| /* | 
 |  * Common EFI (Extensible Firmware Interface) support functions | 
 |  * Based on Extensible Firmware Interface Specification version 1.0 | 
 |  * | 
 |  * Copyright (C) 1999 VA Linux Systems | 
 |  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
 |  * Copyright (C) 1999-2002 Hewlett-Packard Co. | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  *	Stephane Eranian <eranian@hpl.hp.com> | 
 |  * Copyright (C) 2005-2008 Intel Co. | 
 |  *	Fenghua Yu <fenghua.yu@intel.com> | 
 |  *	Bibo Mao <bibo.mao@intel.com> | 
 |  *	Chandramouli Narayanan <mouli@linux.intel.com> | 
 |  *	Huang Ying <ying.huang@intel.com> | 
 |  * | 
 |  * Copied from efi_32.c to eliminate the duplicated code between EFI | 
 |  * 32/64 support code. --ying 2007-10-26 | 
 |  * | 
 |  * All EFI Runtime Services are not implemented yet as EFI only | 
 |  * supports physical mode addressing on SoftSDV. This is to be fixed | 
 |  * in a future version.  --drummond 1999-07-20 | 
 |  * | 
 |  * Implemented EFI runtime services and virtual mode calls.  --davidm | 
 |  * | 
 |  * Goutham Rao: <goutham.rao@intel.com> | 
 |  *	Skip non-WB memory and ignore empty memory ranges. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/time.h> | 
 | #include <linux/io.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/bcd.h> | 
 |  | 
 | #include <asm/setup.h> | 
 | #include <asm/efi.h> | 
 | #include <asm/time.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/x86_init.h> | 
 |  | 
 | #define EFI_DEBUG	1 | 
 | #define PFX 		"EFI: " | 
 |  | 
 | int efi_enabled; | 
 | EXPORT_SYMBOL(efi_enabled); | 
 |  | 
 | struct efi efi; | 
 | EXPORT_SYMBOL(efi); | 
 |  | 
 | struct efi_memory_map memmap; | 
 |  | 
 | static struct efi efi_phys __initdata; | 
 | static efi_system_table_t efi_systab __initdata; | 
 |  | 
 | static int __init setup_noefi(char *arg) | 
 | { | 
 | 	efi_enabled = 0; | 
 | 	return 0; | 
 | } | 
 | early_param("noefi", setup_noefi); | 
 |  | 
 | int add_efi_memmap; | 
 | EXPORT_SYMBOL(add_efi_memmap); | 
 |  | 
 | static int __init setup_add_efi_memmap(char *arg) | 
 | { | 
 | 	add_efi_memmap = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("add_efi_memmap", setup_add_efi_memmap); | 
 |  | 
 |  | 
 | static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) | 
 | { | 
 | 	return efi_call_virt2(get_time, tm, tc); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_set_time(efi_time_t *tm) | 
 | { | 
 | 	return efi_call_virt1(set_time, tm); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, | 
 | 					     efi_bool_t *pending, | 
 | 					     efi_time_t *tm) | 
 | { | 
 | 	return efi_call_virt3(get_wakeup_time, | 
 | 			      enabled, pending, tm); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) | 
 | { | 
 | 	return efi_call_virt2(set_wakeup_time, | 
 | 			      enabled, tm); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_get_variable(efi_char16_t *name, | 
 | 					  efi_guid_t *vendor, | 
 | 					  u32 *attr, | 
 | 					  unsigned long *data_size, | 
 | 					  void *data) | 
 | { | 
 | 	return efi_call_virt5(get_variable, | 
 | 			      name, vendor, attr, | 
 | 			      data_size, data); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, | 
 | 					       efi_char16_t *name, | 
 | 					       efi_guid_t *vendor) | 
 | { | 
 | 	return efi_call_virt3(get_next_variable, | 
 | 			      name_size, name, vendor); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_set_variable(efi_char16_t *name, | 
 | 					  efi_guid_t *vendor, | 
 | 					  unsigned long attr, | 
 | 					  unsigned long data_size, | 
 | 					  void *data) | 
 | { | 
 | 	return efi_call_virt5(set_variable, | 
 | 			      name, vendor, attr, | 
 | 			      data_size, data); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) | 
 | { | 
 | 	return efi_call_virt1(get_next_high_mono_count, count); | 
 | } | 
 |  | 
 | static void virt_efi_reset_system(int reset_type, | 
 | 				  efi_status_t status, | 
 | 				  unsigned long data_size, | 
 | 				  efi_char16_t *data) | 
 | { | 
 | 	efi_call_virt4(reset_system, reset_type, status, | 
 | 		       data_size, data); | 
 | } | 
 |  | 
 | static efi_status_t virt_efi_set_virtual_address_map( | 
 | 	unsigned long memory_map_size, | 
 | 	unsigned long descriptor_size, | 
 | 	u32 descriptor_version, | 
 | 	efi_memory_desc_t *virtual_map) | 
 | { | 
 | 	return efi_call_virt4(set_virtual_address_map, | 
 | 			      memory_map_size, descriptor_size, | 
 | 			      descriptor_version, virtual_map); | 
 | } | 
 |  | 
 | static efi_status_t __init phys_efi_set_virtual_address_map( | 
 | 	unsigned long memory_map_size, | 
 | 	unsigned long descriptor_size, | 
 | 	u32 descriptor_version, | 
 | 	efi_memory_desc_t *virtual_map) | 
 | { | 
 | 	efi_status_t status; | 
 |  | 
 | 	efi_call_phys_prelog(); | 
 | 	status = efi_call_phys4(efi_phys.set_virtual_address_map, | 
 | 				memory_map_size, descriptor_size, | 
 | 				descriptor_version, virtual_map); | 
 | 	efi_call_phys_epilog(); | 
 | 	return status; | 
 | } | 
 |  | 
 | static efi_status_t __init phys_efi_get_time(efi_time_t *tm, | 
 | 					     efi_time_cap_t *tc) | 
 | { | 
 | 	efi_status_t status; | 
 |  | 
 | 	efi_call_phys_prelog(); | 
 | 	status = efi_call_phys2(efi_phys.get_time, tm, tc); | 
 | 	efi_call_phys_epilog(); | 
 | 	return status; | 
 | } | 
 |  | 
 | int efi_set_rtc_mmss(unsigned long nowtime) | 
 | { | 
 | 	int real_seconds, real_minutes; | 
 | 	efi_status_t 	status; | 
 | 	efi_time_t 	eft; | 
 | 	efi_time_cap_t 	cap; | 
 |  | 
 | 	status = efi.get_time(&eft, &cap); | 
 | 	if (status != EFI_SUCCESS) { | 
 | 		printk(KERN_ERR "Oops: efitime: can't read time!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	real_seconds = nowtime % 60; | 
 | 	real_minutes = nowtime / 60; | 
 | 	if (((abs(real_minutes - eft.minute) + 15)/30) & 1) | 
 | 		real_minutes += 30; | 
 | 	real_minutes %= 60; | 
 | 	eft.minute = real_minutes; | 
 | 	eft.second = real_seconds; | 
 |  | 
 | 	status = efi.set_time(&eft); | 
 | 	if (status != EFI_SUCCESS) { | 
 | 		printk(KERN_ERR "Oops: efitime: can't write time!\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long efi_get_time(void) | 
 | { | 
 | 	efi_status_t status; | 
 | 	efi_time_t eft; | 
 | 	efi_time_cap_t cap; | 
 |  | 
 | 	status = efi.get_time(&eft, &cap); | 
 | 	if (status != EFI_SUCCESS) | 
 | 		printk(KERN_ERR "Oops: efitime: can't read time!\n"); | 
 |  | 
 | 	return mktime(eft.year, eft.month, eft.day, eft.hour, | 
 | 		      eft.minute, eft.second); | 
 | } | 
 |  | 
 | /* | 
 |  * Tell the kernel about the EFI memory map.  This might include | 
 |  * more than the max 128 entries that can fit in the e820 legacy | 
 |  * (zeropage) memory map. | 
 |  */ | 
 |  | 
 | static void __init do_add_efi_memmap(void) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		efi_memory_desc_t *md = p; | 
 | 		unsigned long long start = md->phys_addr; | 
 | 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 		int e820_type; | 
 |  | 
 | 		switch (md->type) { | 
 | 		case EFI_LOADER_CODE: | 
 | 		case EFI_LOADER_DATA: | 
 | 		case EFI_BOOT_SERVICES_CODE: | 
 | 		case EFI_BOOT_SERVICES_DATA: | 
 | 		case EFI_CONVENTIONAL_MEMORY: | 
 | 			if (md->attribute & EFI_MEMORY_WB) | 
 | 				e820_type = E820_RAM; | 
 | 			else | 
 | 				e820_type = E820_RESERVED; | 
 | 			break; | 
 | 		case EFI_ACPI_RECLAIM_MEMORY: | 
 | 			e820_type = E820_ACPI; | 
 | 			break; | 
 | 		case EFI_ACPI_MEMORY_NVS: | 
 | 			e820_type = E820_NVS; | 
 | 			break; | 
 | 		case EFI_UNUSABLE_MEMORY: | 
 | 			e820_type = E820_UNUSABLE; | 
 | 			break; | 
 | 		default: | 
 | 			/* | 
 | 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE | 
 | 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO | 
 | 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE | 
 | 			 */ | 
 | 			e820_type = E820_RESERVED; | 
 | 			break; | 
 | 		} | 
 | 		e820_add_region(start, size, e820_type); | 
 | 	} | 
 | 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); | 
 | } | 
 |  | 
 | void __init efi_reserve_early(void) | 
 | { | 
 | 	unsigned long pmap; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	pmap = boot_params.efi_info.efi_memmap; | 
 | #else | 
 | 	pmap = (boot_params.efi_info.efi_memmap | | 
 | 		((__u64)boot_params.efi_info.efi_memmap_hi<<32)); | 
 | #endif | 
 | 	memmap.phys_map = (void *)pmap; | 
 | 	memmap.nr_map = boot_params.efi_info.efi_memmap_size / | 
 | 		boot_params.efi_info.efi_memdesc_size; | 
 | 	memmap.desc_version = boot_params.efi_info.efi_memdesc_version; | 
 | 	memmap.desc_size = boot_params.efi_info.efi_memdesc_size; | 
 | 	reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size, | 
 | 		      "EFI memmap"); | 
 | } | 
 |  | 
 | #if EFI_DEBUG | 
 | static void __init print_efi_memmap(void) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 | 	int i; | 
 |  | 
 | 	for (p = memmap.map, i = 0; | 
 | 	     p < memmap.map_end; | 
 | 	     p += memmap.desc_size, i++) { | 
 | 		md = p; | 
 | 		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, " | 
 | 			"range=[0x%016llx-0x%016llx) (%lluMB)\n", | 
 | 			i, md->type, md->attribute, md->phys_addr, | 
 | 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
 | 			(md->num_pages >> (20 - EFI_PAGE_SHIFT))); | 
 | 	} | 
 | } | 
 | #endif  /*  EFI_DEBUG  */ | 
 |  | 
 | void __init efi_init(void) | 
 | { | 
 | 	efi_config_table_t *config_tables; | 
 | 	efi_runtime_services_t *runtime; | 
 | 	efi_char16_t *c16; | 
 | 	char vendor[100] = "unknown"; | 
 | 	int i = 0; | 
 | 	void *tmp; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; | 
 | #else | 
 | 	efi_phys.systab = (efi_system_table_t *) | 
 | 		(boot_params.efi_info.efi_systab | | 
 | 		 ((__u64)boot_params.efi_info.efi_systab_hi<<32)); | 
 | #endif | 
 |  | 
 | 	efi.systab = early_ioremap((unsigned long)efi_phys.systab, | 
 | 				   sizeof(efi_system_table_t)); | 
 | 	if (efi.systab == NULL) | 
 | 		printk(KERN_ERR "Couldn't map the EFI system table!\n"); | 
 | 	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t)); | 
 | 	early_iounmap(efi.systab, sizeof(efi_system_table_t)); | 
 | 	efi.systab = &efi_systab; | 
 |  | 
 | 	/* | 
 | 	 * Verify the EFI Table | 
 | 	 */ | 
 | 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
 | 		printk(KERN_ERR "EFI system table signature incorrect!\n"); | 
 | 	if ((efi.systab->hdr.revision >> 16) == 0) | 
 | 		printk(KERN_ERR "Warning: EFI system table version " | 
 | 		       "%d.%02d, expected 1.00 or greater!\n", | 
 | 		       efi.systab->hdr.revision >> 16, | 
 | 		       efi.systab->hdr.revision & 0xffff); | 
 |  | 
 | 	/* | 
 | 	 * Show what we know for posterity | 
 | 	 */ | 
 | 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); | 
 | 	if (c16) { | 
 | 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) | 
 | 			vendor[i] = *c16++; | 
 | 		vendor[i] = '\0'; | 
 | 	} else | 
 | 		printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); | 
 | 	early_iounmap(tmp, 2); | 
 |  | 
 | 	printk(KERN_INFO "EFI v%u.%.02u by %s \n", | 
 | 	       efi.systab->hdr.revision >> 16, | 
 | 	       efi.systab->hdr.revision & 0xffff, vendor); | 
 |  | 
 | 	/* | 
 | 	 * Let's see what config tables the firmware passed to us. | 
 | 	 */ | 
 | 	config_tables = early_ioremap( | 
 | 		efi.systab->tables, | 
 | 		efi.systab->nr_tables * sizeof(efi_config_table_t)); | 
 | 	if (config_tables == NULL) | 
 | 		printk(KERN_ERR "Could not map EFI Configuration Table!\n"); | 
 |  | 
 | 	printk(KERN_INFO); | 
 | 	for (i = 0; i < efi.systab->nr_tables; i++) { | 
 | 		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) { | 
 | 			efi.mps = config_tables[i].table; | 
 | 			printk(" MPS=0x%lx ", config_tables[i].table); | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					ACPI_20_TABLE_GUID)) { | 
 | 			efi.acpi20 = config_tables[i].table; | 
 | 			printk(" ACPI 2.0=0x%lx ", config_tables[i].table); | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					ACPI_TABLE_GUID)) { | 
 | 			efi.acpi = config_tables[i].table; | 
 | 			printk(" ACPI=0x%lx ", config_tables[i].table); | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					SMBIOS_TABLE_GUID)) { | 
 | 			efi.smbios = config_tables[i].table; | 
 | 			printk(" SMBIOS=0x%lx ", config_tables[i].table); | 
 | #ifdef CONFIG_X86_UV | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					UV_SYSTEM_TABLE_GUID)) { | 
 | 			efi.uv_systab = config_tables[i].table; | 
 | 			printk(" UVsystab=0x%lx ", config_tables[i].table); | 
 | #endif | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					HCDP_TABLE_GUID)) { | 
 | 			efi.hcdp = config_tables[i].table; | 
 | 			printk(" HCDP=0x%lx ", config_tables[i].table); | 
 | 		} else if (!efi_guidcmp(config_tables[i].guid, | 
 | 					UGA_IO_PROTOCOL_GUID)) { | 
 | 			efi.uga = config_tables[i].table; | 
 | 			printk(" UGA=0x%lx ", config_tables[i].table); | 
 | 		} | 
 | 	} | 
 | 	printk("\n"); | 
 | 	early_iounmap(config_tables, | 
 | 			  efi.systab->nr_tables * sizeof(efi_config_table_t)); | 
 |  | 
 | 	/* | 
 | 	 * Check out the runtime services table. We need to map | 
 | 	 * the runtime services table so that we can grab the physical | 
 | 	 * address of several of the EFI runtime functions, needed to | 
 | 	 * set the firmware into virtual mode. | 
 | 	 */ | 
 | 	runtime = early_ioremap((unsigned long)efi.systab->runtime, | 
 | 				sizeof(efi_runtime_services_t)); | 
 | 	if (runtime != NULL) { | 
 | 		/* | 
 | 		 * We will only need *early* access to the following | 
 | 		 * two EFI runtime services before set_virtual_address_map | 
 | 		 * is invoked. | 
 | 		 */ | 
 | 		efi_phys.get_time = (efi_get_time_t *)runtime->get_time; | 
 | 		efi_phys.set_virtual_address_map = | 
 | 			(efi_set_virtual_address_map_t *) | 
 | 			runtime->set_virtual_address_map; | 
 | 		/* | 
 | 		 * Make efi_get_time can be called before entering | 
 | 		 * virtual mode. | 
 | 		 */ | 
 | 		efi.get_time = phys_efi_get_time; | 
 | 	} else | 
 | 		printk(KERN_ERR "Could not map the EFI runtime service " | 
 | 		       "table!\n"); | 
 | 	early_iounmap(runtime, sizeof(efi_runtime_services_t)); | 
 |  | 
 | 	/* Map the EFI memory map */ | 
 | 	memmap.map = early_ioremap((unsigned long)memmap.phys_map, | 
 | 				   memmap.nr_map * memmap.desc_size); | 
 | 	if (memmap.map == NULL) | 
 | 		printk(KERN_ERR "Could not map the EFI memory map!\n"); | 
 | 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
 |  | 
 | 	if (memmap.desc_size != sizeof(efi_memory_desc_t)) | 
 | 		printk(KERN_WARNING | 
 | 		  "Kernel-defined memdesc doesn't match the one from EFI!\n"); | 
 |  | 
 | 	if (add_efi_memmap) | 
 | 		do_add_efi_memmap(); | 
 |  | 
 | 	x86_platform.get_wallclock = efi_get_time; | 
 | 	x86_platform.set_wallclock = efi_set_rtc_mmss; | 
 |  | 
 | 	/* Setup for EFI runtime service */ | 
 | 	reboot_type = BOOT_EFI; | 
 |  | 
 | #if EFI_DEBUG | 
 | 	print_efi_memmap(); | 
 | #endif | 
 | } | 
 |  | 
 | static void __init runtime_code_page_mkexec(void) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 | 	u64 addr, npages; | 
 |  | 
 | 	/* Make EFI runtime service code area executable */ | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 |  | 
 | 		if (md->type != EFI_RUNTIME_SERVICES_CODE) | 
 | 			continue; | 
 |  | 
 | 		addr = md->virt_addr; | 
 | 		npages = md->num_pages; | 
 | 		memrange_efi_to_native(&addr, &npages); | 
 | 		set_memory_x(addr, npages); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function will switch the EFI runtime services to virtual mode. | 
 |  * Essentially, look through the EFI memmap and map every region that | 
 |  * has the runtime attribute bit set in its memory descriptor and update | 
 |  * that memory descriptor with the virtual address obtained from ioremap(). | 
 |  * This enables the runtime services to be called without having to | 
 |  * thunk back into physical mode for every invocation. | 
 |  */ | 
 | void __init efi_enter_virtual_mode(void) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	efi_status_t status; | 
 | 	unsigned long size; | 
 | 	u64 end, systab, addr, npages, end_pfn; | 
 | 	void *p, *va; | 
 |  | 
 | 	efi.systab = NULL; | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 | 		if (!(md->attribute & EFI_MEMORY_RUNTIME)) | 
 | 			continue; | 
 |  | 
 | 		size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 		end = md->phys_addr + size; | 
 |  | 
 | 		end_pfn = PFN_UP(end); | 
 | 		if (end_pfn <= max_low_pfn_mapped | 
 | 		    || (end_pfn > (1UL << (32 - PAGE_SHIFT)) | 
 | 			&& end_pfn <= max_pfn_mapped)) | 
 | 			va = __va(md->phys_addr); | 
 | 		else | 
 | 			va = efi_ioremap(md->phys_addr, size, md->type); | 
 |  | 
 | 		md->virt_addr = (u64) (unsigned long) va; | 
 |  | 
 | 		if (!va) { | 
 | 			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n", | 
 | 			       (unsigned long long)md->phys_addr); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!(md->attribute & EFI_MEMORY_WB)) { | 
 | 			addr = md->virt_addr; | 
 | 			npages = md->num_pages; | 
 | 			memrange_efi_to_native(&addr, &npages); | 
 | 			set_memory_uc(addr, npages); | 
 | 		} | 
 |  | 
 | 		systab = (u64) (unsigned long) efi_phys.systab; | 
 | 		if (md->phys_addr <= systab && systab < end) { | 
 | 			systab += md->virt_addr - md->phys_addr; | 
 | 			efi.systab = (efi_system_table_t *) (unsigned long) systab; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG_ON(!efi.systab); | 
 |  | 
 | 	status = phys_efi_set_virtual_address_map( | 
 | 		memmap.desc_size * memmap.nr_map, | 
 | 		memmap.desc_size, | 
 | 		memmap.desc_version, | 
 | 		memmap.phys_map); | 
 |  | 
 | 	if (status != EFI_SUCCESS) { | 
 | 		printk(KERN_ALERT "Unable to switch EFI into virtual mode " | 
 | 		       "(status=%lx)!\n", status); | 
 | 		panic("EFI call to SetVirtualAddressMap() failed!"); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now that EFI is in virtual mode, update the function | 
 | 	 * pointers in the runtime service table to the new virtual addresses. | 
 | 	 * | 
 | 	 * Call EFI services through wrapper functions. | 
 | 	 */ | 
 | 	efi.get_time = virt_efi_get_time; | 
 | 	efi.set_time = virt_efi_set_time; | 
 | 	efi.get_wakeup_time = virt_efi_get_wakeup_time; | 
 | 	efi.set_wakeup_time = virt_efi_set_wakeup_time; | 
 | 	efi.get_variable = virt_efi_get_variable; | 
 | 	efi.get_next_variable = virt_efi_get_next_variable; | 
 | 	efi.set_variable = virt_efi_set_variable; | 
 | 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; | 
 | 	efi.reset_system = virt_efi_reset_system; | 
 | 	efi.set_virtual_address_map = virt_efi_set_virtual_address_map; | 
 | 	if (__supported_pte_mask & _PAGE_NX) | 
 | 		runtime_code_page_mkexec(); | 
 | 	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); | 
 | 	memmap.map = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Convenience functions to obtain memory types and attributes | 
 |  */ | 
 | u32 efi_mem_type(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 				  (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->type; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | u64 efi_mem_attributes(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 | 	void *p; | 
 |  | 
 | 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
 | 		md = p; | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 				  (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->attribute; | 
 | 	} | 
 | 	return 0; | 
 | } |