocksource. The overall allocation looks like: | 
|  | *  - timer 0 - NR_CPUs for per cpu timer | 
|  | *  - one timer for clocksource | 
|  | *  - one timer for watchdog driver. | 
|  | * It is also worth notice that APB timer does not support true one-shot mode, | 
|  | * free-running mode will be used here to emulate one-shot mode. | 
|  | * APB timer can also be used as broadcast timer along with per cpu local APIC | 
|  | * timer, but by default APB timer has higher rating than local APIC timers. | 
|  | */ | 
|  |  | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sysdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/sfi.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/apb_timer.h> | 
|  | #include <asm/mrst.h> | 
|  |  | 
|  | #define APBT_MASK			CLOCKSOURCE_MASK(32) | 
|  | #define APBT_SHIFT			22 | 
|  | #define APBT_CLOCKEVENT_RATING		110 | 
|  | #define APBT_CLOCKSOURCE_RATING		250 | 
|  | #define APBT_MIN_DELTA_USEC		200 | 
|  |  | 
|  | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) | 
|  | #define APBT_CLOCKEVENT0_NUM   (0) | 
|  | #define APBT_CLOCKEVENT1_NUM   (1) | 
|  | #define APBT_CLOCKSOURCE_NUM   (2) | 
|  |  | 
|  | static unsigned long apbt_address; | 
|  | static int apb_timer_block_enabled; | 
|  | static void __iomem *apbt_virt_address; | 
|  | static int phy_cs_timer_id; | 
|  |  | 
|  | /* | 
|  | * Common DW APB timer info | 
|  | */ | 
|  | static uint64_t apbt_freq; | 
|  |  | 
|  | static void apbt_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt); | 
|  | static int apbt_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt); | 
|  | static cycle_t apbt_read_clocksource(struct clocksource *cs); | 
|  | static void apbt_restart_clocksource(struct clocksource *cs); | 
|  |  | 
|  | struct apbt_dev { | 
|  | struct clock_event_device evt; | 
|  | unsigned int num; | 
|  | int cpu; | 
|  | unsigned int irq; | 
|  | unsigned int tick; | 
|  | unsigned int count; | 
|  | unsigned int flags; | 
|  | char name[10]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static unsigned int apbt_num_timers_used; | 
|  | static struct apbt_dev *apbt_devs; | 
|  | #endif | 
|  |  | 
|  | static	inline unsigned long apbt_readl_reg(unsigned long a) | 
|  | { | 
|  | return readl(apbt_virt_address + a); | 
|  | } | 
|  |  | 
|  | static inline void apbt_writel_reg(unsigned long d, unsigned long a) | 
|  | { | 
|  | writel(d, apbt_virt_address + a); | 
|  | } | 
|  |  | 
|  | static inline unsigned long apbt_readl(int n, unsigned long a) | 
|  | { | 
|  | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); | 
|  | } | 
|  |  | 
|  | static inline void apbt_writel(int n, unsigned long d, unsigned long a) | 
|  | { | 
|  | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); | 
|  | } | 
|  |  | 
|  | static inline void apbt_set_mapping(void) | 
|  | { | 
|  | struct sfi_timer_table_entry *mtmr; | 
|  |  | 
|  | if (apbt_virt_address) { | 
|  | pr_debug("APBT base already mapped\n"); | 
|  | return; | 
|  | } | 
|  | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 
|  | if (mtmr == NULL) { | 
|  | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 
|  | APBT_CLOCKEVENT0_NUM); | 
|  | return; | 
|  | } | 
|  | apbt_address = (unsigned long)mtmr->phys_addr; | 
|  | if (!apbt_address) { | 
|  | printk(KERN_WARNING "No timer base from SFI, use default\n"); | 
|  | apbt_address = APBT_DEFAULT_BASE; | 
|  | } | 
|  | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); | 
|  | if (apbt_virt_address) { | 
|  | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ | 
|  | (void *)apbt_address, (void *)apbt_virt_address); | 
|  | } else { | 
|  | pr_debug("Failed mapping APBT phy address at %p\n",\ | 
|  | (void *)apbt_address); | 
|  | goto panic_noapbt; | 
|  | } | 
|  | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; | 
|  | sfi_free_mtmr(mtmr); | 
|  |  | 
|  | /* Now figure out the physical timer id for clocksource device */ | 
|  | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); | 
|  | if (mtmr == NULL) | 
|  | goto panic_noapbt; | 
|  |  | 
|  | /* Now figure out the physical timer id */ | 
|  | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) | 
|  | / APBTMRS_REG_SIZE; | 
|  | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); | 
|  | return; | 
|  |  | 
|  | panic_noapbt: | 
|  | panic("Failed to setup APB system timer\n"); | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline void apbt_clear_mapping(void) | 
|  | { | 
|  | iounmap(apbt_virt_address); | 
|  | apbt_virt_address = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * APBT timer interrupt enable / disable | 
|  | */ | 
|  | static inline int is_apbt_capable(void) | 
|  | { | 
|  | return apbt_virt_address ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static struct clocksource clocksource_apbt = { | 
|  | .name		= "apbt", | 
|  | .rating		= APBT_CLOCKSOURCE_RATING, | 
|  | .read		= apbt_read_clocksource, | 
|  | .mask		= APBT_MASK, | 
|  | .flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .resume		= apbt_restart_clocksource, | 
|  | }; | 
|  |  | 
|  | /* boot APB clock event device */ | 
|  | static struct clock_event_device apbt_clockevent = { | 
|  | .name		= "apbt0", | 
|  | .features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | 
|  | .set_mode	= apbt_set_mode, | 
|  | .set_next_event = apbt_next_event, | 
|  | .shift		= APBT_SHIFT, | 
|  | .irq		= 0, | 
|  | .rating		= APBT_CLOCKEVENT_RATING, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * start count down from 0xffff_ffff. this is done by toggling the enable bit | 
|  | * then load initial load count to ~0. | 
|  | */ | 
|  | static void apbt_start_counter(int n) | 
|  | { | 
|  | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 
|  |  | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 
|  | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); | 
|  | /* enable, mask interrupt */ | 
|  | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | 
|  | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); | 
|  | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 
|  | /* read it once to get cached counter value initialized */ | 
|  | apbt_read_clocksource(&clocksource_apbt); | 
|  | } | 
|  |  | 
|  | static irqreturn_t apbt_interrupt_handler(int irq, void *data) | 
|  | { | 
|  | struct apbt_dev *dev = (struct apbt_dev *)data; | 
|  | struct clock_event_device *aevt = &dev->evt; | 
|  |  | 
|  | if (!aevt->event_handler) { | 
|  | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", | 
|  | dev->num); | 
|  | return IRQ_NONE; | 
|  | } | 
|  | aevt->event_handler(aevt); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void apbt_restart_clocksource(struct clocksource *cs) | 
|  | { | 
|  | apbt_start_counter(phy_cs_timer_id); | 
|  | } | 
|  |  | 
|  | static void apbt_enable_int(int n) | 
|  | { | 
|  | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 
|  | /* clear pending intr */ | 
|  | apbt_readl(n, APBTMR_N_EOI); | 
|  | ctrl &= ~APBTMR_CONTROL_INT; | 
|  | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 
|  | } | 
|  |  | 
|  | static void apbt_disable_int(int n) | 
|  | { | 
|  | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); | 
|  |  | 
|  | ctrl |= APBTMR_CONTROL_INT; | 
|  | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __init apbt_clockevent_register(void) | 
|  | { | 
|  | struct sfi_timer_table_entry *mtmr; | 
|  | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); | 
|  |  | 
|  | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); | 
|  | if (mtmr == NULL) { | 
|  | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", | 
|  | APBT_CLOCKEVENT0_NUM); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to calculate the scaled math multiplication factor for | 
|  | * nanosecond to apbt tick conversion. | 
|  | * mult = (nsec/cycle)*2^APBT_SHIFT | 
|  | */ | 
|  | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz | 
|  | , NSEC_PER_SEC, APBT_SHIFT); | 
|  |  | 
|  | /* Calculate the min / max delta */ | 
|  | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | 
|  | &apbt_clockevent); | 
|  | apbt_clockevent.min_delta_ns = clockevent_delta2ns( | 
|  | APBT_MIN_DELTA_USEC*apbt_freq, | 
|  | &apbt_clockevent); | 
|  | /* | 
|  | * Start apbt with the boot cpu mask and make it | 
|  | * global if not used for per cpu timer. | 
|  | */ | 
|  | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); | 
|  | adev->num = smp_processor_id(); | 
|  | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); | 
|  |  | 
|  | if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { | 
|  | adev->evt.rating = APBT_CLOCKEVENT_RATING - 100; | 
|  | global_clock_event = &adev->evt; | 
|  | printk(KERN_DEBUG "%s clockevent registered as global\n", | 
|  | global_clock_event->name); | 
|  | } | 
|  |  | 
|  | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, | 
|  | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | 
|  | apbt_clockevent.name, adev)) { | 
|  | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | 
|  | apbt_clockevent.irq); | 
|  | } | 
|  |  | 
|  | clockevents_register_device(&adev->evt); | 
|  | /* Start APBT 0 interrupts */ | 
|  | apbt_enable_int(APBT_CLOCKEVENT0_NUM); | 
|  |  | 
|  | sfi_free_mtmr(mtmr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static void apbt_setup_irq(struct apbt_dev *adev) | 
|  | { | 
|  | /* timer0 irq has been setup early */ | 
|  | if (adev->irq == 0) | 
|  | return; | 
|  |  | 
|  | irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); | 
|  | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); | 
|  | /* APB timer irqs are set up as mp_irqs, timer is edge type */ | 
|  | __irq_set_handler(adev->irq, handle_edge_irq, 0, "edge"); | 
|  |  | 
|  | if (system_state == SYSTEM_BOOTING) { | 
|  | if (request_irq(adev->irq, apbt_interrupt_handler, | 
|  | IRQF_TIMER | IRQF_DISABLED | | 
|  | IRQF_NOBALANCING, | 
|  | adev->name, adev)) { | 
|  | printk(KERN_ERR "Failed request IRQ for APBT%d\n", | 
|  | adev->num); | 
|  | } | 
|  | } else | 
|  | enable_irq(adev->irq); | 
|  | } | 
|  |  | 
|  | /* Should be called with per cpu */ | 
|  | void apbt_setup_secondary_clock(void) | 
|  | { | 
|  | struct apbt_dev *adev; | 
|  | struct clock_event_device *aevt; | 
|  | int cpu; | 
|  |  | 
|  | /* Don't register boot CPU clockevent */ | 
|  | cpu = smp_processor_id(); | 
|  | if (!cpu) | 
|  | return; | 
|  | /* | 
|  | * We need to calculate the scaled math multiplication factor for | 
|  | * nanosecond to apbt tick conversion. | 
|  | * mult = (nsec/cycle)*2^APBT_SHIFT | 
|  | */ | 
|  | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); | 
|  | adev = &per_cpu(cpu_apbt_dev, cpu); | 
|  | aevt = &adev->evt; | 
|  |  | 
|  | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); | 
|  | aevt->cpumask = cpumask_of(cpu); | 
|  | aevt->name = adev->name; | 
|  | aevt->mode = CLOCK_EVT_MODE_UNUSED; | 
|  |  | 
|  | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", | 
|  | cpu, aevt->name, *(u32 *)aevt->cpumask); | 
|  |  | 
|  | apbt_setup_irq(adev); | 
|  |  | 
|  | clockevents_register_device(aevt); | 
|  |  | 
|  | apbt_enable_int(cpu); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this notify handler process CPU hotplug events. in case of S0i3, nonboot | 
|  | * cpus are disabled/enabled frequently, for performance reasons, we keep the | 
|  | * per cpu timer irq registered so that we do need to do free_irq/request_irq. | 
|  | * | 
|  | * TODO: it might be more reliable to directly disable percpu clockevent device | 
|  | * without the notifier chain. currently, cpu 0 may get interrupts from other | 
|  | * cpu timers during the offline process due to the ordering of notification. | 
|  | * the extra interrupt is harmless. | 
|  | */ | 
|  | static int apbt_cpuhp_notify(struct notifier_block *n, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned long cpu = (unsigned long)hcpu; | 
|  | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); | 
|  |  | 
|  | switch (action & 0xf) { | 
|  | case CPU_DEAD: | 
|  | disable_irq(adev->irq); | 
|  | apbt_disable_int(cpu); | 
|  | if (system_state == SYSTEM_RUNNING) { | 
|  | pr_debug("skipping APBT CPU %lu offline\n", cpu); | 
|  | } else if (adev) { | 
|  | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); | 
|  | free_irq(adev->irq, adev); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | pr_debug("APBT notified %lu, no action\n", action); | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static __init int apbt_late_init(void) | 
|  | { | 
|  | if (mrst_timer_options == MRST_TIMER_LAPIC_APBT || | 
|  | !apb_timer_block_enabled) | 
|  | return 0; | 
|  | /* This notifier should be called after workqueue is ready */ | 
|  | hotcpu_notifier(apbt_cpuhp_notify, -20); | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(apbt_late_init); | 
|  | #else | 
|  |  | 
|  | void apbt_setup_secondary_clock(void) {} | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void apbt_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | unsigned long ctrl; | 
|  | uint64_t delta; | 
|  | int timer_num; | 
|  | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | 
|  |  | 
|  | BUG_ON(!apbt_virt_address); | 
|  |  | 
|  | timer_num = adev->num; | 
|  | pr_debug("%s CPU %d timer %d mode=%d\n", | 
|  | __func__, first_cpu(*evt->cpumask), timer_num, mode); | 
|  |  | 
|  | switch (mode) { | 
|  | case CLOCK_EVT_MODE_PERIODIC: | 
|  | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; | 
|  | delta >>= apbt_clockevent.shift; | 
|  | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 
|  | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | /* | 
|  | * DW APB p. 46, have to disable timer before load counter, | 
|  | * may cause sync problem. | 
|  | */ | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | udelay(1); | 
|  | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); | 
|  | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | 
|  | ctrl |= APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | break; | 
|  | /* APB timer does not have one-shot mode, use free running mode */ | 
|  | case CLOCK_EVT_MODE_ONESHOT: | 
|  | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 
|  | /* | 
|  | * set free running mode, this mode will let timer reload max | 
|  | * timeout which will give time (3min on 25MHz clock) to rearm | 
|  | * the next event, therefore emulate the one-shot mode. | 
|  | */ | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; | 
|  |  | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | /* write again to set free running mode */ | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  |  | 
|  | /* | 
|  | * DW APB p. 46, load counter with all 1s before starting free | 
|  | * running mode. | 
|  | */ | 
|  | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); | 
|  | ctrl &= ~APBTMR_CONTROL_INT; | 
|  | ctrl |= APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_UNUSED: | 
|  | case CLOCK_EVT_MODE_SHUTDOWN: | 
|  | apbt_disable_int(timer_num); | 
|  | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | break; | 
|  |  | 
|  | case CLOCK_EVT_MODE_RESUME: | 
|  | apbt_enable_int(timer_num); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int apbt_next_event(unsigned long delta, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | unsigned long ctrl; | 
|  | int timer_num; | 
|  |  | 
|  | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); | 
|  |  | 
|  | timer_num = adev->num; | 
|  | /* Disable timer */ | 
|  | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | /* write new count */ | 
|  | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); | 
|  | ctrl |= APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static cycle_t apbt_read_clocksource(struct clocksource *cs) | 
|  | { | 
|  | unsigned long current_count; | 
|  |  | 
|  | current_count = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE); | 
|  | return (cycle_t)~current_count; | 
|  | } | 
|  |  | 
|  | static int apbt_clocksource_register(void) | 
|  | { | 
|  | u64 start, now; | 
|  | cycle_t t1; | 
|  |  | 
|  | /* Start the counter, use timer 2 as source, timer 0/1 for event */ | 
|  | apbt_start_counter(phy_cs_timer_id); | 
|  |  | 
|  | /* Verify whether apbt counter works */ | 
|  | t1 = apbt_read_clocksource(&clocksource_apbt); | 
|  | rdtscll(start); | 
|  |  | 
|  | /* | 
|  | * We don't know the TSC frequency yet, but waiting for | 
|  | * 200000 TSC cycles is safe: | 
|  | * 4 GHz == 50us | 
|  | * 1 GHz == 200us | 
|  | */ | 
|  | do { | 
|  | rep_nop(); | 
|  | rdtscll(now); | 
|  | } while ((now - start) < 200000UL); | 
|  |  | 
|  | /* APBT is the only always on clocksource, it has to work! */ | 
|  | if (t1 == apbt_read_clocksource(&clocksource_apbt)) | 
|  | panic("APBT counter not counting. APBT disabled\n"); | 
|  |  | 
|  | clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early setup the APBT timer, only use timer 0 for booting then switch to | 
|  | * per CPU timer if possible. | 
|  | * returns 1 if per cpu apbt is setup | 
|  | * returns 0 if no per cpu apbt is chosen | 
|  | * panic if set up failed, this is the only platform timer on Moorestown. | 
|  | */ | 
|  | void __init apbt_time_init(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int i; | 
|  | struct sfi_timer_table_entry *p_mtmr; | 
|  | unsigned int percpu_timer; | 
|  | struct apbt_dev *adev; | 
|  | #endif | 
|  |  | 
|  | if (apb_timer_block_enabled) | 
|  | return; | 
|  | apbt_set_mapping(); | 
|  | if (apbt_virt_address) { | 
|  | pr_debug("Found APBT version 0x%lx\n",\ | 
|  | apbt_readl_reg(APBTMRS_COMP_VERSION)); | 
|  | } else | 
|  | goto out_noapbt; | 
|  | /* | 
|  | * Read the frequency and check for a sane value, for ESL model | 
|  | * we extend the possible clock range to allow time scaling. | 
|  | */ | 
|  |  | 
|  | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { | 
|  | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); | 
|  | goto out_noapbt; | 
|  | } | 
|  | if (apbt_clocksource_register()) { | 
|  | pr_debug("APBT has failed to register clocksource\n"); | 
|  | goto out_noapbt; | 
|  | } | 
|  | if (!apbt_clockevent_register()) | 
|  | apb_timer_block_enabled = 1; | 
|  | else { | 
|  | pr_debug("APBT has failed to register clockevent\n"); | 
|  | goto out_noapbt; | 
|  | } | 
|  | #ifdef CONFIG_SMP | 
|  | /* kernel cmdline disable apb timer, so we will use lapic timers */ | 
|  | if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) { | 
|  | printk(KERN_INFO "apbt: disabled per cpu timer\n"); | 
|  | return; | 
|  | } | 
|  | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); | 
|  | if (num_possible_cpus() <= sfi_mtimer_num) { | 
|  | percpu_timer = 1; | 
|  | apbt_num_timers_used = num_possible_cpus(); | 
|  | } else { | 
|  | percpu_timer = 0; | 
|  | apbt_num_timers_used = 1; | 
|  | adev = &per_cpu(cpu_apbt_dev, 0); | 
|  | adev->flags &= ~APBT_DEV_USED; | 
|  | } | 
|  | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); | 
|  |  | 
|  | /* here we set up per CPU timer data structure */ | 
|  | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, | 
|  | GFP_KERNEL); | 
|  | if (!apbt_devs) { | 
|  | printk(KERN_ERR "Failed to allocate APB timer devices\n"); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < apbt_num_timers_used; i++) { | 
|  | adev = &per_cpu(cpu_apbt_dev, i); | 
|  | adev->num = i; | 
|  | adev->cpu = i; | 
|  | p_mtmr = sfi_get_mtmr(i); | 
|  | if (p_mtmr) { | 
|  | adev->tick = p_mtmr->freq_hz; | 
|  | adev->irq = p_mtmr->irq; | 
|  | } else | 
|  | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); | 
|  | adev->count = 0; | 
|  | sprintf(adev->name, "apbt%d", i); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return; | 
|  |  | 
|  | out_noapbt: | 
|  | apbt_clear_mapping(); | 
|  | apb_timer_block_enabled = 0; | 
|  | panic("failed to enable APB timer\n"); | 
|  | } | 
|  |  | 
|  | static inline void apbt_disable(int n) | 
|  | { | 
|  | if (is_apbt_capable()) { | 
|  | unsigned long ctrl =  apbt_readl(n, APBTMR_N_CONTROL); | 
|  | ctrl &= ~APBTMR_CONTROL_ENABLE; | 
|  | apbt_writel(n, ctrl, APBTMR_N_CONTROL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* called before apb_timer_enable, use early map */ | 
|  | unsigned long apbt_quick_calibrate() | 
|  | { | 
|  | int i, scale; | 
|  | u64 old, new; | 
|  | cycle_t t1, t2; | 
|  | unsigned long khz = 0; | 
|  | u32 loop, shift; | 
|  |  | 
|  | apbt_set_mapping(); | 
|  | apbt_start_counter(phy_cs_timer_id); | 
|  |  | 
|  | /* check if the timer can count down, otherwise return */ | 
|  | old = apbt_read_clocksource(&clocksource_apbt); | 
|  | i = 10000; | 
|  | while (--i) { | 
|  | if (old != apbt_read_clocksource(&clocksource_apbt)) | 
|  | break; | 
|  | } | 
|  | if (!i) | 
|  | goto failed; | 
|  |  | 
|  | /* count 16 ms */ | 
|  | loop = (apbt_freq * 1000) << 4; | 
|  |  | 
|  | /* restart the timer to ensure it won't get to 0 in the calibration */ | 
|  | apbt_start_counter(phy_cs_timer_id); | 
|  |  | 
|  | old = apbt_read_clocksource(&clocksource_apbt); | 
|  | old += loop; | 
|  |  | 
|  | t1 = __native_read_tsc(); | 
|  |  | 
|  | do { | 
|  | new = apbt_read_clocksource(&clocksource_apbt); | 
|  | } while (new < old); | 
|  |  | 
|  | t2 = __native_read_tsc(); | 
|  |  | 
|  | shift = 5; | 
|  | if (unlikely(loop >> shift == 0)) { | 
|  | printk(KERN_INFO | 
|  | "APBT TSC calibration failed, not enough resolution\n"); | 
|  | return 0; | 
|  | } | 
|  | scale = (int)div_u64((t2 - t1), loop >> shift); | 
|  | khz = (scale * apbt_freq * 1000) >> shift; | 
|  | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); | 
|  | return khz; | 
|  | failed: | 
|  | return 0; | 
|  | } |