| /* | 
 |  * rational fractions | 
 |  * | 
 |  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> | 
 |  * | 
 |  * helper functions when coping with rational numbers | 
 |  */ | 
 |  | 
 | #include <linux/rational.h> | 
 |  | 
 | /* | 
 |  * calculate best rational approximation for a given fraction | 
 |  * taking into account restricted register size, e.g. to find | 
 |  * appropriate values for a pll with 5 bit denominator and | 
 |  * 8 bit numerator register fields, trying to set up with a | 
 |  * frequency ratio of 3.1415, one would say: | 
 |  * | 
 |  * rational_best_approximation(31415, 10000, | 
 |  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d); | 
 |  * | 
 |  * you may look at given_numerator as a fixed point number, | 
 |  * with the fractional part size described in given_denominator. | 
 |  * | 
 |  * for theoretical background, see: | 
 |  * http://en.wikipedia.org/wiki/Continued_fraction | 
 |  */ | 
 |  | 
 | void rational_best_approximation( | 
 | 	unsigned long given_numerator, unsigned long given_denominator, | 
 | 	unsigned long max_numerator, unsigned long max_denominator, | 
 | 	unsigned long *best_numerator, unsigned long *best_denominator) | 
 | { | 
 | 	unsigned long n, d, n0, d0, n1, d1; | 
 | 	n = given_numerator; | 
 | 	d = given_denominator; | 
 | 	n0 = d1 = 0; | 
 | 	n1 = d0 = 1; | 
 | 	for (;;) { | 
 | 		unsigned long t, a; | 
 | 		if ((n1 > max_numerator) || (d1 > max_denominator)) { | 
 | 			n1 = n0; | 
 | 			d1 = d0; | 
 | 			break; | 
 | 		} | 
 | 		if (d == 0) | 
 | 			break; | 
 | 		t = d; | 
 | 		a = n / d; | 
 | 		d = n % d; | 
 | 		n = t; | 
 | 		t = n0 + a * n1; | 
 | 		n0 = n1; | 
 | 		n1 = t; | 
 | 		t = d0 + a * d1; | 
 | 		d0 = d1; | 
 | 		d1 = t; | 
 | 	} | 
 | 	*best_numerator = n1; | 
 | 	*best_denominator = d1; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(rational_best_approximation); |