|  | /* | 
|  | * Copyright (C) 2008 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | * | 
|  | * Based on jffs2 zlib code: | 
|  | * Copyright © 2001-2007 Red Hat, Inc. | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/zlib.h> | 
|  | #include <linux/zutil.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/bio.h> | 
|  | #include "compression.h" | 
|  |  | 
|  | /* Plan: call deflate() with avail_in == *sourcelen, | 
|  | avail_out = *dstlen - 12 and flush == Z_FINISH. | 
|  | If it doesn't manage to finish,	call it again with | 
|  | avail_in == 0 and avail_out set to the remaining 12 | 
|  | bytes for it to clean up. | 
|  | Q: Is 12 bytes sufficient? | 
|  | */ | 
|  | #define STREAM_END_SPACE 12 | 
|  |  | 
|  | struct workspace { | 
|  | z_stream inf_strm; | 
|  | z_stream def_strm; | 
|  | char *buf; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(idle_workspace); | 
|  | static DEFINE_SPINLOCK(workspace_lock); | 
|  | static unsigned long num_workspace; | 
|  | static atomic_t alloc_workspace = ATOMIC_INIT(0); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(workspace_wait); | 
|  |  | 
|  | /* | 
|  | * this finds an available zlib workspace or allocates a new one | 
|  | * NULL or an ERR_PTR is returned if things go bad. | 
|  | */ | 
|  | static struct workspace *find_zlib_workspace(void) | 
|  | { | 
|  | struct workspace *workspace; | 
|  | int ret; | 
|  | int cpus = num_online_cpus(); | 
|  |  | 
|  | again: | 
|  | spin_lock(&workspace_lock); | 
|  | if (!list_empty(&idle_workspace)) { | 
|  | workspace = list_entry(idle_workspace.next, struct workspace, | 
|  | list); | 
|  | list_del(&workspace->list); | 
|  | num_workspace--; | 
|  | spin_unlock(&workspace_lock); | 
|  | return workspace; | 
|  |  | 
|  | } | 
|  | spin_unlock(&workspace_lock); | 
|  | if (atomic_read(&alloc_workspace) > cpus) { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&workspace_wait, &wait, TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&alloc_workspace) > cpus) | 
|  | schedule(); | 
|  | finish_wait(&workspace_wait, &wait); | 
|  | goto again; | 
|  | } | 
|  | atomic_inc(&alloc_workspace); | 
|  | workspace = kzalloc(sizeof(*workspace), GFP_NOFS); | 
|  | if (!workspace) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize()); | 
|  | if (!workspace->def_strm.workspace) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize()); | 
|  | if (!workspace->inf_strm.workspace) { | 
|  | ret = -ENOMEM; | 
|  | goto fail_inflate; | 
|  | } | 
|  | workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS); | 
|  | if (!workspace->buf) { | 
|  | ret = -ENOMEM; | 
|  | goto fail_kmalloc; | 
|  | } | 
|  | return workspace; | 
|  |  | 
|  | fail_kmalloc: | 
|  | vfree(workspace->inf_strm.workspace); | 
|  | fail_inflate: | 
|  | vfree(workspace->def_strm.workspace); | 
|  | fail: | 
|  | kfree(workspace); | 
|  | atomic_dec(&alloc_workspace); | 
|  | wake_up(&workspace_wait); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * put a workspace struct back on the list or free it if we have enough | 
|  | * idle ones sitting around | 
|  | */ | 
|  | static int free_workspace(struct workspace *workspace) | 
|  | { | 
|  | spin_lock(&workspace_lock); | 
|  | if (num_workspace < num_online_cpus()) { | 
|  | list_add_tail(&workspace->list, &idle_workspace); | 
|  | num_workspace++; | 
|  | spin_unlock(&workspace_lock); | 
|  | if (waitqueue_active(&workspace_wait)) | 
|  | wake_up(&workspace_wait); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&workspace_lock); | 
|  | vfree(workspace->def_strm.workspace); | 
|  | vfree(workspace->inf_strm.workspace); | 
|  | kfree(workspace->buf); | 
|  | kfree(workspace); | 
|  |  | 
|  | atomic_dec(&alloc_workspace); | 
|  | if (waitqueue_active(&workspace_wait)) | 
|  | wake_up(&workspace_wait); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cleanup function for module exit | 
|  | */ | 
|  | static void free_workspaces(void) | 
|  | { | 
|  | struct workspace *workspace; | 
|  | while (!list_empty(&idle_workspace)) { | 
|  | workspace = list_entry(idle_workspace.next, struct workspace, | 
|  | list); | 
|  | list_del(&workspace->list); | 
|  | vfree(workspace->def_strm.workspace); | 
|  | vfree(workspace->inf_strm.workspace); | 
|  | kfree(workspace->buf); | 
|  | kfree(workspace); | 
|  | atomic_dec(&alloc_workspace); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given an address space and start/len, compress the bytes. | 
|  | * | 
|  | * pages are allocated to hold the compressed result and stored | 
|  | * in 'pages' | 
|  | * | 
|  | * out_pages is used to return the number of pages allocated.  There | 
|  | * may be pages allocated even if we return an error | 
|  | * | 
|  | * total_in is used to return the number of bytes actually read.  It | 
|  | * may be smaller then len if we had to exit early because we | 
|  | * ran out of room in the pages array or because we cross the | 
|  | * max_out threshold. | 
|  | * | 
|  | * total_out is used to return the total number of compressed bytes | 
|  | * | 
|  | * max_out tells us the max number of bytes that we're allowed to | 
|  | * stuff into pages | 
|  | */ | 
|  | int btrfs_zlib_compress_pages(struct address_space *mapping, | 
|  | u64 start, unsigned long len, | 
|  | struct page **pages, | 
|  | unsigned long nr_dest_pages, | 
|  | unsigned long *out_pages, | 
|  | unsigned long *total_in, | 
|  | unsigned long *total_out, | 
|  | unsigned long max_out) | 
|  | { | 
|  | int ret; | 
|  | struct workspace *workspace; | 
|  | char *data_in; | 
|  | char *cpage_out; | 
|  | int nr_pages = 0; | 
|  | struct page *in_page = NULL; | 
|  | struct page *out_page = NULL; | 
|  | unsigned long bytes_left; | 
|  |  | 
|  | *out_pages = 0; | 
|  | *total_out = 0; | 
|  | *total_in = 0; | 
|  |  | 
|  | workspace = find_zlib_workspace(); | 
|  | if (IS_ERR(workspace)) | 
|  | return -1; | 
|  |  | 
|  | if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) { | 
|  | printk(KERN_WARNING "deflateInit failed\n"); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | workspace->def_strm.total_in = 0; | 
|  | workspace->def_strm.total_out = 0; | 
|  |  | 
|  | in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); | 
|  | data_in = kmap(in_page); | 
|  |  | 
|  | out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | cpage_out = kmap(out_page); | 
|  | pages[0] = out_page; | 
|  | nr_pages = 1; | 
|  |  | 
|  | workspace->def_strm.next_in = data_in; | 
|  | workspace->def_strm.next_out = cpage_out; | 
|  | workspace->def_strm.avail_out = PAGE_CACHE_SIZE; | 
|  | workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE); | 
|  |  | 
|  | while (workspace->def_strm.total_in < len) { | 
|  | ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH); | 
|  | if (ret != Z_OK) { | 
|  | printk(KERN_DEBUG "btrfs deflate in loop returned %d\n", | 
|  | ret); | 
|  | zlib_deflateEnd(&workspace->def_strm); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* we're making it bigger, give up */ | 
|  | if (workspace->def_strm.total_in > 8192 && | 
|  | workspace->def_strm.total_in < | 
|  | workspace->def_strm.total_out) { | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  | /* we need another page for writing out.  Test this | 
|  | * before the total_in so we will pull in a new page for | 
|  | * the stream end if required | 
|  | */ | 
|  | if (workspace->def_strm.avail_out == 0) { | 
|  | kunmap(out_page); | 
|  | if (nr_pages == nr_dest_pages) { | 
|  | out_page = NULL; | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  | out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
|  | cpage_out = kmap(out_page); | 
|  | pages[nr_pages] = out_page; | 
|  | nr_pages++; | 
|  | workspace->def_strm.avail_out = PAGE_CACHE_SIZE; | 
|  | workspace->def_strm.next_out = cpage_out; | 
|  | } | 
|  | /* we're all done */ | 
|  | if (workspace->def_strm.total_in >= len) | 
|  | break; | 
|  |  | 
|  | /* we've read in a full page, get a new one */ | 
|  | if (workspace->def_strm.avail_in == 0) { | 
|  | if (workspace->def_strm.total_out > max_out) | 
|  | break; | 
|  |  | 
|  | bytes_left = len - workspace->def_strm.total_in; | 
|  | kunmap(in_page); | 
|  | page_cache_release(in_page); | 
|  |  | 
|  | start += PAGE_CACHE_SIZE; | 
|  | in_page = find_get_page(mapping, | 
|  | start >> PAGE_CACHE_SHIFT); | 
|  | data_in = kmap(in_page); | 
|  | workspace->def_strm.avail_in = min(bytes_left, | 
|  | PAGE_CACHE_SIZE); | 
|  | workspace->def_strm.next_in = data_in; | 
|  | } | 
|  | } | 
|  | workspace->def_strm.avail_in = 0; | 
|  | ret = zlib_deflate(&workspace->def_strm, Z_FINISH); | 
|  | zlib_deflateEnd(&workspace->def_strm); | 
|  |  | 
|  | if (ret != Z_STREAM_END) { | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (workspace->def_strm.total_out >= workspace->def_strm.total_in) { | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | *total_out = workspace->def_strm.total_out; | 
|  | *total_in = workspace->def_strm.total_in; | 
|  | out: | 
|  | *out_pages = nr_pages; | 
|  | if (out_page) | 
|  | kunmap(out_page); | 
|  |  | 
|  | if (in_page) { | 
|  | kunmap(in_page); | 
|  | page_cache_release(in_page); | 
|  | } | 
|  | free_workspace(workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pages_in is an array of pages with compressed data. | 
|  | * | 
|  | * disk_start is the starting logical offset of this array in the file | 
|  | * | 
|  | * bvec is a bio_vec of pages from the file that we want to decompress into | 
|  | * | 
|  | * vcnt is the count of pages in the biovec | 
|  | * | 
|  | * srclen is the number of bytes in pages_in | 
|  | * | 
|  | * The basic idea is that we have a bio that was created by readpages. | 
|  | * The pages in the bio are for the uncompressed data, and they may not | 
|  | * be contiguous.  They all correspond to the range of bytes covered by | 
|  | * the compressed extent. | 
|  | */ | 
|  | int btrfs_zlib_decompress_biovec(struct page **pages_in, | 
|  | u64 disk_start, | 
|  | struct bio_vec *bvec, | 
|  | int vcnt, | 
|  | size_t srclen) | 
|  | { | 
|  | int ret = 0; | 
|  | int wbits = MAX_WBITS; | 
|  | struct workspace *workspace; | 
|  | char *data_in; | 
|  | size_t total_out = 0; | 
|  | unsigned long page_bytes_left; | 
|  | unsigned long page_in_index = 0; | 
|  | unsigned long page_out_index = 0; | 
|  | struct page *page_out; | 
|  | unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) / | 
|  | PAGE_CACHE_SIZE; | 
|  | unsigned long buf_start; | 
|  | unsigned long buf_offset; | 
|  | unsigned long bytes; | 
|  | unsigned long working_bytes; | 
|  | unsigned long pg_offset; | 
|  | unsigned long start_byte; | 
|  | unsigned long current_buf_start; | 
|  | char *kaddr; | 
|  |  | 
|  | workspace = find_zlib_workspace(); | 
|  | if (IS_ERR(workspace)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data_in = kmap(pages_in[page_in_index]); | 
|  | workspace->inf_strm.next_in = data_in; | 
|  | workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE); | 
|  | workspace->inf_strm.total_in = 0; | 
|  |  | 
|  | workspace->inf_strm.total_out = 0; | 
|  | workspace->inf_strm.next_out = workspace->buf; | 
|  | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | 
|  | page_out = bvec[page_out_index].bv_page; | 
|  | page_bytes_left = PAGE_CACHE_SIZE; | 
|  | pg_offset = 0; | 
|  |  | 
|  | /* If it's deflate, and it's got no preset dictionary, then | 
|  | we can tell zlib to skip the adler32 check. */ | 
|  | if (srclen > 2 && !(data_in[1] & PRESET_DICT) && | 
|  | ((data_in[0] & 0x0f) == Z_DEFLATED) && | 
|  | !(((data_in[0]<<8) + data_in[1]) % 31)) { | 
|  |  | 
|  | wbits = -((data_in[0] >> 4) + 8); | 
|  | workspace->inf_strm.next_in += 2; | 
|  | workspace->inf_strm.avail_in -= 2; | 
|  | } | 
|  |  | 
|  | if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) { | 
|  | printk(KERN_WARNING "inflateInit failed\n"); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  | while (workspace->inf_strm.total_in < srclen) { | 
|  | ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH); | 
|  | if (ret != Z_OK && ret != Z_STREAM_END) | 
|  | break; | 
|  | /* | 
|  | * buf start is the byte offset we're of the start of | 
|  | * our workspace buffer | 
|  | */ | 
|  | buf_start = total_out; | 
|  |  | 
|  | /* total_out is the last byte of the workspace buffer */ | 
|  | total_out = workspace->inf_strm.total_out; | 
|  |  | 
|  | working_bytes = total_out - buf_start; | 
|  |  | 
|  | /* | 
|  | * start byte is the first byte of the page we're currently | 
|  | * copying into relative to the start of the compressed data. | 
|  | */ | 
|  | start_byte = page_offset(page_out) - disk_start; | 
|  |  | 
|  | if (working_bytes == 0) { | 
|  | /* we didn't make progress in this inflate | 
|  | * call, we're done | 
|  | */ | 
|  | if (ret != Z_STREAM_END) | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* we haven't yet hit data corresponding to this page */ | 
|  | if (total_out <= start_byte) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * the start of the data we care about is offset into | 
|  | * the middle of our working buffer | 
|  | */ | 
|  | if (total_out > start_byte && buf_start < start_byte) { | 
|  | buf_offset = start_byte - buf_start; | 
|  | working_bytes -= buf_offset; | 
|  | } else { | 
|  | buf_offset = 0; | 
|  | } | 
|  | current_buf_start = buf_start; | 
|  |  | 
|  | /* copy bytes from the working buffer into the pages */ | 
|  | while (working_bytes > 0) { | 
|  | bytes = min(PAGE_CACHE_SIZE - pg_offset, | 
|  | PAGE_CACHE_SIZE - buf_offset); | 
|  | bytes = min(bytes, working_bytes); | 
|  | kaddr = kmap_atomic(page_out, KM_USER0); | 
|  | memcpy(kaddr + pg_offset, workspace->buf + buf_offset, | 
|  | bytes); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page_out); | 
|  |  | 
|  | pg_offset += bytes; | 
|  | page_bytes_left -= bytes; | 
|  | buf_offset += bytes; | 
|  | working_bytes -= bytes; | 
|  | current_buf_start += bytes; | 
|  |  | 
|  | /* check if we need to pick another page */ | 
|  | if (page_bytes_left == 0) { | 
|  | page_out_index++; | 
|  | if (page_out_index >= vcnt) { | 
|  | ret = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | page_out = bvec[page_out_index].bv_page; | 
|  | pg_offset = 0; | 
|  | page_bytes_left = PAGE_CACHE_SIZE; | 
|  | start_byte = page_offset(page_out) - disk_start; | 
|  |  | 
|  | /* | 
|  | * make sure our new page is covered by this | 
|  | * working buffer | 
|  | */ | 
|  | if (total_out <= start_byte) | 
|  | goto next; | 
|  |  | 
|  | /* the next page in the biovec might not | 
|  | * be adjacent to the last page, but it | 
|  | * might still be found inside this working | 
|  | * buffer.  bump our offset pointer | 
|  | */ | 
|  | if (total_out > start_byte && | 
|  | current_buf_start < start_byte) { | 
|  | buf_offset = start_byte - buf_start; | 
|  | working_bytes = total_out - start_byte; | 
|  | current_buf_start = buf_start + | 
|  | buf_offset; | 
|  | } | 
|  | } | 
|  | } | 
|  | next: | 
|  | workspace->inf_strm.next_out = workspace->buf; | 
|  | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | 
|  |  | 
|  | if (workspace->inf_strm.avail_in == 0) { | 
|  | unsigned long tmp; | 
|  | kunmap(pages_in[page_in_index]); | 
|  | page_in_index++; | 
|  | if (page_in_index >= total_pages_in) { | 
|  | data_in = NULL; | 
|  | break; | 
|  | } | 
|  | data_in = kmap(pages_in[page_in_index]); | 
|  | workspace->inf_strm.next_in = data_in; | 
|  | tmp = srclen - workspace->inf_strm.total_in; | 
|  | workspace->inf_strm.avail_in = min(tmp, | 
|  | PAGE_CACHE_SIZE); | 
|  | } | 
|  | } | 
|  | if (ret != Z_STREAM_END) | 
|  | ret = -1; | 
|  | else | 
|  | ret = 0; | 
|  | done: | 
|  | zlib_inflateEnd(&workspace->inf_strm); | 
|  | if (data_in) | 
|  | kunmap(pages_in[page_in_index]); | 
|  | out: | 
|  | free_workspace(workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a less complex decompression routine.  Our compressed data fits in a | 
|  | * single page, and we want to read a single page out of it. | 
|  | * start_byte tells us the offset into the compressed data we're interested in | 
|  | */ | 
|  | int btrfs_zlib_decompress(unsigned char *data_in, | 
|  | struct page *dest_page, | 
|  | unsigned long start_byte, | 
|  | size_t srclen, size_t destlen) | 
|  | { | 
|  | int ret = 0; | 
|  | int wbits = MAX_WBITS; | 
|  | struct workspace *workspace; | 
|  | unsigned long bytes_left = destlen; | 
|  | unsigned long total_out = 0; | 
|  | char *kaddr; | 
|  |  | 
|  | if (destlen > PAGE_CACHE_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | workspace = find_zlib_workspace(); | 
|  | if (IS_ERR(workspace)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | workspace->inf_strm.next_in = data_in; | 
|  | workspace->inf_strm.avail_in = srclen; | 
|  | workspace->inf_strm.total_in = 0; | 
|  |  | 
|  | workspace->inf_strm.next_out = workspace->buf; | 
|  | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | 
|  | workspace->inf_strm.total_out = 0; | 
|  | /* If it's deflate, and it's got no preset dictionary, then | 
|  | we can tell zlib to skip the adler32 check. */ | 
|  | if (srclen > 2 && !(data_in[1] & PRESET_DICT) && | 
|  | ((data_in[0] & 0x0f) == Z_DEFLATED) && | 
|  | !(((data_in[0]<<8) + data_in[1]) % 31)) { | 
|  |  | 
|  | wbits = -((data_in[0] >> 4) + 8); | 
|  | workspace->inf_strm.next_in += 2; | 
|  | workspace->inf_strm.avail_in -= 2; | 
|  | } | 
|  |  | 
|  | if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) { | 
|  | printk(KERN_WARNING "inflateInit failed\n"); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (bytes_left > 0) { | 
|  | unsigned long buf_start; | 
|  | unsigned long buf_offset; | 
|  | unsigned long bytes; | 
|  | unsigned long pg_offset = 0; | 
|  |  | 
|  | ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH); | 
|  | if (ret != Z_OK && ret != Z_STREAM_END) | 
|  | break; | 
|  |  | 
|  | buf_start = total_out; | 
|  | total_out = workspace->inf_strm.total_out; | 
|  |  | 
|  | if (total_out == buf_start) { | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (total_out <= start_byte) | 
|  | goto next; | 
|  |  | 
|  | if (total_out > start_byte && buf_start < start_byte) | 
|  | buf_offset = start_byte - buf_start; | 
|  | else | 
|  | buf_offset = 0; | 
|  |  | 
|  | bytes = min(PAGE_CACHE_SIZE - pg_offset, | 
|  | PAGE_CACHE_SIZE - buf_offset); | 
|  | bytes = min(bytes, bytes_left); | 
|  |  | 
|  | kaddr = kmap_atomic(dest_page, KM_USER0); | 
|  | memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  |  | 
|  | pg_offset += bytes; | 
|  | bytes_left -= bytes; | 
|  | next: | 
|  | workspace->inf_strm.next_out = workspace->buf; | 
|  | workspace->inf_strm.avail_out = PAGE_CACHE_SIZE; | 
|  | } | 
|  |  | 
|  | if (ret != Z_STREAM_END && bytes_left != 0) | 
|  | ret = -1; | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | zlib_inflateEnd(&workspace->inf_strm); | 
|  | out: | 
|  | free_workspace(workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_zlib_exit(void) | 
|  | { | 
|  | free_workspaces(); | 
|  | } |