| /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 |  * | 
 |  * Authors: Adrian Hunter | 
 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements functions needed to recover from unclean un-mounts. | 
 |  * When UBIFS is mounted, it checks a flag on the master node to determine if | 
 |  * an un-mount was completed successfully. If not, the process of mounting | 
 |  * incorporates additional checking and fixing of on-flash data structures. | 
 |  * UBIFS always cleans away all remnants of an unclean un-mount, so that | 
 |  * errors do not accumulate. However UBIFS defers recovery if it is mounted | 
 |  * read-only, and the flash is not modified in that case. | 
 |  * | 
 |  * The general UBIFS approach to the recovery is that it recovers from | 
 |  * corruptions which could be caused by power cuts, but it refuses to recover | 
 |  * from corruption caused by other reasons. And UBIFS tries to distinguish | 
 |  * between these 2 reasons of corruptions and silently recover in the former | 
 |  * case and loudly complain in the latter case. | 
 |  * | 
 |  * UBIFS writes only to erased LEBs, so it writes only to the flash space | 
 |  * containing only 0xFFs. UBIFS also always writes strictly from the beginning | 
 |  * of the LEB to the end. And UBIFS assumes that the underlying flash media | 
 |  * writes in @c->max_write_size bytes at a time. | 
 |  * | 
 |  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. | 
 |  * I/O unit corresponding to offset X to contain corrupted data, all the | 
 |  * following min. I/O units have to contain empty space (all 0xFFs). If this is | 
 |  * not true, the corruption cannot be the result of a power cut, and UBIFS | 
 |  * refuses to mount. | 
 |  */ | 
 |  | 
 | #include <linux/crc32.h> | 
 | #include <linux/slab.h> | 
 | #include "ubifs.h" | 
 |  | 
 | /** | 
 |  * is_empty - determine whether a buffer is empty (contains all 0xff). | 
 |  * @buf: buffer to clean | 
 |  * @len: length of buffer | 
 |  * | 
 |  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise | 
 |  * %0 is returned. | 
 |  */ | 
 | static int is_empty(void *buf, int len) | 
 | { | 
 | 	uint8_t *p = buf; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		if (*p++ != 0xff) | 
 | 			return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * first_non_ff - find offset of the first non-0xff byte. | 
 |  * @buf: buffer to search in | 
 |  * @len: length of buffer | 
 |  * | 
 |  * This function returns offset of the first non-0xff byte in @buf or %-1 if | 
 |  * the buffer contains only 0xff bytes. | 
 |  */ | 
 | static int first_non_ff(void *buf, int len) | 
 | { | 
 | 	uint8_t *p = buf; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		if (*p++ != 0xff) | 
 | 			return i; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /** | 
 |  * get_master_node - get the last valid master node allowing for corruption. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number | 
 |  * @pbuf: buffer containing the LEB read, is returned here | 
 |  * @mst: master node, if found, is returned here | 
 |  * @cor: corruption, if found, is returned here | 
 |  * | 
 |  * This function allocates a buffer, reads the LEB into it, and finds and | 
 |  * returns the last valid master node allowing for one area of corruption. | 
 |  * The corrupt area, if there is one, must be consistent with the assumption | 
 |  * that it is the result of an unclean unmount while the master node was being | 
 |  * written. Under those circumstances, it is valid to use the previously written | 
 |  * master node. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, | 
 | 			   struct ubifs_mst_node **mst, void **cor) | 
 | { | 
 | 	const int sz = c->mst_node_alsz; | 
 | 	int err, offs, len; | 
 | 	void *sbuf, *buf; | 
 |  | 
 | 	sbuf = vmalloc(c->leb_size); | 
 | 	if (!sbuf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); | 
 | 	if (err && err != -EBADMSG) | 
 | 		goto out_free; | 
 |  | 
 | 	/* Find the first position that is definitely not a node */ | 
 | 	offs = 0; | 
 | 	buf = sbuf; | 
 | 	len = c->leb_size; | 
 | 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { | 
 | 		struct ubifs_ch *ch = buf; | 
 |  | 
 | 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | 
 | 			break; | 
 | 		offs += sz; | 
 | 		buf  += sz; | 
 | 		len  -= sz; | 
 | 	} | 
 | 	/* See if there was a valid master node before that */ | 
 | 	if (offs) { | 
 | 		int ret; | 
 |  | 
 | 		offs -= sz; | 
 | 		buf  -= sz; | 
 | 		len  += sz; | 
 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 		if (ret != SCANNED_A_NODE && offs) { | 
 | 			/* Could have been corruption so check one place back */ | 
 | 			offs -= sz; | 
 | 			buf  -= sz; | 
 | 			len  += sz; | 
 | 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 			if (ret != SCANNED_A_NODE) | 
 | 				/* | 
 | 				 * We accept only one area of corruption because | 
 | 				 * we are assuming that it was caused while | 
 | 				 * trying to write a master node. | 
 | 				 */ | 
 | 				goto out_err; | 
 | 		} | 
 | 		if (ret == SCANNED_A_NODE) { | 
 | 			struct ubifs_ch *ch = buf; | 
 |  | 
 | 			if (ch->node_type != UBIFS_MST_NODE) | 
 | 				goto out_err; | 
 | 			dbg_rcvry("found a master node at %d:%d", lnum, offs); | 
 | 			*mst = buf; | 
 | 			offs += sz; | 
 | 			buf  += sz; | 
 | 			len  -= sz; | 
 | 		} | 
 | 	} | 
 | 	/* Check for corruption */ | 
 | 	if (offs < c->leb_size) { | 
 | 		if (!is_empty(buf, min_t(int, len, sz))) { | 
 | 			*cor = buf; | 
 | 			dbg_rcvry("found corruption at %d:%d", lnum, offs); | 
 | 		} | 
 | 		offs += sz; | 
 | 		buf  += sz; | 
 | 		len  -= sz; | 
 | 	} | 
 | 	/* Check remaining empty space */ | 
 | 	if (offs < c->leb_size) | 
 | 		if (!is_empty(buf, len)) | 
 | 			goto out_err; | 
 | 	*pbuf = sbuf; | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	err = -EINVAL; | 
 | out_free: | 
 | 	vfree(sbuf); | 
 | 	*mst = NULL; | 
 | 	*cor = NULL; | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * write_rcvrd_mst_node - write recovered master node. | 
 |  * @c: UBIFS file-system description object | 
 |  * @mst: master node | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int write_rcvrd_mst_node(struct ubifs_info *c, | 
 | 				struct ubifs_mst_node *mst) | 
 | { | 
 | 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; | 
 | 	__le32 save_flags; | 
 |  | 
 | 	dbg_rcvry("recovery"); | 
 |  | 
 | 	save_flags = mst->flags; | 
 | 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); | 
 |  | 
 | 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); | 
 | 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); | 
 | 	if (err) | 
 | 		goto out; | 
 | out: | 
 | 	mst->flags = save_flags; | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_master_node - recover the master node. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function recovers the master node from corruption that may occur due to | 
 |  * an unclean unmount. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_recover_master_node(struct ubifs_info *c) | 
 | { | 
 | 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; | 
 | 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; | 
 | 	const int sz = c->mst_node_alsz; | 
 | 	int err, offs1, offs2; | 
 |  | 
 | 	dbg_rcvry("recovery"); | 
 |  | 
 | 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); | 
 | 	if (err) | 
 | 		goto out_free; | 
 |  | 
 | 	if (mst1) { | 
 | 		offs1 = (void *)mst1 - buf1; | 
 | 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && | 
 | 		    (offs1 == 0 && !cor1)) { | 
 | 			/* | 
 | 			 * mst1 was written by recovery at offset 0 with no | 
 | 			 * corruption. | 
 | 			 */ | 
 | 			dbg_rcvry("recovery recovery"); | 
 | 			mst = mst1; | 
 | 		} else if (mst2) { | 
 | 			offs2 = (void *)mst2 - buf2; | 
 | 			if (offs1 == offs2) { | 
 | 				/* Same offset, so must be the same */ | 
 | 				if (memcmp((void *)mst1 + UBIFS_CH_SZ, | 
 | 					   (void *)mst2 + UBIFS_CH_SZ, | 
 | 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) | 
 | 					goto out_err; | 
 | 				mst = mst1; | 
 | 			} else if (offs2 + sz == offs1) { | 
 | 				/* 1st LEB was written, 2nd was not */ | 
 | 				if (cor1) | 
 | 					goto out_err; | 
 | 				mst = mst1; | 
 | 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) { | 
 | 				/* 1st LEB was unmapped and written, 2nd not */ | 
 | 				if (cor1) | 
 | 					goto out_err; | 
 | 				mst = mst1; | 
 | 			} else | 
 | 				goto out_err; | 
 | 		} else { | 
 | 			/* | 
 | 			 * 2nd LEB was unmapped and about to be written, so | 
 | 			 * there must be only one master node in the first LEB | 
 | 			 * and no corruption. | 
 | 			 */ | 
 | 			if (offs1 != 0 || cor1) | 
 | 				goto out_err; | 
 | 			mst = mst1; | 
 | 		} | 
 | 	} else { | 
 | 		if (!mst2) | 
 | 			goto out_err; | 
 | 		/* | 
 | 		 * 1st LEB was unmapped and about to be written, so there must | 
 | 		 * be no room left in 2nd LEB. | 
 | 		 */ | 
 | 		offs2 = (void *)mst2 - buf2; | 
 | 		if (offs2 + sz + sz <= c->leb_size) | 
 | 			goto out_err; | 
 | 		mst = mst2; | 
 | 	} | 
 |  | 
 | 	ubifs_msg("recovered master node from LEB %d", | 
 | 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); | 
 |  | 
 | 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); | 
 |  | 
 | 	if (c->ro_mount) { | 
 | 		/* Read-only mode. Keep a copy for switching to rw mode */ | 
 | 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); | 
 | 		if (!c->rcvrd_mst_node) { | 
 | 			err = -ENOMEM; | 
 | 			goto out_free; | 
 | 		} | 
 | 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); | 
 |  | 
 | 		/* | 
 | 		 * We had to recover the master node, which means there was an | 
 | 		 * unclean reboot. However, it is possible that the master node | 
 | 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. | 
 | 		 * E.g., consider the following chain of events: | 
 | 		 * | 
 | 		 * 1. UBIFS was cleanly unmounted, so the master node is clean | 
 | 		 * 2. UBIFS is being mounted R/W and starts changing the master | 
 | 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens, | 
 | 		 *    so this LEB ends up with some amount of garbage at the | 
 | 		 *    end. | 
 | 		 * 3. UBIFS is being mounted R/O. We reach this place and | 
 | 		 *    recover the master node from the second LEB | 
 | 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media | 
 | 		 *    because we are being mounted R/O. We have to defer the | 
 | 		 *    operation. | 
 | 		 * 4. However, this master node (@c->mst_node) is marked as | 
 | 		 *    clean (since the step 1). And if we just return, the | 
 | 		 *    mount code will be confused and won't recover the master | 
 | 		 *    node when it is re-mounter R/W later. | 
 | 		 * | 
 | 		 *    Thus, to force the recovery by marking the master node as | 
 | 		 *    dirty. | 
 | 		 */ | 
 | 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 	} else { | 
 | 		/* Write the recovered master node */ | 
 | 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; | 
 | 		err = write_rcvrd_mst_node(c, c->mst_node); | 
 | 		if (err) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	vfree(buf2); | 
 | 	vfree(buf1); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	err = -EINVAL; | 
 | out_free: | 
 | 	ubifs_err("failed to recover master node"); | 
 | 	if (mst1) { | 
 | 		dbg_err("dumping first master node"); | 
 | 		dbg_dump_node(c, mst1); | 
 | 	} | 
 | 	if (mst2) { | 
 | 		dbg_err("dumping second master node"); | 
 | 		dbg_dump_node(c, mst2); | 
 | 	} | 
 | 	vfree(buf2); | 
 | 	vfree(buf1); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_write_rcvrd_mst_node - write the recovered master node. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function writes the master node that was recovered during mounting in | 
 |  * read-only mode and must now be written because we are remounting rw. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!c->rcvrd_mst_node) | 
 | 		return 0; | 
 | 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); | 
 | 	if (err) | 
 | 		return err; | 
 | 	kfree(c->rcvrd_mst_node); | 
 | 	c->rcvrd_mst_node = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * is_last_write - determine if an offset was in the last write to a LEB. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to check | 
 |  * @offs: offset to check | 
 |  * | 
 |  * This function returns %1 if @offs was in the last write to the LEB whose data | 
 |  * is in @buf, otherwise %0 is returned. The determination is made by checking | 
 |  * for subsequent empty space starting from the next @c->max_write_size | 
 |  * boundary. | 
 |  */ | 
 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) | 
 | { | 
 | 	int empty_offs, check_len; | 
 | 	uint8_t *p; | 
 |  | 
 | 	/* | 
 | 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in | 
 | 	 * the last wbuf written. After that should be empty space. | 
 | 	 */ | 
 | 	empty_offs = ALIGN(offs + 1, c->max_write_size); | 
 | 	check_len = c->leb_size - empty_offs; | 
 | 	p = buf + empty_offs - offs; | 
 | 	return is_empty(p, check_len); | 
 | } | 
 |  | 
 | /** | 
 |  * clean_buf - clean the data from an LEB sitting in a buffer. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to clean | 
 |  * @lnum: LEB number to clean | 
 |  * @offs: offset from which to clean | 
 |  * @len: length of buffer | 
 |  * | 
 |  * This function pads up to the next min_io_size boundary (if there is one) and | 
 |  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next | 
 |  * @c->min_io_size boundary. | 
 |  */ | 
 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, | 
 | 		      int *offs, int *len) | 
 | { | 
 | 	int empty_offs, pad_len; | 
 |  | 
 | 	lnum = lnum; | 
 | 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); | 
 |  | 
 | 	ubifs_assert(!(*offs & 7)); | 
 | 	empty_offs = ALIGN(*offs, c->min_io_size); | 
 | 	pad_len = empty_offs - *offs; | 
 | 	ubifs_pad(c, *buf, pad_len); | 
 | 	*offs += pad_len; | 
 | 	*buf += pad_len; | 
 | 	*len -= pad_len; | 
 | 	memset(*buf, 0xff, c->leb_size - empty_offs); | 
 | } | 
 |  | 
 | /** | 
 |  * no_more_nodes - determine if there are no more nodes in a buffer. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer to check | 
 |  * @len: length of buffer | 
 |  * @lnum: LEB number of the LEB from which @buf was read | 
 |  * @offs: offset from which @buf was read | 
 |  * | 
 |  * This function ensures that the corrupted node at @offs is the last thing | 
 |  * written to a LEB. This function returns %1 if more data is not found and | 
 |  * %0 if more data is found. | 
 |  */ | 
 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, | 
 | 			int lnum, int offs) | 
 | { | 
 | 	struct ubifs_ch *ch = buf; | 
 | 	int skip, dlen = le32_to_cpu(ch->len); | 
 |  | 
 | 	/* Check for empty space after the corrupt node's common header */ | 
 | 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; | 
 | 	if (is_empty(buf + skip, len - skip)) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * The area after the common header size is not empty, so the common | 
 | 	 * header must be intact. Check it. | 
 | 	 */ | 
 | 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { | 
 | 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Now we know the corrupt node's length we can skip over it */ | 
 | 	skip = ALIGN(offs + dlen, c->max_write_size) - offs; | 
 | 	/* After which there should be empty space */ | 
 | 	if (is_empty(buf + skip, len - skip)) | 
 | 		return 1; | 
 | 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fix_unclean_leb - fix an unclean LEB. | 
 |  * @c: UBIFS file-system description object | 
 |  * @sleb: scanned LEB information | 
 |  * @start: offset where scan started | 
 |  */ | 
 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
 | 			   int start) | 
 | { | 
 | 	int lnum = sleb->lnum, endpt = start; | 
 |  | 
 | 	/* Get the end offset of the last node we are keeping */ | 
 | 	if (!list_empty(&sleb->nodes)) { | 
 | 		struct ubifs_scan_node *snod; | 
 |  | 
 | 		snod = list_entry(sleb->nodes.prev, | 
 | 				  struct ubifs_scan_node, list); | 
 | 		endpt = snod->offs + snod->len; | 
 | 	} | 
 |  | 
 | 	if (c->ro_mount && !c->remounting_rw) { | 
 | 		/* Add to recovery list */ | 
 | 		struct ubifs_unclean_leb *ucleb; | 
 |  | 
 | 		dbg_rcvry("need to fix LEB %d start %d endpt %d", | 
 | 			  lnum, start, sleb->endpt); | 
 | 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); | 
 | 		if (!ucleb) | 
 | 			return -ENOMEM; | 
 | 		ucleb->lnum = lnum; | 
 | 		ucleb->endpt = endpt; | 
 | 		list_add_tail(&ucleb->list, &c->unclean_leb_list); | 
 | 	} else { | 
 | 		/* Write the fixed LEB back to flash */ | 
 | 		int err; | 
 |  | 
 | 		dbg_rcvry("fixing LEB %d start %d endpt %d", | 
 | 			  lnum, start, sleb->endpt); | 
 | 		if (endpt == 0) { | 
 | 			err = ubifs_leb_unmap(c, lnum); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} else { | 
 | 			int len = ALIGN(endpt, c->min_io_size); | 
 |  | 
 | 			if (start) { | 
 | 				err = ubi_read(c->ubi, lnum, sleb->buf, 0, | 
 | 					       start); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} | 
 | 			/* Pad to min_io_size */ | 
 | 			if (len > endpt) { | 
 | 				int pad_len = len - ALIGN(endpt, 8); | 
 |  | 
 | 				if (pad_len > 0) { | 
 | 					void *buf = sleb->buf + len - pad_len; | 
 |  | 
 | 					ubifs_pad(c, buf, pad_len); | 
 | 				} | 
 | 			} | 
 | 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, | 
 | 					     UBI_UNKNOWN); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * drop_last_group - drop the last group of nodes. | 
 |  * @sleb: scanned LEB information | 
 |  * @offs: offset of dropped nodes is returned here | 
 |  * | 
 |  * This is a helper function for 'ubifs_recover_leb()' which drops the last | 
 |  * group of nodes of the scanned LEB. | 
 |  */ | 
 | static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) | 
 | { | 
 | 	while (!list_empty(&sleb->nodes)) { | 
 | 		struct ubifs_scan_node *snod; | 
 | 		struct ubifs_ch *ch; | 
 |  | 
 | 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | 
 | 				  list); | 
 | 		ch = snod->node; | 
 | 		if (ch->group_type != UBIFS_IN_NODE_GROUP) | 
 | 			break; | 
 |  | 
 | 		dbg_rcvry("dropping grouped node at %d:%d", | 
 | 			  sleb->lnum, snod->offs); | 
 | 		*offs = snod->offs; | 
 | 		list_del(&snod->list); | 
 | 		kfree(snod); | 
 | 		sleb->nodes_cnt -= 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * drop_last_node - drop the last node. | 
 |  * @sleb: scanned LEB information | 
 |  * @offs: offset of dropped nodes is returned here | 
 |  * @grouped: non-zero if whole group of nodes have to be dropped | 
 |  * | 
 |  * This is a helper function for 'ubifs_recover_leb()' which drops the last | 
 |  * node of the scanned LEB. | 
 |  */ | 
 | static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) | 
 | { | 
 | 	struct ubifs_scan_node *snod; | 
 |  | 
 | 	if (!list_empty(&sleb->nodes)) { | 
 | 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | 
 | 				  list); | 
 |  | 
 | 		dbg_rcvry("dropping last node at %d:%d", sleb->lnum, snod->offs); | 
 | 		*offs = snod->offs; | 
 | 		list_del(&snod->list); | 
 | 		kfree(snod); | 
 | 		sleb->nodes_cnt -= 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_leb - scan and recover a LEB. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number | 
 |  * @offs: offset | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not | 
 |  *         belong to any journal head) | 
 |  * | 
 |  * This function does a scan of a LEB, but caters for errors that might have | 
 |  * been caused by the unclean unmount from which we are attempting to recover. | 
 |  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is | 
 |  * found, and a negative error code in case of failure. | 
 |  */ | 
 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, | 
 | 					 int offs, void *sbuf, int jhead) | 
 | { | 
 | 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; | 
 | 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; | 
 | 	struct ubifs_scan_leb *sleb; | 
 | 	void *buf = sbuf + offs; | 
 |  | 
 | 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); | 
 |  | 
 | 	sleb = ubifs_start_scan(c, lnum, offs, sbuf); | 
 | 	if (IS_ERR(sleb)) | 
 | 		return sleb; | 
 |  | 
 | 	ubifs_assert(len >= 8); | 
 | 	while (len >= 8) { | 
 | 		dbg_scan("look at LEB %d:%d (%d bytes left)", | 
 | 			 lnum, offs, len); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * Scan quietly until there is an error from which we cannot | 
 | 		 * recover | 
 | 		 */ | 
 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 		if (ret == SCANNED_A_NODE) { | 
 | 			/* A valid node, and not a padding node */ | 
 | 			struct ubifs_ch *ch = buf; | 
 | 			int node_len; | 
 |  | 
 | 			err = ubifs_add_snod(c, sleb, buf, offs); | 
 | 			if (err) | 
 | 				goto error; | 
 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 			offs += node_len; | 
 | 			buf += node_len; | 
 | 			len -= node_len; | 
 | 		} else if (ret > 0) { | 
 | 			/* Padding bytes or a valid padding node */ | 
 | 			offs += ret; | 
 | 			buf += ret; | 
 | 			len -= ret; | 
 | 		} else if (ret == SCANNED_EMPTY_SPACE || | 
 | 			   ret == SCANNED_GARBAGE     || | 
 | 			   ret == SCANNED_A_BAD_PAD_NODE || | 
 | 			   ret == SCANNED_A_CORRUPT_NODE) { | 
 | 			dbg_rcvry("found corruption - %d", ret); | 
 | 			break; | 
 | 		} else { | 
 | 			dbg_err("unexpected return value %d", ret); | 
 | 			err = -EINVAL; | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { | 
 | 		if (!is_last_write(c, buf, offs)) | 
 | 			goto corrupted_rescan; | 
 | 	} else if (ret == SCANNED_A_CORRUPT_NODE) { | 
 | 		if (!no_more_nodes(c, buf, len, lnum, offs)) | 
 | 			goto corrupted_rescan; | 
 | 	} else if (!is_empty(buf, len)) { | 
 | 		if (!is_last_write(c, buf, offs)) { | 
 | 			int corruption = first_non_ff(buf, len); | 
 |  | 
 | 			/* | 
 | 			 * See header comment for this file for more | 
 | 			 * explanations about the reasons we have this check. | 
 | 			 */ | 
 | 			ubifs_err("corrupt empty space LEB %d:%d, corruption " | 
 | 				  "starts at %d", lnum, offs, corruption); | 
 | 			/* Make sure we dump interesting non-0xFF data */ | 
 | 			offs += corruption; | 
 | 			buf += corruption; | 
 | 			goto corrupted; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	min_io_unit = round_down(offs, c->min_io_size); | 
 | 	if (grouped) | 
 | 		/* | 
 | 		 * If nodes are grouped, always drop the incomplete group at | 
 | 		 * the end. | 
 | 		 */ | 
 | 		drop_last_group(sleb, &offs); | 
 |  | 
 | 	if (jhead == GCHD) { | 
 | 		/* | 
 | 		 * If this LEB belongs to the GC head then while we are in the | 
 | 		 * middle of the same min. I/O unit keep dropping nodes. So | 
 | 		 * basically, what we want is to make sure that the last min. | 
 | 		 * I/O unit where we saw the corruption is dropped completely | 
 | 		 * with all the uncorrupted nodes which may possibly sit there. | 
 | 		 * | 
 | 		 * In other words, let's name the min. I/O unit where the | 
 | 		 * corruption starts B, and the previous min. I/O unit A. The | 
 | 		 * below code tries to deal with a situation when half of B | 
 | 		 * contains valid nodes or the end of a valid node, and the | 
 | 		 * second half of B contains corrupted data or garbage. This | 
 | 		 * means that UBIFS had been writing to B just before the power | 
 | 		 * cut happened. I do not know how realistic is this scenario | 
 | 		 * that half of the min. I/O unit had been written successfully | 
 | 		 * and the other half not, but this is possible in our 'failure | 
 | 		 * mode emulation' infrastructure at least. | 
 | 		 * | 
 | 		 * So what is the problem, why we need to drop those nodes? Why | 
 | 		 * can't we just clean-up the second half of B by putting a | 
 | 		 * padding node there? We can, and this works fine with one | 
 | 		 * exception which was reproduced with power cut emulation | 
 | 		 * testing and happens extremely rarely. | 
 | 		 * | 
 | 		 * Imagine the file-system is full, we run GC which starts | 
 | 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is | 
 | 		 * the current GC head LEB). The @c->gc_lnum is -1, which means | 
 | 		 * that GC will retain LEB X and will try to continue. Imagine | 
 | 		 * that LEB X is currently the dirtiest LEB, and the amount of | 
 | 		 * used space in LEB Y is exactly the same as amount of free | 
 | 		 * space in LEB X. | 
 | 		 * | 
 | 		 * And a power cut happens when nodes are moved from LEB X to | 
 | 		 * LEB Y. We are here trying to recover LEB Y which is the GC | 
 | 		 * head LEB. We find the min. I/O unit B as described above. | 
 | 		 * Then we clean-up LEB Y by padding min. I/O unit. And later | 
 | 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot | 
 | 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X | 
 | 		 * does not match because the amount of valid nodes there does | 
 | 		 * not fit the free space in LEB Y any more! And this is | 
 | 		 * because of the padding node which we added to LEB Y. The | 
 | 		 * user-visible effect of this which I once observed and | 
 | 		 * analysed is that we cannot mount the file-system with | 
 | 		 * -ENOSPC error. | 
 | 		 * | 
 | 		 * So obviously, to make sure that situation does not happen we | 
 | 		 * should free min. I/O unit B in LEB Y completely and the last | 
 | 		 * used min. I/O unit in LEB Y should be A. This is basically | 
 | 		 * what the below code tries to do. | 
 | 		 */ | 
 | 		while (offs > min_io_unit) | 
 | 			drop_last_node(sleb, &offs); | 
 | 	} | 
 |  | 
 | 	buf = sbuf + offs; | 
 | 	len = c->leb_size - offs; | 
 |  | 
 | 	clean_buf(c, &buf, lnum, &offs, &len); | 
 | 	ubifs_end_scan(c, sleb, lnum, offs); | 
 |  | 
 | 	err = fix_unclean_leb(c, sleb, start); | 
 | 	if (err) | 
 | 		goto error; | 
 |  | 
 | 	return sleb; | 
 |  | 
 | corrupted_rescan: | 
 | 	/* Re-scan the corrupted data with verbose messages */ | 
 | 	dbg_err("corruptio %d", ret); | 
 | 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | corrupted: | 
 | 	ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 	err = -EUCLEAN; | 
 | error: | 
 | 	ubifs_err("LEB %d scanning failed", lnum); | 
 | 	ubifs_scan_destroy(sleb); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /** | 
 |  * get_cs_sqnum - get commit start sequence number. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number of commit start node | 
 |  * @offs: offset of commit start node | 
 |  * @cs_sqnum: commit start sequence number is returned here | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, | 
 | 			unsigned long long *cs_sqnum) | 
 | { | 
 | 	struct ubifs_cs_node *cs_node = NULL; | 
 | 	int err, ret; | 
 |  | 
 | 	dbg_rcvry("at %d:%d", lnum, offs); | 
 | 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); | 
 | 	if (!cs_node) | 
 | 		return -ENOMEM; | 
 | 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ) | 
 | 		goto out_err; | 
 | 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); | 
 | 	if (err && err != -EBADMSG) | 
 | 		goto out_free; | 
 | 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); | 
 | 	if (ret != SCANNED_A_NODE) { | 
 | 		dbg_err("Not a valid node"); | 
 | 		goto out_err; | 
 | 	} | 
 | 	if (cs_node->ch.node_type != UBIFS_CS_NODE) { | 
 | 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); | 
 | 		goto out_err; | 
 | 	} | 
 | 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { | 
 | 		dbg_err("CS node cmt_no %llu != current cmt_no %llu", | 
 | 			(unsigned long long)le64_to_cpu(cs_node->cmt_no), | 
 | 			c->cmt_no); | 
 | 		goto out_err; | 
 | 	} | 
 | 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); | 
 | 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum); | 
 | 	kfree(cs_node); | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	err = -EINVAL; | 
 | out_free: | 
 | 	ubifs_err("failed to get CS sqnum"); | 
 | 	kfree(cs_node); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_log_leb - scan and recover a log LEB. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number | 
 |  * @offs: offset | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * | 
 |  * This function does a scan of a LEB, but caters for errors that might have | 
 |  * been caused by unclean reboots from which we are attempting to recover | 
 |  * (assume that only the last log LEB can be corrupted by an unclean reboot). | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, | 
 | 					     int offs, void *sbuf) | 
 | { | 
 | 	struct ubifs_scan_leb *sleb; | 
 | 	int next_lnum; | 
 |  | 
 | 	dbg_rcvry("LEB %d", lnum); | 
 | 	next_lnum = lnum + 1; | 
 | 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) | 
 | 		next_lnum = UBIFS_LOG_LNUM; | 
 | 	if (next_lnum != c->ltail_lnum) { | 
 | 		/* | 
 | 		 * We can only recover at the end of the log, so check that the | 
 | 		 * next log LEB is empty or out of date. | 
 | 		 */ | 
 | 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); | 
 | 		if (IS_ERR(sleb)) | 
 | 			return sleb; | 
 | 		if (sleb->nodes_cnt) { | 
 | 			struct ubifs_scan_node *snod; | 
 | 			unsigned long long cs_sqnum = c->cs_sqnum; | 
 |  | 
 | 			snod = list_entry(sleb->nodes.next, | 
 | 					  struct ubifs_scan_node, list); | 
 | 			if (cs_sqnum == 0) { | 
 | 				int err; | 
 |  | 
 | 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); | 
 | 				if (err) { | 
 | 					ubifs_scan_destroy(sleb); | 
 | 					return ERR_PTR(err); | 
 | 				} | 
 | 			} | 
 | 			if (snod->sqnum > cs_sqnum) { | 
 | 				ubifs_err("unrecoverable log corruption " | 
 | 					  "in LEB %d", lnum); | 
 | 				ubifs_scan_destroy(sleb); | 
 | 				return ERR_PTR(-EUCLEAN); | 
 | 			} | 
 | 		} | 
 | 		ubifs_scan_destroy(sleb); | 
 | 	} | 
 | 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1); | 
 | } | 
 |  | 
 | /** | 
 |  * recover_head - recover a head. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number of head to recover | 
 |  * @offs: offset of head to recover | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * | 
 |  * This function ensures that there is no data on the flash at a head location. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int recover_head(const struct ubifs_info *c, int lnum, int offs, | 
 | 			void *sbuf) | 
 | { | 
 | 	int len = c->max_write_size, err; | 
 |  | 
 | 	if (offs + len > c->leb_size) | 
 | 		len = c->leb_size - offs; | 
 |  | 
 | 	if (!len) | 
 | 		return 0; | 
 |  | 
 | 	/* Read at the head location and check it is empty flash */ | 
 | 	err = ubi_read(c->ubi, lnum, sbuf, offs, len); | 
 | 	if (err || !is_empty(sbuf, len)) { | 
 | 		dbg_rcvry("cleaning head at %d:%d", lnum, offs); | 
 | 		if (offs == 0) | 
 | 			return ubifs_leb_unmap(c, lnum); | 
 | 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs); | 
 | 		if (err) | 
 | 			return err; | 
 | 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_inl_heads - recover index and LPT heads. | 
 |  * @c: UBIFS file-system description object | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * | 
 |  * This function ensures that there is no data on the flash at the index and | 
 |  * LPT head locations. | 
 |  * | 
 |  * This deals with the recovery of a half-completed journal commit. UBIFS is | 
 |  * careful never to overwrite the last version of the index or the LPT. Because | 
 |  * the index and LPT are wandering trees, data from a half-completed commit will | 
 |  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are | 
 |  * assumed to be empty and will be unmapped anyway before use, or in the index | 
 |  * and LPT heads. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	ubifs_assert(!c->ro_mount || c->remounting_rw); | 
 |  | 
 | 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); | 
 | 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); | 
 | 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  clean_an_unclean_leb - read and write a LEB to remove corruption. | 
 |  * @c: UBIFS file-system description object | 
 |  * @ucleb: unclean LEB information | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * | 
 |  * This function reads a LEB up to a point pre-determined by the mount recovery, | 
 |  * checks the nodes, and writes the result back to the flash, thereby cleaning | 
 |  * off any following corruption, or non-fatal ECC errors. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int clean_an_unclean_leb(const struct ubifs_info *c, | 
 | 				struct ubifs_unclean_leb *ucleb, void *sbuf) | 
 | { | 
 | 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; | 
 | 	void *buf = sbuf; | 
 |  | 
 | 	dbg_rcvry("LEB %d len %d", lnum, len); | 
 |  | 
 | 	if (len == 0) { | 
 | 		/* Nothing to read, just unmap it */ | 
 | 		err = ubifs_leb_unmap(c, lnum); | 
 | 		if (err) | 
 | 			return err; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	err = ubi_read(c->ubi, lnum, buf, offs, len); | 
 | 	if (err && err != -EBADMSG) | 
 | 		return err; | 
 |  | 
 | 	while (len >= 8) { | 
 | 		int ret; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		/* Scan quietly until there is an error */ | 
 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); | 
 |  | 
 | 		if (ret == SCANNED_A_NODE) { | 
 | 			/* A valid node, and not a padding node */ | 
 | 			struct ubifs_ch *ch = buf; | 
 | 			int node_len; | 
 |  | 
 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 			offs += node_len; | 
 | 			buf += node_len; | 
 | 			len -= node_len; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ret > 0) { | 
 | 			/* Padding bytes or a valid padding node */ | 
 | 			offs += ret; | 
 | 			buf += ret; | 
 | 			len -= ret; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (ret == SCANNED_EMPTY_SPACE) { | 
 | 			ubifs_err("unexpected empty space at %d:%d", | 
 | 				  lnum, offs); | 
 | 			return -EUCLEAN; | 
 | 		} | 
 |  | 
 | 		if (quiet) { | 
 | 			/* Redo the last scan but noisily */ | 
 | 			quiet = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 		return -EUCLEAN; | 
 | 	} | 
 |  | 
 | 	/* Pad to min_io_size */ | 
 | 	len = ALIGN(ucleb->endpt, c->min_io_size); | 
 | 	if (len > ucleb->endpt) { | 
 | 		int pad_len = len - ALIGN(ucleb->endpt, 8); | 
 |  | 
 | 		if (pad_len > 0) { | 
 | 			buf = c->sbuf + len - pad_len; | 
 | 			ubifs_pad(c, buf, pad_len); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Write back the LEB atomically */ | 
 | 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_rcvry("cleaned LEB %d", lnum); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_clean_lebs - clean LEBs recovered during read-only mount. | 
 |  * @c: UBIFS file-system description object | 
 |  * @sbuf: LEB-sized buffer to use | 
 |  * | 
 |  * This function cleans a LEB identified during recovery that needs to be | 
 |  * written but was not because UBIFS was mounted read-only. This happens when | 
 |  * remounting to read-write mode. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) | 
 | { | 
 | 	dbg_rcvry("recovery"); | 
 | 	while (!list_empty(&c->unclean_leb_list)) { | 
 | 		struct ubifs_unclean_leb *ucleb; | 
 | 		int err; | 
 |  | 
 | 		ucleb = list_entry(c->unclean_leb_list.next, | 
 | 				   struct ubifs_unclean_leb, list); | 
 | 		err = clean_an_unclean_leb(c, ucleb, sbuf); | 
 | 		if (err) | 
 | 			return err; | 
 | 		list_del(&ucleb->list); | 
 | 		kfree(ucleb); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty | 
 |  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns | 
 |  * zero in case of success and a negative error code in case of failure. | 
 |  */ | 
 | static int grab_empty_leb(struct ubifs_info *c) | 
 | { | 
 | 	int lnum, err; | 
 |  | 
 | 	/* | 
 | 	 * Note, it is very important to first search for an empty LEB and then | 
 | 	 * run the commit, not vice-versa. The reason is that there might be | 
 | 	 * only one empty LEB at the moment, the one which has been the | 
 | 	 * @c->gc_lnum just before the power cut happened. During the regular | 
 | 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no | 
 | 	 * one but GC can grab it. But at this moment this single empty LEB is | 
 | 	 * not marked as taken, so if we run commit - what happens? Right, the | 
 | 	 * commit will grab it and write the index there. Remember that the | 
 | 	 * index always expands as long as there is free space, and it only | 
 | 	 * starts consolidating when we run out of space. | 
 | 	 * | 
 | 	 * IOW, if we run commit now, we might not be able to find a free LEB | 
 | 	 * after this. | 
 | 	 */ | 
 | 	lnum = ubifs_find_free_leb_for_idx(c); | 
 | 	if (lnum < 0) { | 
 | 		dbg_err("could not find an empty LEB"); | 
 | 		dbg_dump_lprops(c); | 
 | 		dbg_dump_budg(c, &c->bi); | 
 | 		return lnum; | 
 | 	} | 
 |  | 
 | 	/* Reset the index flag */ | 
 | 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, | 
 | 				  LPROPS_INDEX, 0); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	c->gc_lnum = lnum; | 
 | 	dbg_rcvry("found empty LEB %d, run commit", lnum); | 
 |  | 
 | 	return ubifs_run_commit(c); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * Out-of-place garbage collection requires always one empty LEB with which to | 
 |  * start garbage collection. The LEB number is recorded in c->gc_lnum and is | 
 |  * written to the master node on unmounting. In the case of an unclean unmount | 
 |  * the value of gc_lnum recorded in the master node is out of date and cannot | 
 |  * be used. Instead, recovery must allocate an empty LEB for this purpose. | 
 |  * However, there may not be enough empty space, in which case it must be | 
 |  * possible to GC the dirtiest LEB into the GC head LEB. | 
 |  * | 
 |  * This function also runs the commit which causes the TNC updates from | 
 |  * size-recovery and orphans to be written to the flash. That is important to | 
 |  * ensure correct replay order for subsequent mounts. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) | 
 | { | 
 | 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
 | 	struct ubifs_lprops lp; | 
 | 	int err; | 
 |  | 
 | 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); | 
 |  | 
 | 	c->gc_lnum = -1; | 
 | 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) | 
 | 		return grab_empty_leb(c); | 
 |  | 
 | 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); | 
 | 	if (err) { | 
 | 		if (err != -ENOSPC) | 
 | 			return err; | 
 |  | 
 | 		dbg_rcvry("could not find a dirty LEB"); | 
 | 		return grab_empty_leb(c); | 
 | 	} | 
 |  | 
 | 	ubifs_assert(!(lp.flags & LPROPS_INDEX)); | 
 | 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs); | 
 |  | 
 | 	/* | 
 | 	 * We run the commit before garbage collection otherwise subsequent | 
 | 	 * mounts will see the GC and orphan deletion in a different order. | 
 | 	 */ | 
 | 	dbg_rcvry("committing"); | 
 | 	err = ubifs_run_commit(c); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_rcvry("GC'ing LEB %d", lp.lnum); | 
 | 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 	err = ubifs_garbage_collect_leb(c, &lp); | 
 | 	if (err >= 0) { | 
 | 		int err2 = ubifs_wbuf_sync_nolock(wbuf); | 
 |  | 
 | 		if (err2) | 
 | 			err = err2; | 
 | 	} | 
 | 	mutex_unlock(&wbuf->io_mutex); | 
 | 	if (err < 0) { | 
 | 		dbg_err("GC failed, error %d", err); | 
 | 		if (err == -EAGAIN) | 
 | 			err = -EINVAL; | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(err == LEB_RETAINED); | 
 | 	if (err != LEB_RETAINED) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = ubifs_leb_unmap(c, c->gc_lnum); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_rcvry("allocated LEB %d for GC", lp.lnum); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * struct size_entry - inode size information for recovery. | 
 |  * @rb: link in the RB-tree of sizes | 
 |  * @inum: inode number | 
 |  * @i_size: size on inode | 
 |  * @d_size: maximum size based on data nodes | 
 |  * @exists: indicates whether the inode exists | 
 |  * @inode: inode if pinned in memory awaiting rw mode to fix it | 
 |  */ | 
 | struct size_entry { | 
 | 	struct rb_node rb; | 
 | 	ino_t inum; | 
 | 	loff_t i_size; | 
 | 	loff_t d_size; | 
 | 	int exists; | 
 | 	struct inode *inode; | 
 | }; | 
 |  | 
 | /** | 
 |  * add_ino - add an entry to the size tree. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inum: inode number | 
 |  * @i_size: size on inode | 
 |  * @d_size: maximum size based on data nodes | 
 |  * @exists: indicates whether the inode exists | 
 |  */ | 
 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, | 
 | 		   loff_t d_size, int exists) | 
 | { | 
 | 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; | 
 | 	struct size_entry *e; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		e = rb_entry(parent, struct size_entry, rb); | 
 | 		if (inum < e->inum) | 
 | 			p = &(*p)->rb_left; | 
 | 		else | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 |  | 
 | 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); | 
 | 	if (!e) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	e->inum = inum; | 
 | 	e->i_size = i_size; | 
 | 	e->d_size = d_size; | 
 | 	e->exists = exists; | 
 |  | 
 | 	rb_link_node(&e->rb, parent, p); | 
 | 	rb_insert_color(&e->rb, &c->size_tree); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * find_ino - find an entry on the size tree. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inum: inode number | 
 |  */ | 
 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) | 
 | { | 
 | 	struct rb_node *p = c->size_tree.rb_node; | 
 | 	struct size_entry *e; | 
 |  | 
 | 	while (p) { | 
 | 		e = rb_entry(p, struct size_entry, rb); | 
 | 		if (inum < e->inum) | 
 | 			p = p->rb_left; | 
 | 		else if (inum > e->inum) | 
 | 			p = p->rb_right; | 
 | 		else | 
 | 			return e; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * remove_ino - remove an entry from the size tree. | 
 |  * @c: UBIFS file-system description object | 
 |  * @inum: inode number | 
 |  */ | 
 | static void remove_ino(struct ubifs_info *c, ino_t inum) | 
 | { | 
 | 	struct size_entry *e = find_ino(c, inum); | 
 |  | 
 | 	if (!e) | 
 | 		return; | 
 | 	rb_erase(&e->rb, &c->size_tree); | 
 | 	kfree(e); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_destroy_size_tree - free resources related to the size tree. | 
 |  * @c: UBIFS file-system description object | 
 |  */ | 
 | void ubifs_destroy_size_tree(struct ubifs_info *c) | 
 | { | 
 | 	struct rb_node *this = c->size_tree.rb_node; | 
 | 	struct size_entry *e; | 
 |  | 
 | 	while (this) { | 
 | 		if (this->rb_left) { | 
 | 			this = this->rb_left; | 
 | 			continue; | 
 | 		} else if (this->rb_right) { | 
 | 			this = this->rb_right; | 
 | 			continue; | 
 | 		} | 
 | 		e = rb_entry(this, struct size_entry, rb); | 
 | 		if (e->inode) | 
 | 			iput(e->inode); | 
 | 		this = rb_parent(this); | 
 | 		if (this) { | 
 | 			if (this->rb_left == &e->rb) | 
 | 				this->rb_left = NULL; | 
 | 			else | 
 | 				this->rb_right = NULL; | 
 | 		} | 
 | 		kfree(e); | 
 | 	} | 
 | 	c->size_tree = RB_ROOT; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_size_accum - accumulate inode sizes for recovery. | 
 |  * @c: UBIFS file-system description object | 
 |  * @key: node key | 
 |  * @deletion: node is for a deletion | 
 |  * @new_size: inode size | 
 |  * | 
 |  * This function has two purposes: | 
 |  *     1) to ensure there are no data nodes that fall outside the inode size | 
 |  *     2) to ensure there are no data nodes for inodes that do not exist | 
 |  * To accomplish those purposes, a rb-tree is constructed containing an entry | 
 |  * for each inode number in the journal that has not been deleted, and recording | 
 |  * the size from the inode node, the maximum size of any data node (also altered | 
 |  * by truncations) and a flag indicating a inode number for which no inode node | 
 |  * was present in the journal. | 
 |  * | 
 |  * Note that there is still the possibility that there are data nodes that have | 
 |  * been committed that are beyond the inode size, however the only way to find | 
 |  * them would be to scan the entire index. Alternatively, some provision could | 
 |  * be made to record the size of inodes at the start of commit, which would seem | 
 |  * very cumbersome for a scenario that is quite unlikely and the only negative | 
 |  * consequence of which is wasted space. | 
 |  * | 
 |  * This functions returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, | 
 | 			     int deletion, loff_t new_size) | 
 | { | 
 | 	ino_t inum = key_inum(c, key); | 
 | 	struct size_entry *e; | 
 | 	int err; | 
 |  | 
 | 	switch (key_type(c, key)) { | 
 | 	case UBIFS_INO_KEY: | 
 | 		if (deletion) | 
 | 			remove_ino(c, inum); | 
 | 		else { | 
 | 			e = find_ino(c, inum); | 
 | 			if (e) { | 
 | 				e->i_size = new_size; | 
 | 				e->exists = 1; | 
 | 			} else { | 
 | 				err = add_ino(c, inum, new_size, 0, 1); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	case UBIFS_DATA_KEY: | 
 | 		e = find_ino(c, inum); | 
 | 		if (e) { | 
 | 			if (new_size > e->d_size) | 
 | 				e->d_size = new_size; | 
 | 		} else { | 
 | 			err = add_ino(c, inum, 0, new_size, 0); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		break; | 
 | 	case UBIFS_TRUN_KEY: | 
 | 		e = find_ino(c, inum); | 
 | 		if (e) | 
 | 			e->d_size = new_size; | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * fix_size_in_place - fix inode size in place on flash. | 
 |  * @c: UBIFS file-system description object | 
 |  * @e: inode size information for recovery | 
 |  */ | 
 | static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) | 
 | { | 
 | 	struct ubifs_ino_node *ino = c->sbuf; | 
 | 	unsigned char *p; | 
 | 	union ubifs_key key; | 
 | 	int err, lnum, offs, len; | 
 | 	loff_t i_size; | 
 | 	uint32_t crc; | 
 |  | 
 | 	/* Locate the inode node LEB number and offset */ | 
 | 	ino_key_init(c, &key, e->inum); | 
 | 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * If the size recorded on the inode node is greater than the size that | 
 | 	 * was calculated from nodes in the journal then don't change the inode. | 
 | 	 */ | 
 | 	i_size = le64_to_cpu(ino->size); | 
 | 	if (i_size >= e->d_size) | 
 | 		return 0; | 
 | 	/* Read the LEB */ | 
 | 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	/* Change the size field and recalculate the CRC */ | 
 | 	ino = c->sbuf + offs; | 
 | 	ino->size = cpu_to_le64(e->d_size); | 
 | 	len = le32_to_cpu(ino->ch.len); | 
 | 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); | 
 | 	ino->ch.crc = cpu_to_le32(crc); | 
 | 	/* Work out where data in the LEB ends and free space begins */ | 
 | 	p = c->sbuf; | 
 | 	len = c->leb_size - 1; | 
 | 	while (p[len] == 0xff) | 
 | 		len -= 1; | 
 | 	len = ALIGN(len + 1, c->min_io_size); | 
 | 	/* Atomically write the fixed LEB back again */ | 
 | 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", | 
 | 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", | 
 | 		   (unsigned long)e->inum, e->i_size, e->d_size, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_recover_size - recover inode size. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function attempts to fix inode size discrepancies identified by the | 
 |  * 'ubifs_recover_size_accum()' function. | 
 |  * | 
 |  * This functions returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_recover_size(struct ubifs_info *c) | 
 | { | 
 | 	struct rb_node *this = rb_first(&c->size_tree); | 
 |  | 
 | 	while (this) { | 
 | 		struct size_entry *e; | 
 | 		int err; | 
 |  | 
 | 		e = rb_entry(this, struct size_entry, rb); | 
 | 		if (!e->exists) { | 
 | 			union ubifs_key key; | 
 |  | 
 | 			ino_key_init(c, &key, e->inum); | 
 | 			err = ubifs_tnc_lookup(c, &key, c->sbuf); | 
 | 			if (err && err != -ENOENT) | 
 | 				return err; | 
 | 			if (err == -ENOENT) { | 
 | 				/* Remove data nodes that have no inode */ | 
 | 				dbg_rcvry("removing ino %lu", | 
 | 					  (unsigned long)e->inum); | 
 | 				err = ubifs_tnc_remove_ino(c, e->inum); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} else { | 
 | 				struct ubifs_ino_node *ino = c->sbuf; | 
 |  | 
 | 				e->exists = 1; | 
 | 				e->i_size = le64_to_cpu(ino->size); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (e->exists && e->i_size < e->d_size) { | 
 | 			if (c->ro_mount) { | 
 | 				/* Fix the inode size and pin it in memory */ | 
 | 				struct inode *inode; | 
 | 				struct ubifs_inode *ui; | 
 |  | 
 | 				ubifs_assert(!e->inode); | 
 |  | 
 | 				inode = ubifs_iget(c->vfs_sb, e->inum); | 
 | 				if (IS_ERR(inode)) | 
 | 					return PTR_ERR(inode); | 
 |  | 
 | 				ui = ubifs_inode(inode); | 
 | 				if (inode->i_size < e->d_size) { | 
 | 					dbg_rcvry("ino %lu size %lld -> %lld", | 
 | 						  (unsigned long)e->inum, | 
 | 						  inode->i_size, e->d_size); | 
 | 					inode->i_size = e->d_size; | 
 | 					ui->ui_size = e->d_size; | 
 | 					ui->synced_i_size = e->d_size; | 
 | 					e->inode = inode; | 
 | 					this = rb_next(this); | 
 | 					continue; | 
 | 				} | 
 | 				iput(inode); | 
 | 			} else { | 
 | 				/* Fix the size in place */ | 
 | 				err = fix_size_in_place(c, e); | 
 | 				if (err) | 
 | 					return err; | 
 | 				if (e->inode) | 
 | 					iput(e->inode); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		this = rb_next(this); | 
 | 		rb_erase(&e->rb, &c->size_tree); | 
 | 		kfree(e); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |