|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <asm/div64.h> | 
|  | #include "compat.h" | 
|  | #include "ctree.h" | 
|  | #include "extent_map.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "print-tree.h" | 
|  | #include "volumes.h" | 
|  | #include "async-thread.h" | 
|  |  | 
|  | struct map_lookup { | 
|  | u64 type; | 
|  | int io_align; | 
|  | int io_width; | 
|  | int stripe_len; | 
|  | int sector_size; | 
|  | int num_stripes; | 
|  | int sub_stripes; | 
|  | struct btrfs_bio_stripe stripes[]; | 
|  | }; | 
|  |  | 
|  | static int init_first_rw_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_device *device); | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | 
|  |  | 
|  | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ | 
|  | (sizeof(struct btrfs_bio_stripe) * (n))) | 
|  |  | 
|  | static DEFINE_MUTEX(uuid_mutex); | 
|  | static LIST_HEAD(fs_uuids); | 
|  |  | 
|  | void btrfs_lock_volumes(void) | 
|  | { | 
|  | mutex_lock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | void btrfs_unlock_volumes(void) | 
|  | { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | static void lock_chunks(struct btrfs_root *root) | 
|  | { | 
|  | mutex_lock(&root->fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | static void unlock_chunks(struct btrfs_root *root) | 
|  | { | 
|  | mutex_unlock(&root->fs_info->chunk_mutex); | 
|  | } | 
|  |  | 
|  | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | WARN_ON(fs_devices->opened); | 
|  | while (!list_empty(&fs_devices->devices)) { | 
|  | device = list_entry(fs_devices->devices.next, | 
|  | struct btrfs_device, dev_list); | 
|  | list_del(&device->dev_list); | 
|  | kfree(device->name); | 
|  | kfree(device); | 
|  | } | 
|  | kfree(fs_devices); | 
|  | } | 
|  |  | 
|  | int btrfs_cleanup_fs_uuids(void) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | while (!list_empty(&fs_uuids)) { | 
|  | fs_devices = list_entry(fs_uuids.next, | 
|  | struct btrfs_fs_devices, list); | 
|  | list_del(&fs_devices->list); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_device *__find_device(struct list_head *head, | 
|  | u64 devid, u8 *uuid) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | list_for_each_entry(dev, head, dev_list) { | 
|  | if (dev->devid == devid && | 
|  | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | 
|  | return dev; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  |  | 
|  | list_for_each_entry(fs_devices, &fs_uuids, list) { | 
|  | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | 
|  | return fs_devices; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void requeue_list(struct btrfs_pending_bios *pending_bios, | 
|  | struct bio *head, struct bio *tail) | 
|  | { | 
|  |  | 
|  | struct bio *old_head; | 
|  |  | 
|  | old_head = pending_bios->head; | 
|  | pending_bios->head = head; | 
|  | if (pending_bios->tail) | 
|  | tail->bi_next = old_head; | 
|  | else | 
|  | pending_bios->tail = tail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we try to collect pending bios for a device so we don't get a large | 
|  | * number of procs sending bios down to the same device.  This greatly | 
|  | * improves the schedulers ability to collect and merge the bios. | 
|  | * | 
|  | * But, it also turns into a long list of bios to process and that is sure | 
|  | * to eventually make the worker thread block.  The solution here is to | 
|  | * make some progress and then put this work struct back at the end of | 
|  | * the list if the block device is congested.  This way, multiple devices | 
|  | * can make progress from a single worker thread. | 
|  | */ | 
|  | static noinline int run_scheduled_bios(struct btrfs_device *device) | 
|  | { | 
|  | struct bio *pending; | 
|  | struct backing_dev_info *bdi; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_pending_bios *pending_bios; | 
|  | struct bio *tail; | 
|  | struct bio *cur; | 
|  | int again = 0; | 
|  | unsigned long num_run; | 
|  | unsigned long num_sync_run; | 
|  | unsigned long batch_run = 0; | 
|  | unsigned long limit; | 
|  | unsigned long last_waited = 0; | 
|  | int force_reg = 0; | 
|  |  | 
|  | bdi = blk_get_backing_dev_info(device->bdev); | 
|  | fs_info = device->dev_root->fs_info; | 
|  | limit = btrfs_async_submit_limit(fs_info); | 
|  | limit = limit * 2 / 3; | 
|  |  | 
|  | /* we want to make sure that every time we switch from the sync | 
|  | * list to the normal list, we unplug | 
|  | */ | 
|  | num_sync_run = 0; | 
|  |  | 
|  | loop: | 
|  | spin_lock(&device->io_lock); | 
|  |  | 
|  | loop_lock: | 
|  | num_run = 0; | 
|  |  | 
|  | /* take all the bios off the list at once and process them | 
|  | * later on (without the lock held).  But, remember the | 
|  | * tail and other pointers so the bios can be properly reinserted | 
|  | * into the list if we hit congestion | 
|  | */ | 
|  | if (!force_reg && device->pending_sync_bios.head) { | 
|  | pending_bios = &device->pending_sync_bios; | 
|  | force_reg = 1; | 
|  | } else { | 
|  | pending_bios = &device->pending_bios; | 
|  | force_reg = 0; | 
|  | } | 
|  |  | 
|  | pending = pending_bios->head; | 
|  | tail = pending_bios->tail; | 
|  | WARN_ON(pending && !tail); | 
|  |  | 
|  | /* | 
|  | * if pending was null this time around, no bios need processing | 
|  | * at all and we can stop.  Otherwise it'll loop back up again | 
|  | * and do an additional check so no bios are missed. | 
|  | * | 
|  | * device->running_pending is used to synchronize with the | 
|  | * schedule_bio code. | 
|  | */ | 
|  | if (device->pending_sync_bios.head == NULL && | 
|  | device->pending_bios.head == NULL) { | 
|  | again = 0; | 
|  | device->running_pending = 0; | 
|  | } else { | 
|  | again = 1; | 
|  | device->running_pending = 1; | 
|  | } | 
|  |  | 
|  | pending_bios->head = NULL; | 
|  | pending_bios->tail = NULL; | 
|  |  | 
|  | spin_unlock(&device->io_lock); | 
|  |  | 
|  | /* | 
|  | * if we're doing the regular priority list, make sure we unplug | 
|  | * for any high prio bios we've sent down | 
|  | */ | 
|  | if (pending_bios == &device->pending_bios && num_sync_run > 0) { | 
|  | num_sync_run = 0; | 
|  | blk_run_backing_dev(bdi, NULL); | 
|  | } | 
|  |  | 
|  | while (pending) { | 
|  |  | 
|  | rmb(); | 
|  | /* we want to work on both lists, but do more bios on the | 
|  | * sync list than the regular list | 
|  | */ | 
|  | if ((num_run > 32 && | 
|  | pending_bios != &device->pending_sync_bios && | 
|  | device->pending_sync_bios.head) || | 
|  | (num_run > 64 && pending_bios == &device->pending_sync_bios && | 
|  | device->pending_bios.head)) { | 
|  | spin_lock(&device->io_lock); | 
|  | requeue_list(pending_bios, pending, tail); | 
|  | goto loop_lock; | 
|  | } | 
|  |  | 
|  | cur = pending; | 
|  | pending = pending->bi_next; | 
|  | cur->bi_next = NULL; | 
|  | atomic_dec(&fs_info->nr_async_bios); | 
|  |  | 
|  | if (atomic_read(&fs_info->nr_async_bios) < limit && | 
|  | waitqueue_active(&fs_info->async_submit_wait)) | 
|  | wake_up(&fs_info->async_submit_wait); | 
|  |  | 
|  | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | 
|  |  | 
|  | if (cur->bi_rw & REQ_SYNC) | 
|  | num_sync_run++; | 
|  |  | 
|  | submit_bio(cur->bi_rw, cur); | 
|  | num_run++; | 
|  | batch_run++; | 
|  | if (need_resched()) { | 
|  | if (num_sync_run) { | 
|  | blk_run_backing_dev(bdi, NULL); | 
|  | num_sync_run = 0; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we made progress, there is more work to do and the bdi | 
|  | * is now congested.  Back off and let other work structs | 
|  | * run instead | 
|  | */ | 
|  | if (pending && bdi_write_congested(bdi) && batch_run > 8 && | 
|  | fs_info->fs_devices->open_devices > 1) { | 
|  | struct io_context *ioc; | 
|  |  | 
|  | ioc = current->io_context; | 
|  |  | 
|  | /* | 
|  | * the main goal here is that we don't want to | 
|  | * block if we're going to be able to submit | 
|  | * more requests without blocking. | 
|  | * | 
|  | * This code does two great things, it pokes into | 
|  | * the elevator code from a filesystem _and_ | 
|  | * it makes assumptions about how batching works. | 
|  | */ | 
|  | if (ioc && ioc->nr_batch_requests > 0 && | 
|  | time_before(jiffies, ioc->last_waited + HZ/50UL) && | 
|  | (last_waited == 0 || | 
|  | ioc->last_waited == last_waited)) { | 
|  | /* | 
|  | * we want to go through our batch of | 
|  | * requests and stop.  So, we copy out | 
|  | * the ioc->last_waited time and test | 
|  | * against it before looping | 
|  | */ | 
|  | last_waited = ioc->last_waited; | 
|  | if (need_resched()) { | 
|  | if (num_sync_run) { | 
|  | blk_run_backing_dev(bdi, NULL); | 
|  | num_sync_run = 0; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | spin_lock(&device->io_lock); | 
|  | requeue_list(pending_bios, pending, tail); | 
|  | device->running_pending = 1; | 
|  |  | 
|  | spin_unlock(&device->io_lock); | 
|  | btrfs_requeue_work(&device->work); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_sync_run) { | 
|  | num_sync_run = 0; | 
|  | blk_run_backing_dev(bdi, NULL); | 
|  | } | 
|  | /* | 
|  | * IO has already been through a long path to get here.  Checksumming, | 
|  | * async helper threads, perhaps compression.  We've done a pretty | 
|  | * good job of collecting a batch of IO and should just unplug | 
|  | * the device right away. | 
|  | * | 
|  | * This will help anyone who is waiting on the IO, they might have | 
|  | * already unplugged, but managed to do so before the bio they | 
|  | * cared about found its way down here. | 
|  | */ | 
|  | blk_run_backing_dev(bdi, NULL); | 
|  |  | 
|  | cond_resched(); | 
|  | if (again) | 
|  | goto loop; | 
|  |  | 
|  | spin_lock(&device->io_lock); | 
|  | if (device->pending_bios.head || device->pending_sync_bios.head) | 
|  | goto loop_lock; | 
|  | spin_unlock(&device->io_lock); | 
|  |  | 
|  | done: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pending_bios_fn(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | device = container_of(work, struct btrfs_device, work); | 
|  | run_scheduled_bios(device); | 
|  | } | 
|  |  | 
|  | static noinline int device_list_add(const char *path, | 
|  | struct btrfs_super_block *disk_super, | 
|  | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | u64 found_transid = btrfs_super_generation(disk_super); | 
|  | char *name; | 
|  |  | 
|  | fs_devices = find_fsid(disk_super->fsid); | 
|  | if (!fs_devices) { | 
|  | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
|  | if (!fs_devices) | 
|  | return -ENOMEM; | 
|  | INIT_LIST_HEAD(&fs_devices->devices); | 
|  | INIT_LIST_HEAD(&fs_devices->alloc_list); | 
|  | list_add(&fs_devices->list, &fs_uuids); | 
|  | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | 
|  | fs_devices->latest_devid = devid; | 
|  | fs_devices->latest_trans = found_transid; | 
|  | mutex_init(&fs_devices->device_list_mutex); | 
|  | device = NULL; | 
|  | } else { | 
|  | device = __find_device(&fs_devices->devices, devid, | 
|  | disk_super->dev_item.uuid); | 
|  | } | 
|  | if (!device) { | 
|  | if (fs_devices->opened) | 
|  | return -EBUSY; | 
|  |  | 
|  | device = kzalloc(sizeof(*device), GFP_NOFS); | 
|  | if (!device) { | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | return -ENOMEM; | 
|  | } | 
|  | device->devid = devid; | 
|  | device->work.func = pending_bios_fn; | 
|  | memcpy(device->uuid, disk_super->dev_item.uuid, | 
|  | BTRFS_UUID_SIZE); | 
|  | spin_lock_init(&device->io_lock); | 
|  | device->name = kstrdup(path, GFP_NOFS); | 
|  | if (!device->name) { | 
|  | kfree(device); | 
|  | return -ENOMEM; | 
|  | } | 
|  | INIT_LIST_HEAD(&device->dev_alloc_list); | 
|  |  | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  | } else if (!device->name || strcmp(device->name, path)) { | 
|  | name = kstrdup(path, GFP_NOFS); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  | kfree(device->name); | 
|  | device->name = name; | 
|  | if (device->missing) { | 
|  | fs_devices->missing_devices--; | 
|  | device->missing = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (found_transid > fs_devices->latest_trans) { | 
|  | fs_devices->latest_devid = devid; | 
|  | fs_devices->latest_trans = found_transid; | 
|  | } | 
|  | *fs_devices_ret = fs_devices; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *orig_dev; | 
|  |  | 
|  | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
|  | if (!fs_devices) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_devices->devices); | 
|  | INIT_LIST_HEAD(&fs_devices->alloc_list); | 
|  | INIT_LIST_HEAD(&fs_devices->list); | 
|  | mutex_init(&fs_devices->device_list_mutex); | 
|  | fs_devices->latest_devid = orig->latest_devid; | 
|  | fs_devices->latest_trans = orig->latest_trans; | 
|  | memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | 
|  |  | 
|  | mutex_lock(&orig->device_list_mutex); | 
|  | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | 
|  | device = kzalloc(sizeof(*device), GFP_NOFS); | 
|  | if (!device) | 
|  | goto error; | 
|  |  | 
|  | device->name = kstrdup(orig_dev->name, GFP_NOFS); | 
|  | if (!device->name) { | 
|  | kfree(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | device->devid = orig_dev->devid; | 
|  | device->work.func = pending_bios_fn; | 
|  | memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | 
|  | spin_lock_init(&device->io_lock); | 
|  | INIT_LIST_HEAD(&device->dev_list); | 
|  | INIT_LIST_HEAD(&device->dev_alloc_list); | 
|  |  | 
|  | list_add(&device->dev_list, &fs_devices->devices); | 
|  | device->fs_devices = fs_devices; | 
|  | fs_devices->num_devices++; | 
|  | } | 
|  | mutex_unlock(&orig->device_list_mutex); | 
|  | return fs_devices; | 
|  | error: | 
|  | mutex_unlock(&orig->device_list_mutex); | 
|  | free_fs_devices(fs_devices); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device, *next; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | again: | 
|  | mutex_lock(&fs_devices->device_list_mutex); | 
|  | list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { | 
|  | if (device->in_fs_metadata) | 
|  | continue; | 
|  |  | 
|  | if (device->bdev) { | 
|  | close_bdev_exclusive(device->bdev, device->mode); | 
|  | device->bdev = NULL; | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  | if (device->writeable) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | device->writeable = 0; | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  | list_del_init(&device->dev_list); | 
|  | fs_devices->num_devices--; | 
|  | kfree(device->name); | 
|  | kfree(device); | 
|  | } | 
|  | mutex_unlock(&fs_devices->device_list_mutex); | 
|  |  | 
|  | if (fs_devices->seed) { | 
|  | fs_devices = fs_devices->seed; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&uuid_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  |  | 
|  | if (--fs_devices->opened > 0) | 
|  | return 0; | 
|  |  | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (device->bdev) { | 
|  | close_bdev_exclusive(device->bdev, device->mode); | 
|  | fs_devices->open_devices--; | 
|  | } | 
|  | if (device->writeable) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | fs_devices->rw_devices--; | 
|  | } | 
|  |  | 
|  | device->bdev = NULL; | 
|  | device->writeable = 0; | 
|  | device->in_fs_metadata = 0; | 
|  | } | 
|  | WARN_ON(fs_devices->open_devices); | 
|  | WARN_ON(fs_devices->rw_devices); | 
|  | fs_devices->opened = 0; | 
|  | fs_devices->seeding = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
|  | { | 
|  | struct btrfs_fs_devices *seed_devices = NULL; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | ret = __btrfs_close_devices(fs_devices); | 
|  | if (!fs_devices->opened) { | 
|  | seed_devices = fs_devices->seed; | 
|  | fs_devices->seed = NULL; | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  |  | 
|  | while (seed_devices) { | 
|  | fs_devices = seed_devices; | 
|  | seed_devices = fs_devices->seed; | 
|  | __btrfs_close_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
|  | fmode_t flags, void *holder) | 
|  | { | 
|  | struct block_device *bdev; | 
|  | struct list_head *head = &fs_devices->devices; | 
|  | struct btrfs_device *device; | 
|  | struct block_device *latest_bdev = NULL; | 
|  | struct buffer_head *bh; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 latest_devid = 0; | 
|  | u64 latest_transid = 0; | 
|  | u64 devid; | 
|  | int seeding = 1; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(device, head, dev_list) { | 
|  | if (device->bdev) | 
|  | continue; | 
|  | if (!device->name) | 
|  | continue; | 
|  |  | 
|  | bdev = open_bdev_exclusive(device->name, flags, holder); | 
|  | if (IS_ERR(bdev)) { | 
|  | printk(KERN_INFO "open %s failed\n", device->name); | 
|  | goto error; | 
|  | } | 
|  | set_blocksize(bdev, 4096); | 
|  |  | 
|  | bh = btrfs_read_dev_super(bdev); | 
|  | if (!bh) | 
|  | goto error_close; | 
|  |  | 
|  | disk_super = (struct btrfs_super_block *)bh->b_data; | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | if (devid != device->devid) | 
|  | goto error_brelse; | 
|  |  | 
|  | if (memcmp(device->uuid, disk_super->dev_item.uuid, | 
|  | BTRFS_UUID_SIZE)) | 
|  | goto error_brelse; | 
|  |  | 
|  | device->generation = btrfs_super_generation(disk_super); | 
|  | if (!latest_transid || device->generation > latest_transid) { | 
|  | latest_devid = devid; | 
|  | latest_transid = device->generation; | 
|  | latest_bdev = bdev; | 
|  | } | 
|  |  | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | 
|  | device->writeable = 0; | 
|  | } else { | 
|  | device->writeable = !bdev_read_only(bdev); | 
|  | seeding = 0; | 
|  | } | 
|  |  | 
|  | device->bdev = bdev; | 
|  | device->in_fs_metadata = 0; | 
|  | device->mode = flags; | 
|  |  | 
|  | if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
|  | fs_devices->rotating = 1; | 
|  |  | 
|  | fs_devices->open_devices++; | 
|  | if (device->writeable) { | 
|  | fs_devices->rw_devices++; | 
|  | list_add(&device->dev_alloc_list, | 
|  | &fs_devices->alloc_list); | 
|  | } | 
|  | continue; | 
|  |  | 
|  | error_brelse: | 
|  | brelse(bh); | 
|  | error_close: | 
|  | close_bdev_exclusive(bdev, FMODE_READ); | 
|  | error: | 
|  | continue; | 
|  | } | 
|  | if (fs_devices->open_devices == 0) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | fs_devices->seeding = seeding; | 
|  | fs_devices->opened = 1; | 
|  | fs_devices->latest_bdev = latest_bdev; | 
|  | fs_devices->latest_devid = latest_devid; | 
|  | fs_devices->latest_trans = latest_transid; | 
|  | fs_devices->total_rw_bytes = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
|  | fmode_t flags, void *holder) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | if (fs_devices->opened) { | 
|  | fs_devices->opened++; | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = __btrfs_open_devices(fs_devices, flags, holder); | 
|  | } | 
|  | mutex_unlock(&uuid_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | 
|  | struct btrfs_fs_devices **fs_devices_ret) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | struct block_device *bdev; | 
|  | struct buffer_head *bh; | 
|  | int ret; | 
|  | u64 devid; | 
|  | u64 transid; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | bdev = open_bdev_exclusive(path, flags, holder); | 
|  |  | 
|  | if (IS_ERR(bdev)) { | 
|  | ret = PTR_ERR(bdev); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = set_blocksize(bdev, 4096); | 
|  | if (ret) | 
|  | goto error_close; | 
|  | bh = btrfs_read_dev_super(bdev); | 
|  | if (!bh) { | 
|  | ret = -EIO; | 
|  | goto error_close; | 
|  | } | 
|  | disk_super = (struct btrfs_super_block *)bh->b_data; | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | transid = btrfs_super_generation(disk_super); | 
|  | if (disk_super->label[0]) | 
|  | printk(KERN_INFO "device label %s ", disk_super->label); | 
|  | else { | 
|  | /* FIXME, make a readl uuid parser */ | 
|  | printk(KERN_INFO "device fsid %llx-%llx ", | 
|  | *(unsigned long long *)disk_super->fsid, | 
|  | *(unsigned long long *)(disk_super->fsid + 8)); | 
|  | } | 
|  | printk(KERN_CONT "devid %llu transid %llu %s\n", | 
|  | (unsigned long long)devid, (unsigned long long)transid, path); | 
|  | ret = device_list_add(path, disk_super, devid, fs_devices_ret); | 
|  |  | 
|  | brelse(bh); | 
|  | error_close: | 
|  | close_bdev_exclusive(bdev, flags); | 
|  | error: | 
|  | mutex_unlock(&uuid_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this uses a pretty simple search, the expectation is that it is | 
|  | * called very infrequently and that a given device has a small number | 
|  | * of extents | 
|  | */ | 
|  | int find_free_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, u64 num_bytes, | 
|  | u64 *start, u64 *max_avail) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *root = device->dev_root; | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | u64 hole_size = 0; | 
|  | u64 last_byte = 0; | 
|  | u64 search_start = 0; | 
|  | u64 search_end = device->total_bytes; | 
|  | int ret; | 
|  | int slot = 0; | 
|  | int start_found; | 
|  | struct extent_buffer *l; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = 2; | 
|  | start_found = 0; | 
|  |  | 
|  | /* FIXME use last free of some kind */ | 
|  |  | 
|  | /* we don't want to overwrite the superblock on the drive, | 
|  | * so we make sure to start at an offset of at least 1MB | 
|  | */ | 
|  | search_start = max((u64)1024 * 1024, search_start); | 
|  |  | 
|  | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | 
|  | search_start = max(root->fs_info->alloc_start, search_start); | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = search_start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret > 0) | 
|  | start_found = 1; | 
|  | } | 
|  | l = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
|  | while (1) { | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | no_more_items: | 
|  | if (!start_found) { | 
|  | if (search_start >= search_end) { | 
|  | ret = -ENOSPC; | 
|  | goto error; | 
|  | } | 
|  | *start = search_start; | 
|  | start_found = 1; | 
|  | goto check_pending; | 
|  | } | 
|  | *start = last_byte > search_start ? | 
|  | last_byte : search_start; | 
|  | if (search_end <= *start) { | 
|  | ret = -ENOSPC; | 
|  | goto error; | 
|  | } | 
|  | goto check_pending; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.objectid < device->devid) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid > device->devid) | 
|  | goto no_more_items; | 
|  |  | 
|  | if (key.offset >= search_start && key.offset > last_byte && | 
|  | start_found) { | 
|  | if (last_byte < search_start) | 
|  | last_byte = search_start; | 
|  | hole_size = key.offset - last_byte; | 
|  |  | 
|  | if (hole_size > *max_avail) | 
|  | *max_avail = hole_size; | 
|  |  | 
|  | if (key.offset > last_byte && | 
|  | hole_size >= num_bytes) { | 
|  | *start = last_byte; | 
|  | goto check_pending; | 
|  | } | 
|  | } | 
|  | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | 
|  | goto next; | 
|  |  | 
|  | start_found = 1; | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | 
|  | next: | 
|  | path->slots[0]++; | 
|  | cond_resched(); | 
|  | } | 
|  | check_pending: | 
|  | /* we have to make sure we didn't find an extent that has already | 
|  | * been allocated by the map tree or the original allocation | 
|  | */ | 
|  | BUG_ON(*start < search_start); | 
|  |  | 
|  | if (*start + num_bytes > search_end) { | 
|  | ret = -ENOSPC; | 
|  | goto error; | 
|  | } | 
|  | /* check for pending inserts here */ | 
|  | ret = 0; | 
|  |  | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, | 
|  | u64 start) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = device->dev_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf = NULL; | 
|  | struct btrfs_dev_extent *extent = NULL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_item(root, path, key.objectid, | 
|  | BTRFS_DEV_EXTENT_KEY); | 
|  | BUG_ON(ret); | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | BUG_ON(found_key.offset > start || found_key.offset + | 
|  | btrfs_dev_extent_length(leaf, extent) < start); | 
|  | ret = 0; | 
|  | } else if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | } | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (device->bytes_used > 0) | 
|  | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, | 
|  | u64 chunk_tree, u64 chunk_objectid, | 
|  | u64 chunk_offset, u64 start, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = device->dev_root; | 
|  | struct btrfs_dev_extent *extent; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | WARN_ON(!device->in_fs_metadata); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = device->devid; | 
|  | key.offset = start; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(*extent)); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_extent); | 
|  | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | 
|  | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | 
|  | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | 
|  |  | 
|  | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | 
|  | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | 
|  | BTRFS_UUID_SIZE); | 
|  |  | 
|  | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int find_next_chunk(struct btrfs_root *root, | 
|  | u64 objectid, u64 *offset) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | 
|  | if (ret) { | 
|  | *offset = 0; | 
|  | } else { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (found_key.objectid != objectid) | 
|  | *offset = 0; | 
|  | else { | 
|  | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_chunk); | 
|  | *offset = found_key.offset + | 
|  | btrfs_chunk_length(path->nodes[0], chunk); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | 
|  | BTRFS_DEV_ITEM_KEY); | 
|  | if (ret) { | 
|  | *objectid = 1; | 
|  | } else { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | *objectid = found_key.offset + 1; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the device information is stored in the chunk root | 
|  | * the btrfs_device struct should be fully filled in | 
|  | */ | 
|  | int btrfs_add_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | unsigned long ptr; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(*dev_item)); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_generation(leaf, dev_item, 0); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
|  | btrfs_set_device_group(leaf, dev_item, 0); | 
|  | btrfs_set_device_seek_speed(leaf, dev_item, 0); | 
|  | btrfs_set_device_bandwidth(leaf, dev_item, 0); | 
|  | btrfs_set_device_start_offset(leaf, dev_item, 0); | 
|  |  | 
|  | ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
|  | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  | ptr = (unsigned long)btrfs_device_fsid(dev_item); | 
|  | write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_rm_dev_item(struct btrfs_root *root, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  | lock_chunks(root); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | unlock_chunks(root); | 
|  | btrfs_commit_transaction(trans, root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_device *next_device; | 
|  | struct block_device *bdev; | 
|  | struct buffer_head *bh = NULL; | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 all_avail; | 
|  | u64 devid; | 
|  | u64 num_devices; | 
|  | u8 *dev_uuid; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  | mutex_lock(&root->fs_info->volume_mutex); | 
|  |  | 
|  | all_avail = root->fs_info->avail_data_alloc_bits | | 
|  | root->fs_info->avail_system_alloc_bits | | 
|  | root->fs_info->avail_metadata_alloc_bits; | 
|  |  | 
|  | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | 
|  | root->fs_info->fs_devices->num_devices <= 4) { | 
|  | printk(KERN_ERR "btrfs: unable to go below four devices " | 
|  | "on raid10\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | 
|  | root->fs_info->fs_devices->num_devices <= 2) { | 
|  | printk(KERN_ERR "btrfs: unable to go below two " | 
|  | "devices on raid1\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (strcmp(device_path, "missing") == 0) { | 
|  | struct list_head *devices; | 
|  | struct btrfs_device *tmp; | 
|  |  | 
|  | device = NULL; | 
|  | devices = &root->fs_info->fs_devices->devices; | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | list_for_each_entry(tmp, devices, dev_list) { | 
|  | if (tmp->in_fs_metadata && !tmp->bdev) { | 
|  | device = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | bdev = NULL; | 
|  | bh = NULL; | 
|  | disk_super = NULL; | 
|  | if (!device) { | 
|  | printk(KERN_ERR "btrfs: no missing devices found to " | 
|  | "remove\n"); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | bdev = open_bdev_exclusive(device_path, FMODE_READ, | 
|  | root->fs_info->bdev_holder); | 
|  | if (IS_ERR(bdev)) { | 
|  | ret = PTR_ERR(bdev); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | set_blocksize(bdev, 4096); | 
|  | bh = btrfs_read_dev_super(bdev); | 
|  | if (!bh) { | 
|  | ret = -EIO; | 
|  | goto error_close; | 
|  | } | 
|  | disk_super = (struct btrfs_super_block *)bh->b_data; | 
|  | devid = btrfs_stack_device_id(&disk_super->dev_item); | 
|  | dev_uuid = disk_super->dev_item.uuid; | 
|  | device = btrfs_find_device(root, devid, dev_uuid, | 
|  | disk_super->fsid); | 
|  | if (!device) { | 
|  | ret = -ENOENT; | 
|  | goto error_brelse; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | 
|  | printk(KERN_ERR "btrfs: unable to remove the only writeable " | 
|  | "device\n"); | 
|  | ret = -EINVAL; | 
|  | goto error_brelse; | 
|  | } | 
|  |  | 
|  | if (device->writeable) { | 
|  | list_del_init(&device->dev_alloc_list); | 
|  | root->fs_info->fs_devices->rw_devices--; | 
|  | } | 
|  |  | 
|  | ret = btrfs_shrink_device(device, 0); | 
|  | if (ret) | 
|  | goto error_brelse; | 
|  |  | 
|  | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | 
|  | if (ret) | 
|  | goto error_brelse; | 
|  |  | 
|  | device->in_fs_metadata = 0; | 
|  |  | 
|  | /* | 
|  | * the device list mutex makes sure that we don't change | 
|  | * the device list while someone else is writing out all | 
|  | * the device supers. | 
|  | */ | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | list_del_init(&device->dev_list); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | device->fs_devices->num_devices--; | 
|  |  | 
|  | if (device->missing) | 
|  | root->fs_info->fs_devices->missing_devices--; | 
|  |  | 
|  | next_device = list_entry(root->fs_info->fs_devices->devices.next, | 
|  | struct btrfs_device, dev_list); | 
|  | if (device->bdev == root->fs_info->sb->s_bdev) | 
|  | root->fs_info->sb->s_bdev = next_device->bdev; | 
|  | if (device->bdev == root->fs_info->fs_devices->latest_bdev) | 
|  | root->fs_info->fs_devices->latest_bdev = next_device->bdev; | 
|  |  | 
|  | if (device->bdev) { | 
|  | close_bdev_exclusive(device->bdev, device->mode); | 
|  | device->bdev = NULL; | 
|  | device->fs_devices->open_devices--; | 
|  | } | 
|  |  | 
|  | num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | 
|  | btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); | 
|  |  | 
|  | if (device->fs_devices->open_devices == 0) { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | fs_devices = root->fs_info->fs_devices; | 
|  | while (fs_devices) { | 
|  | if (fs_devices->seed == device->fs_devices) | 
|  | break; | 
|  | fs_devices = fs_devices->seed; | 
|  | } | 
|  | fs_devices->seed = device->fs_devices->seed; | 
|  | device->fs_devices->seed = NULL; | 
|  | __btrfs_close_devices(device->fs_devices); | 
|  | free_fs_devices(device->fs_devices); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * at this point, the device is zero sized.  We want to | 
|  | * remove it from the devices list and zero out the old super | 
|  | */ | 
|  | if (device->writeable) { | 
|  | /* make sure this device isn't detected as part of | 
|  | * the FS anymore | 
|  | */ | 
|  | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | 
|  | set_buffer_dirty(bh); | 
|  | sync_dirty_buffer(bh); | 
|  | } | 
|  |  | 
|  | kfree(device->name); | 
|  | kfree(device); | 
|  | ret = 0; | 
|  |  | 
|  | error_brelse: | 
|  | brelse(bh); | 
|  | error_close: | 
|  | if (bdev) | 
|  | close_bdev_exclusive(bdev, FMODE_READ); | 
|  | out: | 
|  | mutex_unlock(&root->fs_info->volume_mutex); | 
|  | mutex_unlock(&uuid_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * does all the dirty work required for changing file system's UUID. | 
|  | */ | 
|  | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
|  | struct btrfs_fs_devices *old_devices; | 
|  | struct btrfs_fs_devices *seed_devices; | 
|  | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; | 
|  | struct btrfs_device *device; | 
|  | u64 super_flags; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&uuid_mutex)); | 
|  | if (!fs_devices->seeding) | 
|  | return -EINVAL; | 
|  |  | 
|  | seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
|  | if (!seed_devices) | 
|  | return -ENOMEM; | 
|  |  | 
|  | old_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(old_devices)) { | 
|  | kfree(seed_devices); | 
|  | return PTR_ERR(old_devices); | 
|  | } | 
|  |  | 
|  | list_add(&old_devices->list, &fs_uuids); | 
|  |  | 
|  | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | 
|  | seed_devices->opened = 1; | 
|  | INIT_LIST_HEAD(&seed_devices->devices); | 
|  | INIT_LIST_HEAD(&seed_devices->alloc_list); | 
|  | mutex_init(&seed_devices->device_list_mutex); | 
|  | list_splice_init(&fs_devices->devices, &seed_devices->devices); | 
|  | list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | 
|  | list_for_each_entry(device, &seed_devices->devices, dev_list) { | 
|  | device->fs_devices = seed_devices; | 
|  | } | 
|  |  | 
|  | fs_devices->seeding = 0; | 
|  | fs_devices->num_devices = 0; | 
|  | fs_devices->open_devices = 0; | 
|  | fs_devices->seed = seed_devices; | 
|  |  | 
|  | generate_random_uuid(fs_devices->fsid); | 
|  | memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | super_flags = btrfs_super_flags(disk_super) & | 
|  | ~BTRFS_SUPER_FLAG_SEEDING; | 
|  | btrfs_set_super_flags(disk_super, super_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * strore the expected generation for seed devices in device items. | 
|  | */ | 
|  | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_key key; | 
|  | u8 fs_uuid[BTRFS_UUID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  | u64 devid; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | next_slot: | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | btrfs_release_path(root, path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | 
|  | key.type != BTRFS_DEV_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_dev_item); | 
|  | devid = btrfs_device_id(leaf, dev_item); | 
|  | read_extent_buffer(leaf, dev_uuid, | 
|  | (unsigned long)btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, | 
|  | (unsigned long)btrfs_device_fsid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | 
|  | BUG_ON(!device); | 
|  |  | 
|  | if (device->fs_devices->seeding) { | 
|  | btrfs_set_device_generation(leaf, dev_item, | 
|  | device->generation); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_device *device; | 
|  | struct block_device *bdev; | 
|  | struct list_head *devices; | 
|  | struct super_block *sb = root->fs_info->sb; | 
|  | u64 total_bytes; | 
|  | int seeding_dev = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | 
|  | return -EINVAL; | 
|  |  | 
|  | bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder); | 
|  | if (IS_ERR(bdev)) | 
|  | return PTR_ERR(bdev); | 
|  |  | 
|  | if (root->fs_info->fs_devices->seeding) { | 
|  | seeding_dev = 1; | 
|  | down_write(&sb->s_umount); | 
|  | mutex_lock(&uuid_mutex); | 
|  | } | 
|  |  | 
|  | filemap_write_and_wait(bdev->bd_inode->i_mapping); | 
|  | mutex_lock(&root->fs_info->volume_mutex); | 
|  |  | 
|  | devices = &root->fs_info->fs_devices->devices; | 
|  | /* | 
|  | * we have the volume lock, so we don't need the extra | 
|  | * device list mutex while reading the list here. | 
|  | */ | 
|  | list_for_each_entry(device, devices, dev_list) { | 
|  | if (device->bdev == bdev) { | 
|  | ret = -EEXIST; | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | device = kzalloc(sizeof(*device), GFP_NOFS); | 
|  | if (!device) { | 
|  | /* we can safely leave the fs_devices entry around */ | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | device->name = kstrdup(device_path, GFP_NOFS); | 
|  | if (!device->name) { | 
|  | kfree(device); | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = find_next_devid(root, &device->devid); | 
|  | if (ret) { | 
|  | kfree(device); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | lock_chunks(root); | 
|  |  | 
|  | device->writeable = 1; | 
|  | device->work.func = pending_bios_fn; | 
|  | generate_random_uuid(device->uuid); | 
|  | spin_lock_init(&device->io_lock); | 
|  | device->generation = trans->transid; | 
|  | device->io_width = root->sectorsize; | 
|  | device->io_align = root->sectorsize; | 
|  | device->sector_size = root->sectorsize; | 
|  | device->total_bytes = i_size_read(bdev->bd_inode); | 
|  | device->disk_total_bytes = device->total_bytes; | 
|  | device->dev_root = root->fs_info->dev_root; | 
|  | device->bdev = bdev; | 
|  | device->in_fs_metadata = 1; | 
|  | device->mode = 0; | 
|  | set_blocksize(device->bdev, 4096); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | sb->s_flags &= ~MS_RDONLY; | 
|  | ret = btrfs_prepare_sprout(trans, root); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | device->fs_devices = root->fs_info->fs_devices; | 
|  |  | 
|  | /* | 
|  | * we don't want write_supers to jump in here with our device | 
|  | * half setup | 
|  | */ | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | 
|  | list_add(&device->dev_alloc_list, | 
|  | &root->fs_info->fs_devices->alloc_list); | 
|  | root->fs_info->fs_devices->num_devices++; | 
|  | root->fs_info->fs_devices->open_devices++; | 
|  | root->fs_info->fs_devices->rw_devices++; | 
|  | root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | 
|  |  | 
|  | if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
|  | root->fs_info->fs_devices->rotating = 1; | 
|  |  | 
|  | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); | 
|  | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | 
|  | total_bytes + device->total_bytes); | 
|  |  | 
|  | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | 
|  | btrfs_set_super_num_devices(&root->fs_info->super_copy, | 
|  | total_bytes + 1); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | ret = init_first_rw_device(trans, root, device); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_finish_sprout(trans, root); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | ret = btrfs_add_device(trans, root, device); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we've got more storage, clear any full flags on the space | 
|  | * infos | 
|  | */ | 
|  | btrfs_clear_space_info_full(root->fs_info); | 
|  |  | 
|  | unlock_chunks(root); | 
|  | btrfs_commit_transaction(trans, root); | 
|  |  | 
|  | if (seeding_dev) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  |  | 
|  | ret = btrfs_relocate_sys_chunks(root); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&root->fs_info->volume_mutex); | 
|  | return ret; | 
|  | error: | 
|  | close_bdev_exclusive(bdev, 0); | 
|  | if (seeding_dev) { | 
|  | mutex_unlock(&uuid_mutex); | 
|  | up_write(&sb->s_umount); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | root = device->dev_root->fs_info->chunk_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.type = BTRFS_DEV_ITEM_KEY; | 
|  | key.offset = device->devid; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
|  |  | 
|  | btrfs_set_device_id(leaf, dev_item, device->devid); | 
|  | btrfs_set_device_type(leaf, dev_item, device->type); | 
|  | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
|  | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
|  | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
|  | btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); | 
|  | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = | 
|  | &device->dev_root->fs_info->super_copy; | 
|  | u64 old_total = btrfs_super_total_bytes(super_copy); | 
|  | u64 diff = new_size - device->total_bytes; | 
|  |  | 
|  | if (!device->writeable) | 
|  | return -EACCES; | 
|  | if (new_size <= device->total_bytes) | 
|  | return -EINVAL; | 
|  |  | 
|  | btrfs_set_super_total_bytes(super_copy, old_total + diff); | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  |  | 
|  | device->total_bytes = new_size; | 
|  | device->disk_total_bytes = new_size; | 
|  | btrfs_clear_space_info_full(device->dev_root->fs_info); | 
|  |  | 
|  | return btrfs_update_device(trans, device); | 
|  | } | 
|  |  | 
|  | int btrfs_grow_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | int ret; | 
|  | lock_chunks(device->dev_root); | 
|  | ret = __btrfs_grow_device(trans, device, new_size); | 
|  | unlock_chunks(device->dev_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 chunk_tree, u64 chunk_objectid, | 
|  | u64 chunk_offset) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = chunk_objectid; | 
|  | key.offset = chunk_offset; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | 
|  | chunk_offset) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | 
|  | struct btrfs_disk_key *disk_key; | 
|  | struct btrfs_chunk *chunk; | 
|  | u8 *ptr; | 
|  | int ret = 0; | 
|  | u32 num_stripes; | 
|  | u32 array_size; | 
|  | u32 len = 0; | 
|  | u32 cur; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array; | 
|  | cur = 0; | 
|  |  | 
|  | while (cur < array_size) { | 
|  | disk_key = (struct btrfs_disk_key *)ptr; | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | len = sizeof(*disk_key); | 
|  |  | 
|  | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | chunk = (struct btrfs_chunk *)(ptr + len); | 
|  | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | 
|  | len += btrfs_chunk_item_size(num_stripes); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | if (key.objectid == chunk_objectid && | 
|  | key.offset == chunk_offset) { | 
|  | memmove(ptr, ptr + len, array_size - (cur + len)); | 
|  | array_size -= len; | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size); | 
|  | } else { | 
|  | ptr += len; | 
|  | cur += len; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_relocate_chunk(struct btrfs_root *root, | 
|  | u64 chunk_tree, u64 chunk_objectid, | 
|  | u64 chunk_offset) | 
|  | { | 
|  | struct extent_map_tree *em_tree; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  | extent_root = root->fs_info->extent_root; | 
|  | em_tree = &root->fs_info->mapping_tree.map_tree; | 
|  |  | 
|  | ret = btrfs_can_relocate(extent_root, chunk_offset); | 
|  | if (ret) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* step one, relocate all the extents inside this chunk */ | 
|  | ret = btrfs_relocate_block_group(extent_root, chunk_offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | BUG_ON(!trans); | 
|  |  | 
|  | lock_chunks(root); | 
|  |  | 
|  | /* | 
|  | * step two, delete the device extents and the | 
|  | * chunk tree entries | 
|  | */ | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | BUG_ON(em->start > chunk_offset || | 
|  | em->start + em->len < chunk_offset); | 
|  | map = (struct map_lookup *)em->bdev; | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | 
|  | map->stripes[i].physical); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (map->stripes[i].dev) { | 
|  | ret = btrfs_update_device(trans, map->stripes[i].dev); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } | 
|  | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | 
|  | chunk_offset); | 
|  |  | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | remove_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  |  | 
|  | kfree(map); | 
|  | em->bdev = NULL; | 
|  |  | 
|  | /* once for the tree */ | 
|  | free_extent_map(em); | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  |  | 
|  | unlock_chunks(root); | 
|  | btrfs_end_transaction(trans, root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | u64 chunk_tree = chunk_root->root_key.objectid; | 
|  | u64 chunk_type; | 
|  | bool retried = false; | 
|  | int failed = 0; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | BUG_ON(ret == 0); | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, key.objectid, | 
|  | key.type); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | chunk = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_chunk); | 
|  | chunk_type = btrfs_chunk_type(leaf, chunk); | 
|  | btrfs_release_path(chunk_root, path); | 
|  |  | 
|  | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | 
|  | found_key.objectid, | 
|  | found_key.offset); | 
|  | if (ret == -ENOSPC) | 
|  | failed++; | 
|  | else if (ret) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  | ret = 0; | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (failed && retried) { | 
|  | WARN_ON(1); | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 div_factor(u64 num, int factor) | 
|  | { | 
|  | if (factor == 10) | 
|  | return num; | 
|  | num *= factor; | 
|  | do_div(num, 10); | 
|  | return num; | 
|  | } | 
|  |  | 
|  | int btrfs_balance(struct btrfs_root *dev_root) | 
|  | { | 
|  | int ret; | 
|  | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | 
|  | struct btrfs_device *device; | 
|  | u64 old_size; | 
|  | u64 size_to_free; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | if (dev_root->fs_info->sb->s_flags & MS_RDONLY) | 
|  | return -EROFS; | 
|  |  | 
|  | mutex_lock(&dev_root->fs_info->volume_mutex); | 
|  | dev_root = dev_root->fs_info->dev_root; | 
|  |  | 
|  | /* step one make some room on all the devices */ | 
|  | list_for_each_entry(device, devices, dev_list) { | 
|  | old_size = device->total_bytes; | 
|  | size_to_free = div_factor(old_size, 1); | 
|  | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | 
|  | if (!device->writeable || | 
|  | device->total_bytes - device->bytes_used > size_to_free) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_shrink_device(device, old_size - size_to_free); | 
|  | if (ret == -ENOSPC) | 
|  | break; | 
|  | BUG_ON(ret); | 
|  |  | 
|  | trans = btrfs_start_transaction(dev_root, 0); | 
|  | BUG_ON(!trans); | 
|  |  | 
|  | ret = btrfs_grow_device(trans, device, old_size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_end_transaction(trans, dev_root); | 
|  | } | 
|  |  | 
|  | /* step two, relocate all the chunks */ | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * this shouldn't happen, it means the last relocate | 
|  | * failed | 
|  | */ | 
|  | if (ret == 0) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_previous_item(chunk_root, path, 0, | 
|  | BTRFS_CHUNK_ITEM_KEY); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (found_key.objectid != key.objectid) | 
|  | break; | 
|  |  | 
|  | /* chunk zero is special */ | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  |  | 
|  | btrfs_release_path(chunk_root, path); | 
|  | ret = btrfs_relocate_chunk(chunk_root, | 
|  | chunk_root->root_key.objectid, | 
|  | found_key.objectid, | 
|  | found_key.offset); | 
|  | BUG_ON(ret && ret != -ENOSPC); | 
|  | key.offset = found_key.offset - 1; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | mutex_unlock(&dev_root->fs_info->volume_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shrinking a device means finding all of the device extents past | 
|  | * the new size, and then following the back refs to the chunks. | 
|  | * The chunk relocation code actually frees the device extent | 
|  | */ | 
|  | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = device->dev_root; | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | u64 length; | 
|  | u64 chunk_tree; | 
|  | u64 chunk_objectid; | 
|  | u64 chunk_offset; | 
|  | int ret; | 
|  | int slot; | 
|  | int failed = 0; | 
|  | bool retried = false; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | 
|  | u64 old_total = btrfs_super_total_bytes(super_copy); | 
|  | u64 old_size = device->total_bytes; | 
|  | u64 diff = device->total_bytes - new_size; | 
|  |  | 
|  | if (new_size >= device->total_bytes) | 
|  | return -EINVAL; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = 2; | 
|  |  | 
|  | lock_chunks(root); | 
|  |  | 
|  | device->total_bytes = new_size; | 
|  | if (device->writeable) | 
|  | device->fs_devices->total_rw_bytes -= diff; | 
|  | unlock_chunks(root); | 
|  |  | 
|  | again: | 
|  | key.objectid = device->devid; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  |  | 
|  | ret = btrfs_previous_item(root, path, 0, key.type); | 
|  | if (ret < 0) | 
|  | goto done; | 
|  | if (ret) { | 
|  | ret = 0; | 
|  | btrfs_release_path(root, path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != device->devid) { | 
|  | btrfs_release_path(root, path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | length = btrfs_dev_extent_length(l, dev_extent); | 
|  |  | 
|  | if (key.offset + length <= new_size) { | 
|  | btrfs_release_path(root, path); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
|  | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | 
|  | chunk_offset); | 
|  | if (ret && ret != -ENOSPC) | 
|  | goto done; | 
|  | if (ret == -ENOSPC) | 
|  | failed++; | 
|  | key.offset -= 1; | 
|  | } | 
|  |  | 
|  | if (failed && !retried) { | 
|  | failed = 0; | 
|  | retried = true; | 
|  | goto again; | 
|  | } else if (failed && retried) { | 
|  | ret = -ENOSPC; | 
|  | lock_chunks(root); | 
|  |  | 
|  | device->total_bytes = old_size; | 
|  | if (device->writeable) | 
|  | device->fs_devices->total_rw_bytes += diff; | 
|  | unlock_chunks(root); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Shrinking succeeded, else we would be at "done". */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | lock_chunks(root); | 
|  |  | 
|  | device->disk_total_bytes = new_size; | 
|  | /* Now btrfs_update_device() will change the on-disk size. */ | 
|  | ret = btrfs_update_device(trans, device); | 
|  | if (ret) { | 
|  | unlock_chunks(root); | 
|  | btrfs_end_transaction(trans, root); | 
|  | goto done; | 
|  | } | 
|  | WARN_ON(diff > old_total); | 
|  | btrfs_set_super_total_bytes(super_copy, old_total - diff); | 
|  | unlock_chunks(root); | 
|  | btrfs_end_transaction(trans, root); | 
|  | done: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_key *key, | 
|  | struct btrfs_chunk *chunk, int item_size) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | 
|  | struct btrfs_disk_key disk_key; | 
|  | u32 array_size; | 
|  | u8 *ptr; | 
|  |  | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | 
|  | return -EFBIG; | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array + array_size; | 
|  | btrfs_cpu_key_to_disk(&disk_key, key); | 
|  | memcpy(ptr, &disk_key, sizeof(disk_key)); | 
|  | ptr += sizeof(disk_key); | 
|  | memcpy(ptr, chunk, item_size); | 
|  | item_size += sizeof(disk_key); | 
|  | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size, | 
|  | int num_stripes, int sub_stripes) | 
|  | { | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | 
|  | return calc_size; | 
|  | else if (type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | return calc_size * (num_stripes / sub_stripes); | 
|  | else | 
|  | return calc_size * num_stripes; | 
|  | } | 
|  |  | 
|  | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct map_lookup **map_ret, | 
|  | u64 *num_bytes, u64 *stripe_size, | 
|  | u64 start, u64 type) | 
|  | { | 
|  | struct btrfs_fs_info *info = extent_root->fs_info; | 
|  | struct btrfs_device *device = NULL; | 
|  | struct btrfs_fs_devices *fs_devices = info->fs_devices; | 
|  | struct list_head *cur; | 
|  | struct map_lookup *map = NULL; | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  | struct list_head private_devs; | 
|  | int min_stripe_size = 1 * 1024 * 1024; | 
|  | u64 calc_size = 1024 * 1024 * 1024; | 
|  | u64 max_chunk_size = calc_size; | 
|  | u64 min_free; | 
|  | u64 avail; | 
|  | u64 max_avail = 0; | 
|  | u64 dev_offset; | 
|  | int num_stripes = 1; | 
|  | int min_stripes = 1; | 
|  | int sub_stripes = 0; | 
|  | int looped = 0; | 
|  | int ret; | 
|  | int index; | 
|  | int stripe_len = 64 * 1024; | 
|  |  | 
|  | if ((type & BTRFS_BLOCK_GROUP_RAID1) && | 
|  | (type & BTRFS_BLOCK_GROUP_DUP)) { | 
|  | WARN_ON(1); | 
|  | type &= ~BTRFS_BLOCK_GROUP_DUP; | 
|  | } | 
|  | if (list_empty(&fs_devices->alloc_list)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | 
|  | num_stripes = fs_devices->rw_devices; | 
|  | min_stripes = 2; | 
|  | } | 
|  | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | 
|  | num_stripes = 2; | 
|  | min_stripes = 2; | 
|  | } | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | 
|  | if (fs_devices->rw_devices < 2) | 
|  | return -ENOSPC; | 
|  | num_stripes = 2; | 
|  | min_stripes = 2; | 
|  | } | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | num_stripes = fs_devices->rw_devices; | 
|  | if (num_stripes < 4) | 
|  | return -ENOSPC; | 
|  | num_stripes &= ~(u32)1; | 
|  | sub_stripes = 2; | 
|  | min_stripes = 4; | 
|  | } | 
|  |  | 
|  | if (type & BTRFS_BLOCK_GROUP_DATA) { | 
|  | max_chunk_size = 10 * calc_size; | 
|  | min_stripe_size = 64 * 1024 * 1024; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | max_chunk_size = 256 * 1024 * 1024; | 
|  | min_stripe_size = 32 * 1024 * 1024; | 
|  | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | calc_size = 8 * 1024 * 1024; | 
|  | max_chunk_size = calc_size * 2; | 
|  | min_stripe_size = 1 * 1024 * 1024; | 
|  | } | 
|  |  | 
|  | /* we don't want a chunk larger than 10% of writeable space */ | 
|  | max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | 
|  | max_chunk_size); | 
|  |  | 
|  | again: | 
|  | max_avail = 0; | 
|  | if (!map || map->num_stripes != num_stripes) { | 
|  | kfree(map); | 
|  | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  | map->num_stripes = num_stripes; | 
|  | } | 
|  |  | 
|  | if (calc_size * num_stripes > max_chunk_size) { | 
|  | calc_size = max_chunk_size; | 
|  | do_div(calc_size, num_stripes); | 
|  | do_div(calc_size, stripe_len); | 
|  | calc_size *= stripe_len; | 
|  | } | 
|  |  | 
|  | /* we don't want tiny stripes */ | 
|  | if (!looped) | 
|  | calc_size = max_t(u64, min_stripe_size, calc_size); | 
|  |  | 
|  | /* | 
|  | * we're about to do_div by the stripe_len so lets make sure | 
|  | * we end up with something bigger than a stripe | 
|  | */ | 
|  | calc_size = max_t(u64, calc_size, stripe_len * 4); | 
|  |  | 
|  | do_div(calc_size, stripe_len); | 
|  | calc_size *= stripe_len; | 
|  |  | 
|  | cur = fs_devices->alloc_list.next; | 
|  | index = 0; | 
|  |  | 
|  | if (type & BTRFS_BLOCK_GROUP_DUP) | 
|  | min_free = calc_size * 2; | 
|  | else | 
|  | min_free = calc_size; | 
|  |  | 
|  | /* | 
|  | * we add 1MB because we never use the first 1MB of the device, unless | 
|  | * we've looped, then we are likely allocating the maximum amount of | 
|  | * space left already | 
|  | */ | 
|  | if (!looped) | 
|  | min_free += 1024 * 1024; | 
|  |  | 
|  | INIT_LIST_HEAD(&private_devs); | 
|  | while (index < num_stripes) { | 
|  | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | 
|  | BUG_ON(!device->writeable); | 
|  | if (device->total_bytes > device->bytes_used) | 
|  | avail = device->total_bytes - device->bytes_used; | 
|  | else | 
|  | avail = 0; | 
|  | cur = cur->next; | 
|  |  | 
|  | if (device->in_fs_metadata && avail >= min_free) { | 
|  | ret = find_free_dev_extent(trans, device, | 
|  | min_free, &dev_offset, | 
|  | &max_avail); | 
|  | if (ret == 0) { | 
|  | list_move_tail(&device->dev_alloc_list, | 
|  | &private_devs); | 
|  | map->stripes[index].dev = device; | 
|  | map->stripes[index].physical = dev_offset; | 
|  | index++; | 
|  | if (type & BTRFS_BLOCK_GROUP_DUP) { | 
|  | map->stripes[index].dev = device; | 
|  | map->stripes[index].physical = | 
|  | dev_offset + calc_size; | 
|  | index++; | 
|  | } | 
|  | } | 
|  | } else if (device->in_fs_metadata && avail > max_avail) | 
|  | max_avail = avail; | 
|  | if (cur == &fs_devices->alloc_list) | 
|  | break; | 
|  | } | 
|  | list_splice(&private_devs, &fs_devices->alloc_list); | 
|  | if (index < num_stripes) { | 
|  | if (index >= min_stripes) { | 
|  | num_stripes = index; | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | num_stripes /= sub_stripes; | 
|  | num_stripes *= sub_stripes; | 
|  | } | 
|  | looped = 1; | 
|  | goto again; | 
|  | } | 
|  | if (!looped && max_avail > 0) { | 
|  | looped = 1; | 
|  | calc_size = max_avail; | 
|  | goto again; | 
|  | } | 
|  | kfree(map); | 
|  | return -ENOSPC; | 
|  | } | 
|  | map->sector_size = extent_root->sectorsize; | 
|  | map->stripe_len = stripe_len; | 
|  | map->io_align = stripe_len; | 
|  | map->io_width = stripe_len; | 
|  | map->type = type; | 
|  | map->num_stripes = num_stripes; | 
|  | map->sub_stripes = sub_stripes; | 
|  |  | 
|  | *map_ret = map; | 
|  | *stripe_size = calc_size; | 
|  | *num_bytes = chunk_bytes_by_type(type, calc_size, | 
|  | num_stripes, sub_stripes); | 
|  |  | 
|  | em = alloc_extent_map(GFP_NOFS); | 
|  | if (!em) { | 
|  | kfree(map); | 
|  | return -ENOMEM; | 
|  | } | 
|  | em->bdev = (struct block_device *)map; | 
|  | em->start = start; | 
|  | em->len = *num_bytes; | 
|  | em->block_start = 0; | 
|  | em->block_len = em->len; | 
|  |  | 
|  | em_tree = &extent_root->fs_info->mapping_tree.map_tree; | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  | BUG_ON(ret); | 
|  | free_extent_map(em); | 
|  |  | 
|  | ret = btrfs_make_block_group(trans, extent_root, 0, type, | 
|  | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
|  | start, *num_bytes); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | index = 0; | 
|  | while (index < map->num_stripes) { | 
|  | device = map->stripes[index].dev; | 
|  | dev_offset = map->stripes[index].physical; | 
|  |  | 
|  | ret = btrfs_alloc_dev_extent(trans, device, | 
|  | info->chunk_root->root_key.objectid, | 
|  | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
|  | start, dev_offset, calc_size); | 
|  | BUG_ON(ret); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, | 
|  | struct map_lookup *map, u64 chunk_offset, | 
|  | u64 chunk_size, u64 stripe_size) | 
|  | { | 
|  | u64 dev_offset; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_chunk *chunk; | 
|  | struct btrfs_stripe *stripe; | 
|  | size_t item_size = btrfs_chunk_item_size(map->num_stripes); | 
|  | int index = 0; | 
|  | int ret; | 
|  |  | 
|  | chunk = kzalloc(item_size, GFP_NOFS); | 
|  | if (!chunk) | 
|  | return -ENOMEM; | 
|  |  | 
|  | index = 0; | 
|  | while (index < map->num_stripes) { | 
|  | device = map->stripes[index].dev; | 
|  | device->bytes_used += stripe_size; | 
|  | ret = btrfs_update_device(trans, device); | 
|  | BUG_ON(ret); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | index = 0; | 
|  | stripe = &chunk->stripe; | 
|  | while (index < map->num_stripes) { | 
|  | device = map->stripes[index].dev; | 
|  | dev_offset = map->stripes[index].physical; | 
|  |  | 
|  | btrfs_set_stack_stripe_devid(stripe, device->devid); | 
|  | btrfs_set_stack_stripe_offset(stripe, dev_offset); | 
|  | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | 
|  | stripe++; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | btrfs_set_stack_chunk_length(chunk, chunk_size); | 
|  | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | 
|  | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_type(chunk, map->type); | 
|  | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | 
|  | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | 
|  | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | 
|  | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | 
|  |  | 
|  | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
|  | key.type = BTRFS_CHUNK_ITEM_KEY; | 
|  | key.offset = chunk_offset; | 
|  |  | 
|  | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | 
|  | item_size); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | kfree(chunk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chunk allocation falls into two parts. The first part does works | 
|  | * that make the new allocated chunk useable, but not do any operation | 
|  | * that modifies the chunk tree. The second part does the works that | 
|  | * require modifying the chunk tree. This division is important for the | 
|  | * bootstrap process of adding storage to a seed btrfs. | 
|  | */ | 
|  | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *extent_root, u64 type) | 
|  | { | 
|  | u64 chunk_offset; | 
|  | u64 chunk_size; | 
|  | u64 stripe_size; | 
|  | struct map_lookup *map; | 
|  | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
|  | int ret; | 
|  |  | 
|  | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
|  | &chunk_offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
|  | &stripe_size, chunk_offset, type); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
|  | chunk_size, stripe_size); | 
|  | BUG_ON(ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | u64 chunk_offset; | 
|  | u64 sys_chunk_offset; | 
|  | u64 chunk_size; | 
|  | u64 sys_chunk_size; | 
|  | u64 stripe_size; | 
|  | u64 sys_stripe_size; | 
|  | u64 alloc_profile; | 
|  | struct map_lookup *map; | 
|  | struct map_lookup *sys_map; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | int ret; | 
|  |  | 
|  | ret = find_next_chunk(fs_info->chunk_root, | 
|  | BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | 
|  | (fs_info->metadata_alloc_profile & | 
|  | fs_info->avail_metadata_alloc_bits); | 
|  | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | 
|  |  | 
|  | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
|  | &stripe_size, chunk_offset, alloc_profile); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | sys_chunk_offset = chunk_offset + chunk_size; | 
|  |  | 
|  | alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | 
|  | (fs_info->system_alloc_profile & | 
|  | fs_info->avail_system_alloc_bits); | 
|  | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | 
|  |  | 
|  | ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | 
|  | &sys_chunk_size, &sys_stripe_size, | 
|  | sys_chunk_offset, alloc_profile); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = btrfs_add_device(trans, fs_info->chunk_root, device); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | /* | 
|  | * Modifying chunk tree needs allocating new blocks from both | 
|  | * system block group and metadata block group. So we only can | 
|  | * do operations require modifying the chunk tree after both | 
|  | * block groups were created. | 
|  | */ | 
|  | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
|  | chunk_size, stripe_size); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | ret = __finish_chunk_alloc(trans, extent_root, sys_map, | 
|  | sys_chunk_offset, sys_chunk_size, | 
|  | sys_stripe_size); | 
|  | BUG_ON(ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
|  | int readonly = 0; | 
|  | int i; | 
|  |  | 
|  | read_lock(&map_tree->map_tree.lock); | 
|  | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
|  | read_unlock(&map_tree->map_tree.lock); | 
|  | if (!em) | 
|  | return 1; | 
|  |  | 
|  | if (btrfs_test_opt(root, DEGRADED)) { | 
|  | free_extent_map(em); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map = (struct map_lookup *)em->bdev; | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (!map->stripes[i].dev->writeable) { | 
|  | readonly = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | free_extent_map(em); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | 
|  | { | 
|  | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | 
|  | { | 
|  | struct extent_map *em; | 
|  |  | 
|  | while (1) { | 
|  | write_lock(&tree->map_tree.lock); | 
|  | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | 
|  | if (em) | 
|  | remove_extent_mapping(&tree->map_tree, em); | 
|  | write_unlock(&tree->map_tree.lock); | 
|  | if (!em) | 
|  | break; | 
|  | kfree(em->bdev); | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  | /* once for the tree */ | 
|  | free_extent_map(em); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | struct extent_map_tree *em_tree = &map_tree->map_tree; | 
|  | int ret; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, logical, len); | 
|  | read_unlock(&em_tree->lock); | 
|  | BUG_ON(!em); | 
|  |  | 
|  | BUG_ON(em->start > logical || em->start + em->len < logical); | 
|  | map = (struct map_lookup *)em->bdev; | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | 
|  | ret = map->num_stripes; | 
|  | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | ret = map->sub_stripes; | 
|  | else | 
|  | ret = 1; | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_live_mirror(struct map_lookup *map, int first, int num, | 
|  | int optimal) | 
|  | { | 
|  | int i; | 
|  | if (map->stripes[optimal].dev->bdev) | 
|  | return optimal; | 
|  | for (i = first; i < first + num; i++) { | 
|  | if (map->stripes[i].dev->bdev) | 
|  | return i; | 
|  | } | 
|  | /* we couldn't find one that doesn't fail.  Just return something | 
|  | * and the io error handling code will clean up eventually | 
|  | */ | 
|  | return optimal; | 
|  | } | 
|  |  | 
|  | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_multi_bio **multi_ret, | 
|  | int mirror_num, struct page *unplug_page) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | struct extent_map_tree *em_tree = &map_tree->map_tree; | 
|  | u64 offset; | 
|  | u64 stripe_offset; | 
|  | u64 stripe_nr; | 
|  | int stripes_allocated = 8; | 
|  | int stripes_required = 1; | 
|  | int stripe_index; | 
|  | int i; | 
|  | int num_stripes; | 
|  | int max_errors = 0; | 
|  | struct btrfs_multi_bio *multi = NULL; | 
|  |  | 
|  | if (multi_ret && !(rw & REQ_WRITE)) | 
|  | stripes_allocated = 1; | 
|  | again: | 
|  | if (multi_ret) { | 
|  | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | 
|  | GFP_NOFS); | 
|  | if (!multi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | atomic_set(&multi->error, 0); | 
|  | } | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, logical, *length); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | if (!em && unplug_page) { | 
|  | kfree(multi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!em) { | 
|  | printk(KERN_CRIT "unable to find logical %llu len %llu\n", | 
|  | (unsigned long long)logical, | 
|  | (unsigned long long)*length); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(em->start > logical || em->start + em->len < logical); | 
|  | map = (struct map_lookup *)em->bdev; | 
|  | offset = logical - em->start; | 
|  |  | 
|  | if (mirror_num > map->num_stripes) | 
|  | mirror_num = 0; | 
|  |  | 
|  | /* if our multi bio struct is too small, back off and try again */ | 
|  | if (rw & REQ_WRITE) { | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_DUP)) { | 
|  | stripes_required = map->num_stripes; | 
|  | max_errors = 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | stripes_required = map->sub_stripes; | 
|  | max_errors = 1; | 
|  | } | 
|  | } | 
|  | if (multi_ret && (rw & REQ_WRITE) && | 
|  | stripes_allocated < stripes_required) { | 
|  | stripes_allocated = map->num_stripes; | 
|  | free_extent_map(em); | 
|  | kfree(multi); | 
|  | goto again; | 
|  | } | 
|  | stripe_nr = offset; | 
|  | /* | 
|  | * stripe_nr counts the total number of stripes we have to stride | 
|  | * to get to this block | 
|  | */ | 
|  | do_div(stripe_nr, map->stripe_len); | 
|  |  | 
|  | stripe_offset = stripe_nr * map->stripe_len; | 
|  | BUG_ON(offset < stripe_offset); | 
|  |  | 
|  | /* stripe_offset is the offset of this block in its stripe*/ | 
|  | stripe_offset = offset - stripe_offset; | 
|  |  | 
|  | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_DUP)) { | 
|  | /* we limit the length of each bio to what fits in a stripe */ | 
|  | *length = min_t(u64, em->len - offset, | 
|  | map->stripe_len - stripe_offset); | 
|  | } else { | 
|  | *length = em->len - offset; | 
|  | } | 
|  |  | 
|  | if (!multi_ret && !unplug_page) | 
|  | goto out; | 
|  |  | 
|  | num_stripes = 1; | 
|  | stripe_index = 0; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
|  | if (unplug_page || (rw & REQ_WRITE)) | 
|  | num_stripes = map->num_stripes; | 
|  | else if (mirror_num) | 
|  | stripe_index = mirror_num - 1; | 
|  | else { | 
|  | stripe_index = find_live_mirror(map, 0, | 
|  | map->num_stripes, | 
|  | current->pid % map->num_stripes); | 
|  | } | 
|  |  | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
|  | if (rw & REQ_WRITE) | 
|  | num_stripes = map->num_stripes; | 
|  | else if (mirror_num) | 
|  | stripe_index = mirror_num - 1; | 
|  |  | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | int factor = map->num_stripes / map->sub_stripes; | 
|  |  | 
|  | stripe_index = do_div(stripe_nr, factor); | 
|  | stripe_index *= map->sub_stripes; | 
|  |  | 
|  | if (unplug_page || (rw & REQ_WRITE)) | 
|  | num_stripes = map->sub_stripes; | 
|  | else if (mirror_num) | 
|  | stripe_index += mirror_num - 1; | 
|  | else { | 
|  | stripe_index = find_live_mirror(map, stripe_index, | 
|  | map->sub_stripes, stripe_index + | 
|  | current->pid % map->sub_stripes); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * after this do_div call, stripe_nr is the number of stripes | 
|  | * on this device we have to walk to find the data, and | 
|  | * stripe_index is the number of our device in the stripe array | 
|  | */ | 
|  | stripe_index = do_div(stripe_nr, map->num_stripes); | 
|  | } | 
|  | BUG_ON(stripe_index >= map->num_stripes); | 
|  |  | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | if (unplug_page) { | 
|  | struct btrfs_device *device; | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | device = map->stripes[stripe_index].dev; | 
|  | if (device->bdev) { | 
|  | bdi = blk_get_backing_dev_info(device->bdev); | 
|  | if (bdi->unplug_io_fn) | 
|  | bdi->unplug_io_fn(bdi, unplug_page); | 
|  | } | 
|  | } else { | 
|  | multi->stripes[i].physical = | 
|  | map->stripes[stripe_index].physical + | 
|  | stripe_offset + stripe_nr * map->stripe_len; | 
|  | multi->stripes[i].dev = map->stripes[stripe_index].dev; | 
|  | } | 
|  | stripe_index++; | 
|  | } | 
|  | if (multi_ret) { | 
|  | *multi_ret = multi; | 
|  | multi->num_stripes = num_stripes; | 
|  | multi->max_errors = max_errors; | 
|  | } | 
|  | out: | 
|  | free_extent_map(em); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | 
|  | u64 logical, u64 *length, | 
|  | struct btrfs_multi_bio **multi_ret, int mirror_num) | 
|  | { | 
|  | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | 
|  | mirror_num, NULL); | 
|  | } | 
|  |  | 
|  | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | 
|  | u64 chunk_start, u64 physical, u64 devid, | 
|  | u64 **logical, int *naddrs, int *stripe_len) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &map_tree->map_tree; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | u64 *buf; | 
|  | u64 bytenr; | 
|  | u64 length; | 
|  | u64 stripe_nr; | 
|  | int i, j, nr = 0; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, chunk_start, 1); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | BUG_ON(!em || em->start != chunk_start); | 
|  | map = (struct map_lookup *)em->bdev; | 
|  |  | 
|  | length = em->len; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
|  | do_div(length, map->num_stripes / map->sub_stripes); | 
|  | else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
|  | do_div(length, map->num_stripes); | 
|  |  | 
|  | buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | 
|  | BUG_ON(!buf); | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; i++) { | 
|  | if (devid && map->stripes[i].dev->devid != devid) | 
|  | continue; | 
|  | if (map->stripes[i].physical > physical || | 
|  | map->stripes[i].physical + length <= physical) | 
|  | continue; | 
|  |  | 
|  | stripe_nr = physical - map->stripes[i].physical; | 
|  | do_div(stripe_nr, map->stripe_len); | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | stripe_nr = stripe_nr * map->num_stripes + i; | 
|  | do_div(stripe_nr, map->sub_stripes); | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
|  | stripe_nr = stripe_nr * map->num_stripes + i; | 
|  | } | 
|  | bytenr = chunk_start + stripe_nr * map->stripe_len; | 
|  | WARN_ON(nr >= map->num_stripes); | 
|  | for (j = 0; j < nr; j++) { | 
|  | if (buf[j] == bytenr) | 
|  | break; | 
|  | } | 
|  | if (j == nr) { | 
|  | WARN_ON(nr >= map->num_stripes); | 
|  | buf[nr++] = bytenr; | 
|  | } | 
|  | } | 
|  |  | 
|  | *logical = buf; | 
|  | *naddrs = nr; | 
|  | *stripe_len = map->stripe_len; | 
|  |  | 
|  | free_extent_map(em); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | 
|  | u64 logical, struct page *page) | 
|  | { | 
|  | u64 length = PAGE_CACHE_SIZE; | 
|  | return __btrfs_map_block(map_tree, READ, logical, &length, | 
|  | NULL, 0, page); | 
|  | } | 
|  |  | 
|  | static void end_bio_multi_stripe(struct bio *bio, int err) | 
|  | { | 
|  | struct btrfs_multi_bio *multi = bio->bi_private; | 
|  | int is_orig_bio = 0; | 
|  |  | 
|  | if (err) | 
|  | atomic_inc(&multi->error); | 
|  |  | 
|  | if (bio == multi->orig_bio) | 
|  | is_orig_bio = 1; | 
|  |  | 
|  | if (atomic_dec_and_test(&multi->stripes_pending)) { | 
|  | if (!is_orig_bio) { | 
|  | bio_put(bio); | 
|  | bio = multi->orig_bio; | 
|  | } | 
|  | bio->bi_private = multi->private; | 
|  | bio->bi_end_io = multi->end_io; | 
|  | /* only send an error to the higher layers if it is | 
|  | * beyond the tolerance of the multi-bio | 
|  | */ | 
|  | if (atomic_read(&multi->error) > multi->max_errors) { | 
|  | err = -EIO; | 
|  | } else if (err) { | 
|  | /* | 
|  | * this bio is actually up to date, we didn't | 
|  | * go over the max number of errors | 
|  | */ | 
|  | set_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | err = 0; | 
|  | } | 
|  | kfree(multi); | 
|  |  | 
|  | bio_endio(bio, err); | 
|  | } else if (!is_orig_bio) { | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct async_sched { | 
|  | struct bio *bio; | 
|  | int rw; | 
|  | struct btrfs_fs_info *info; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * see run_scheduled_bios for a description of why bios are collected for | 
|  | * async submit. | 
|  | * | 
|  | * This will add one bio to the pending list for a device and make sure | 
|  | * the work struct is scheduled. | 
|  | */ | 
|  | static noinline int schedule_bio(struct btrfs_root *root, | 
|  | struct btrfs_device *device, | 
|  | int rw, struct bio *bio) | 
|  | { | 
|  | int should_queue = 1; | 
|  | struct btrfs_pending_bios *pending_bios; | 
|  |  | 
|  | /* don't bother with additional async steps for reads, right now */ | 
|  | if (!(rw & REQ_WRITE)) { | 
|  | bio_get(bio); | 
|  | submit_bio(rw, bio); | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nr_async_bios allows us to reliably return congestion to the | 
|  | * higher layers.  Otherwise, the async bio makes it appear we have | 
|  | * made progress against dirty pages when we've really just put it | 
|  | * on a queue for later | 
|  | */ | 
|  | atomic_inc(&root->fs_info->nr_async_bios); | 
|  | WARN_ON(bio->bi_next); | 
|  | bio->bi_next = NULL; | 
|  | bio->bi_rw |= rw; | 
|  |  | 
|  | spin_lock(&device->io_lock); | 
|  | if (bio->bi_rw & REQ_SYNC) | 
|  | pending_bios = &device->pending_sync_bios; | 
|  | else | 
|  | pending_bios = &device->pending_bios; | 
|  |  | 
|  | if (pending_bios->tail) | 
|  | pending_bios->tail->bi_next = bio; | 
|  |  | 
|  | pending_bios->tail = bio; | 
|  | if (!pending_bios->head) | 
|  | pending_bios->head = bio; | 
|  | if (device->running_pending) | 
|  | should_queue = 0; | 
|  |  | 
|  | spin_unlock(&device->io_lock); | 
|  |  | 
|  | if (should_queue) | 
|  | btrfs_queue_worker(&root->fs_info->submit_workers, | 
|  | &device->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | 
|  | int mirror_num, int async_submit) | 
|  | { | 
|  | struct btrfs_mapping_tree *map_tree; | 
|  | struct btrfs_device *dev; | 
|  | struct bio *first_bio = bio; | 
|  | u64 logical = (u64)bio->bi_sector << 9; | 
|  | u64 length = 0; | 
|  | u64 map_length; | 
|  | struct btrfs_multi_bio *multi = NULL; | 
|  | int ret; | 
|  | int dev_nr = 0; | 
|  | int total_devs = 1; | 
|  |  | 
|  | length = bio->bi_size; | 
|  | map_tree = &root->fs_info->mapping_tree; | 
|  | map_length = length; | 
|  |  | 
|  | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, | 
|  | mirror_num); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | total_devs = multi->num_stripes; | 
|  | if (map_length < length) { | 
|  | printk(KERN_CRIT "mapping failed logical %llu bio len %llu " | 
|  | "len %llu\n", (unsigned long long)logical, | 
|  | (unsigned long long)length, | 
|  | (unsigned long long)map_length); | 
|  | BUG(); | 
|  | } | 
|  | multi->end_io = first_bio->bi_end_io; | 
|  | multi->private = first_bio->bi_private; | 
|  | multi->orig_bio = first_bio; | 
|  | atomic_set(&multi->stripes_pending, multi->num_stripes); | 
|  |  | 
|  | while (dev_nr < total_devs) { | 
|  | if (total_devs > 1) { | 
|  | if (dev_nr < total_devs - 1) { | 
|  | bio = bio_clone(first_bio, GFP_NOFS); | 
|  | BUG_ON(!bio); | 
|  | } else { | 
|  | bio = first_bio; | 
|  | } | 
|  | bio->bi_private = multi; | 
|  | bio->bi_end_io = end_bio_multi_stripe; | 
|  | } | 
|  | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; | 
|  | dev = multi->stripes[dev_nr].dev; | 
|  | if (dev && dev->bdev && (rw != WRITE || dev->writeable)) { | 
|  | bio->bi_bdev = dev->bdev; | 
|  | if (async_submit) | 
|  | schedule_bio(root, dev, rw, bio); | 
|  | else | 
|  | submit_bio(rw, bio); | 
|  | } else { | 
|  | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | 
|  | bio->bi_sector = logical >> 9; | 
|  | bio_endio(bio, -EIO); | 
|  | } | 
|  | dev_nr++; | 
|  | } | 
|  | if (total_devs == 1) | 
|  | kfree(multi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | 
|  | u8 *uuid, u8 *fsid) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *cur_devices; | 
|  |  | 
|  | cur_devices = root->fs_info->fs_devices; | 
|  | while (cur_devices) { | 
|  | if (!fsid || | 
|  | !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
|  | device = __find_device(&cur_devices->devices, | 
|  | devid, uuid); | 
|  | if (device) | 
|  | return device; | 
|  | } | 
|  | cur_devices = cur_devices->seed; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | 
|  | u64 devid, u8 *dev_uuid) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
|  |  | 
|  | device = kzalloc(sizeof(*device), GFP_NOFS); | 
|  | if (!device) | 
|  | return NULL; | 
|  | list_add(&device->dev_list, | 
|  | &fs_devices->devices); | 
|  | device->dev_root = root->fs_info->dev_root; | 
|  | device->devid = devid; | 
|  | device->work.func = pending_bios_fn; | 
|  | device->fs_devices = fs_devices; | 
|  | device->missing = 1; | 
|  | fs_devices->num_devices++; | 
|  | fs_devices->missing_devices++; | 
|  | spin_lock_init(&device->io_lock); | 
|  | INIT_LIST_HEAD(&device->dev_alloc_list); | 
|  | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | 
|  | return device; | 
|  | } | 
|  |  | 
|  | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_chunk *chunk) | 
|  | { | 
|  | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
|  | struct map_lookup *map; | 
|  | struct extent_map *em; | 
|  | u64 logical; | 
|  | u64 length; | 
|  | u64 devid; | 
|  | u8 uuid[BTRFS_UUID_SIZE]; | 
|  | int num_stripes; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | logical = key->offset; | 
|  | length = btrfs_chunk_length(leaf, chunk); | 
|  |  | 
|  | read_lock(&map_tree->map_tree.lock); | 
|  | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | 
|  | read_unlock(&map_tree->map_tree.lock); | 
|  |  | 
|  | /* already mapped? */ | 
|  | if (em && em->start <= logical && em->start + em->len > logical) { | 
|  | free_extent_map(em); | 
|  | return 0; | 
|  | } else if (em) { | 
|  | free_extent_map(em); | 
|  | } | 
|  |  | 
|  | em = alloc_extent_map(GFP_NOFS); | 
|  | if (!em) | 
|  | return -ENOMEM; | 
|  | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
|  | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
|  | if (!map) { | 
|  | free_extent_map(em); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | em->bdev = (struct block_device *)map; | 
|  | em->start = logical; | 
|  | em->len = length; | 
|  | em->block_start = 0; | 
|  | em->block_len = em->len; | 
|  |  | 
|  | map->num_stripes = num_stripes; | 
|  | map->io_width = btrfs_chunk_io_width(leaf, chunk); | 
|  | map->io_align = btrfs_chunk_io_align(leaf, chunk); | 
|  | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | 
|  | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | 
|  | map->type = btrfs_chunk_type(leaf, chunk); | 
|  | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | 
|  | for (i = 0; i < num_stripes; i++) { | 
|  | map->stripes[i].physical = | 
|  | btrfs_stripe_offset_nr(leaf, chunk, i); | 
|  | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | 
|  | read_extent_buffer(leaf, uuid, (unsigned long) | 
|  | btrfs_stripe_dev_uuid_nr(chunk, i), | 
|  | BTRFS_UUID_SIZE); | 
|  | map->stripes[i].dev = btrfs_find_device(root, devid, uuid, | 
|  | NULL); | 
|  | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | 
|  | kfree(map); | 
|  | free_extent_map(em); | 
|  | return -EIO; | 
|  | } | 
|  | if (!map->stripes[i].dev) { | 
|  | map->stripes[i].dev = | 
|  | add_missing_dev(root, devid, uuid); | 
|  | if (!map->stripes[i].dev) { | 
|  | kfree(map); | 
|  | free_extent_map(em); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | map->stripes[i].dev->in_fs_metadata = 1; | 
|  | } | 
|  |  | 
|  | write_lock(&map_tree->map_tree.lock); | 
|  | ret = add_extent_mapping(&map_tree->map_tree, em); | 
|  | write_unlock(&map_tree->map_tree.lock); | 
|  | BUG_ON(ret); | 
|  | free_extent_map(em); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_device_from_item(struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item, | 
|  | struct btrfs_device *device) | 
|  | { | 
|  | unsigned long ptr; | 
|  |  | 
|  | device->devid = btrfs_device_id(leaf, dev_item); | 
|  | device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); | 
|  | device->total_bytes = device->disk_total_bytes; | 
|  | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | 
|  | device->type = btrfs_device_type(leaf, dev_item); | 
|  | device->io_align = btrfs_device_io_align(leaf, dev_item); | 
|  | device->io_width = btrfs_device_io_width(leaf, dev_item); | 
|  | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | 
|  |  | 
|  | ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
|  | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&uuid_mutex); | 
|  |  | 
|  | fs_devices = root->fs_info->fs_devices->seed; | 
|  | while (fs_devices) { | 
|  | if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | fs_devices = fs_devices->seed; | 
|  | } | 
|  |  | 
|  | fs_devices = find_fsid(fsid); | 
|  | if (!fs_devices) { | 
|  | ret = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | fs_devices = clone_fs_devices(fs_devices); | 
|  | if (IS_ERR(fs_devices)) { | 
|  | ret = PTR_ERR(fs_devices); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = __btrfs_open_devices(fs_devices, FMODE_READ, | 
|  | root->fs_info->bdev_holder); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!fs_devices->seeding) { | 
|  | __btrfs_close_devices(fs_devices); | 
|  | free_fs_devices(fs_devices); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | fs_devices->seed = root->fs_info->fs_devices->seed; | 
|  | root->fs_info->fs_devices->seed = fs_devices; | 
|  | out: | 
|  | mutex_unlock(&uuid_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int read_one_dev(struct btrfs_root *root, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_dev_item *dev_item) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | u64 devid; | 
|  | int ret; | 
|  | u8 fs_uuid[BTRFS_UUID_SIZE]; | 
|  | u8 dev_uuid[BTRFS_UUID_SIZE]; | 
|  |  | 
|  | devid = btrfs_device_id(leaf, dev_item); | 
|  | read_extent_buffer(leaf, dev_uuid, | 
|  | (unsigned long)btrfs_device_uuid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  | read_extent_buffer(leaf, fs_uuid, | 
|  | (unsigned long)btrfs_device_fsid(dev_item), | 
|  | BTRFS_UUID_SIZE); | 
|  |  | 
|  | if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | 
|  | ret = open_seed_devices(root, fs_uuid); | 
|  | if (ret && !btrfs_test_opt(root, DEGRADED)) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | 
|  | if (!device || !device->bdev) { | 
|  | if (!btrfs_test_opt(root, DEGRADED)) | 
|  | return -EIO; | 
|  |  | 
|  | if (!device) { | 
|  | printk(KERN_WARNING "warning devid %llu missing\n", | 
|  | (unsigned long long)devid); | 
|  | device = add_missing_dev(root, devid, dev_uuid); | 
|  | if (!device) | 
|  | return -ENOMEM; | 
|  | } else if (!device->missing) { | 
|  | /* | 
|  | * this happens when a device that was properly setup | 
|  | * in the device info lists suddenly goes bad. | 
|  | * device->bdev is NULL, and so we have to set | 
|  | * device->missing to one here | 
|  | */ | 
|  | root->fs_info->fs_devices->missing_devices++; | 
|  | device->missing = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (device->fs_devices != root->fs_info->fs_devices) { | 
|  | BUG_ON(device->writeable); | 
|  | if (device->generation != | 
|  | btrfs_device_generation(leaf, dev_item)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fill_device_from_item(leaf, dev_item, device); | 
|  | device->dev_root = root->fs_info->dev_root; | 
|  | device->in_fs_metadata = 1; | 
|  | if (device->writeable) | 
|  | device->fs_devices->total_rw_bytes += device->total_bytes; | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) | 
|  | { | 
|  | struct btrfs_dev_item *dev_item; | 
|  |  | 
|  | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | 
|  | dev_item); | 
|  | return read_one_dev(root, buf, dev_item); | 
|  | } | 
|  |  | 
|  | int btrfs_read_sys_array(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | 
|  | struct extent_buffer *sb; | 
|  | struct btrfs_disk_key *disk_key; | 
|  | struct btrfs_chunk *chunk; | 
|  | u8 *ptr; | 
|  | unsigned long sb_ptr; | 
|  | int ret = 0; | 
|  | u32 num_stripes; | 
|  | u32 array_size; | 
|  | u32 len = 0; | 
|  | u32 cur; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | 
|  | BTRFS_SUPER_INFO_SIZE); | 
|  | if (!sb) | 
|  | return -ENOMEM; | 
|  | btrfs_set_buffer_uptodate(sb); | 
|  | btrfs_set_buffer_lockdep_class(sb, 0); | 
|  |  | 
|  | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | 
|  | array_size = btrfs_super_sys_array_size(super_copy); | 
|  |  | 
|  | ptr = super_copy->sys_chunk_array; | 
|  | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | 
|  | cur = 0; | 
|  |  | 
|  | while (cur < array_size) { | 
|  | disk_key = (struct btrfs_disk_key *)ptr; | 
|  | btrfs_disk_key_to_cpu(&key, disk_key); | 
|  |  | 
|  | len = sizeof(*disk_key); ptr += len; | 
|  | sb_ptr += len; | 
|  | cur += len; | 
|  |  | 
|  | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | chunk = (struct btrfs_chunk *)sb_ptr; | 
|  | ret = read_one_chunk(root, &key, sb, chunk); | 
|  | if (ret) | 
|  | break; | 
|  | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | 
|  | len = btrfs_chunk_item_size(num_stripes); | 
|  | } else { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | ptr += len; | 
|  | sb_ptr += len; | 
|  | cur += len; | 
|  | } | 
|  | free_extent_buffer(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_chunk_tree(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | int ret; | 
|  | int slot; | 
|  |  | 
|  | root = root->fs_info->chunk_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* first we search for all of the device items, and then we | 
|  | * read in all of the chunk items.  This way we can create chunk | 
|  | * mappings that reference all of the devices that are afound | 
|  | */ | 
|  | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
|  | key.offset = 0; | 
|  | key.type = 0; | 
|  | again: | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | while (1) { | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
|  | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | 
|  | break; | 
|  | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | 
|  | struct btrfs_dev_item *dev_item; | 
|  | dev_item = btrfs_item_ptr(leaf, slot, | 
|  | struct btrfs_dev_item); | 
|  | ret = read_one_dev(root, leaf, dev_item); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | 
|  | struct btrfs_chunk *chunk; | 
|  | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
|  | ret = read_one_chunk(root, &found_key, leaf, chunk); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
|  | key.objectid = 0; | 
|  | btrfs_release_path(root, path); | 
|  | goto again; | 
|  | } | 
|  | ret = 0; | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } |