| /* Support for MMIO probes. | 
 |  * Benfit many code from kprobes | 
 |  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. | 
 |  *     2007 Alexander Eichner | 
 |  *     2008 Pekka Paalanen <pq@iki.fi> | 
 |  */ | 
 |  | 
 | #include <linux/list.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/io.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <linux/errno.h> | 
 | #include <asm/debugreg.h> | 
 | #include <linux/mmiotrace.h> | 
 |  | 
 | #define KMMIO_PAGE_HASH_BITS 4 | 
 | #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) | 
 |  | 
 | struct kmmio_fault_page { | 
 | 	struct list_head list; | 
 | 	struct kmmio_fault_page *release_next; | 
 | 	unsigned long page; /* location of the fault page */ | 
 |  | 
 | 	/* | 
 | 	 * Number of times this page has been registered as a part | 
 | 	 * of a probe. If zero, page is disarmed and this may be freed. | 
 | 	 * Used only by writers (RCU). | 
 | 	 */ | 
 | 	int count; | 
 | }; | 
 |  | 
 | struct kmmio_delayed_release { | 
 | 	struct rcu_head rcu; | 
 | 	struct kmmio_fault_page *release_list; | 
 | }; | 
 |  | 
 | struct kmmio_context { | 
 | 	struct kmmio_fault_page *fpage; | 
 | 	struct kmmio_probe *probe; | 
 | 	unsigned long saved_flags; | 
 | 	unsigned long addr; | 
 | 	int active; | 
 | }; | 
 |  | 
 | static DEFINE_SPINLOCK(kmmio_lock); | 
 |  | 
 | /* Protected by kmmio_lock */ | 
 | unsigned int kmmio_count; | 
 |  | 
 | /* Read-protected by RCU, write-protected by kmmio_lock. */ | 
 | static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; | 
 | static LIST_HEAD(kmmio_probes); | 
 |  | 
 | static struct list_head *kmmio_page_list(unsigned long page) | 
 | { | 
 | 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)]; | 
 | } | 
 |  | 
 | /* Accessed per-cpu */ | 
 | static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); | 
 |  | 
 | /* | 
 |  * this is basically a dynamic stabbing problem: | 
 |  * Could use the existing prio tree code or | 
 |  * Possible better implementations: | 
 |  * The Interval Skip List: A Data Structure for Finding All Intervals That | 
 |  * Overlap a Point (might be simple) | 
 |  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup | 
 |  */ | 
 | /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ | 
 | static struct kmmio_probe *get_kmmio_probe(unsigned long addr) | 
 | { | 
 | 	struct kmmio_probe *p; | 
 | 	list_for_each_entry_rcu(p, &kmmio_probes, list) { | 
 | 		if (addr >= p->addr && addr <= (p->addr + p->len)) | 
 | 			return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* You must be holding RCU read lock. */ | 
 | static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct kmmio_fault_page *p; | 
 |  | 
 | 	page &= PAGE_MASK; | 
 | 	head = kmmio_page_list(page); | 
 | 	list_for_each_entry_rcu(p, head, list) { | 
 | 		if (p->page == page) | 
 | 			return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void set_page_present(unsigned long addr, bool present, | 
 | 							unsigned int *pglevel) | 
 | { | 
 | 	pteval_t pteval; | 
 | 	pmdval_t pmdval; | 
 | 	unsigned int level; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte = lookup_address(addr, &level); | 
 |  | 
 | 	if (!pte) { | 
 | 		pr_err("kmmio: no pte for page 0x%08lx\n", addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (pglevel) | 
 | 		*pglevel = level; | 
 |  | 
 | 	switch (level) { | 
 | 	case PG_LEVEL_2M: | 
 | 		pmd = (pmd_t *)pte; | 
 | 		pmdval = pmd_val(*pmd) & ~_PAGE_PRESENT; | 
 | 		if (present) | 
 | 			pmdval |= _PAGE_PRESENT; | 
 | 		set_pmd(pmd, __pmd(pmdval)); | 
 | 		break; | 
 |  | 
 | 	case PG_LEVEL_4K: | 
 | 		pteval = pte_val(*pte) & ~_PAGE_PRESENT; | 
 | 		if (present) | 
 | 			pteval |= _PAGE_PRESENT; | 
 | 		set_pte_atomic(pte, __pte(pteval)); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_err("kmmio: unexpected page level 0x%x.\n", level); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__flush_tlb_one(addr); | 
 | } | 
 |  | 
 | /** Mark the given page as not present. Access to it will trigger a fault. */ | 
 | static void arm_kmmio_fault_page(unsigned long page, unsigned int *pglevel) | 
 | { | 
 | 	set_page_present(page & PAGE_MASK, false, pglevel); | 
 | } | 
 |  | 
 | /** Mark the given page as present. */ | 
 | static void disarm_kmmio_fault_page(unsigned long page, unsigned int *pglevel) | 
 | { | 
 | 	set_page_present(page & PAGE_MASK, true, pglevel); | 
 | } | 
 |  | 
 | /* | 
 |  * This is being called from do_page_fault(). | 
 |  * | 
 |  * We may be in an interrupt or a critical section. Also prefecthing may | 
 |  * trigger a page fault. We may be in the middle of process switch. | 
 |  * We cannot take any locks, because we could be executing especially | 
 |  * within a kmmio critical section. | 
 |  * | 
 |  * Local interrupts are disabled, so preemption cannot happen. | 
 |  * Do not enable interrupts, do not sleep, and watch out for other CPUs. | 
 |  */ | 
 | /* | 
 |  * Interrupts are disabled on entry as trap3 is an interrupt gate | 
 |  * and they remain disabled thorough out this function. | 
 |  */ | 
 | int kmmio_handler(struct pt_regs *regs, unsigned long addr) | 
 | { | 
 | 	struct kmmio_context *ctx; | 
 | 	struct kmmio_fault_page *faultpage; | 
 | 	int ret = 0; /* default to fault not handled */ | 
 |  | 
 | 	/* | 
 | 	 * Preemption is now disabled to prevent process switch during | 
 | 	 * single stepping. We can only handle one active kmmio trace | 
 | 	 * per cpu, so ensure that we finish it before something else | 
 | 	 * gets to run. We also hold the RCU read lock over single | 
 | 	 * stepping to avoid looking up the probe and kmmio_fault_page | 
 | 	 * again. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	faultpage = get_kmmio_fault_page(addr); | 
 | 	if (!faultpage) { | 
 | 		/* | 
 | 		 * Either this page fault is not caused by kmmio, or | 
 | 		 * another CPU just pulled the kmmio probe from under | 
 | 		 * our feet. The latter case should not be possible. | 
 | 		 */ | 
 | 		goto no_kmmio; | 
 | 	} | 
 |  | 
 | 	ctx = &get_cpu_var(kmmio_ctx); | 
 | 	if (ctx->active) { | 
 | 		disarm_kmmio_fault_page(faultpage->page, NULL); | 
 | 		if (addr == ctx->addr) { | 
 | 			/* | 
 | 			 * On SMP we sometimes get recursive probe hits on the | 
 | 			 * same address. Context is already saved, fall out. | 
 | 			 */ | 
 | 			pr_debug("kmmio: duplicate probe hit on CPU %d, for " | 
 | 						"address 0x%08lx.\n", | 
 | 						smp_processor_id(), addr); | 
 | 			ret = 1; | 
 | 			goto no_kmmio_ctx; | 
 | 		} | 
 | 		/* | 
 | 		 * Prevent overwriting already in-flight context. | 
 | 		 * This should not happen, let's hope disarming at least | 
 | 		 * prevents a panic. | 
 | 		 */ | 
 | 		pr_emerg("kmmio: recursive probe hit on CPU %d, " | 
 | 					"for address 0x%08lx. Ignoring.\n", | 
 | 					smp_processor_id(), addr); | 
 | 		pr_emerg("kmmio: previous hit was at 0x%08lx.\n", | 
 | 					ctx->addr); | 
 | 		goto no_kmmio_ctx; | 
 | 	} | 
 | 	ctx->active++; | 
 |  | 
 | 	ctx->fpage = faultpage; | 
 | 	ctx->probe = get_kmmio_probe(addr); | 
 | 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); | 
 | 	ctx->addr = addr; | 
 |  | 
 | 	if (ctx->probe && ctx->probe->pre_handler) | 
 | 		ctx->probe->pre_handler(ctx->probe, regs, addr); | 
 |  | 
 | 	/* | 
 | 	 * Enable single-stepping and disable interrupts for the faulting | 
 | 	 * context. Local interrupts must not get enabled during stepping. | 
 | 	 */ | 
 | 	regs->flags |= X86_EFLAGS_TF; | 
 | 	regs->flags &= ~X86_EFLAGS_IF; | 
 |  | 
 | 	/* Now we set present bit in PTE and single step. */ | 
 | 	disarm_kmmio_fault_page(ctx->fpage->page, NULL); | 
 |  | 
 | 	/* | 
 | 	 * If another cpu accesses the same page while we are stepping, | 
 | 	 * the access will not be caught. It will simply succeed and the | 
 | 	 * only downside is we lose the event. If this becomes a problem, | 
 | 	 * the user should drop to single cpu before tracing. | 
 | 	 */ | 
 |  | 
 | 	put_cpu_var(kmmio_ctx); | 
 | 	return 1; /* fault handled */ | 
 |  | 
 | no_kmmio_ctx: | 
 | 	put_cpu_var(kmmio_ctx); | 
 | no_kmmio: | 
 | 	rcu_read_unlock(); | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap1 is an interrupt gate | 
 |  * and they remain disabled thorough out this function. | 
 |  * This must always get called as the pair to kmmio_handler(). | 
 |  */ | 
 | static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); | 
 |  | 
 | 	if (!ctx->active) { | 
 | 		pr_debug("kmmio: spurious debug trap on CPU %d.\n", | 
 | 							smp_processor_id()); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ctx->probe && ctx->probe->post_handler) | 
 | 		ctx->probe->post_handler(ctx->probe, condition, regs); | 
 |  | 
 | 	arm_kmmio_fault_page(ctx->fpage->page, NULL); | 
 |  | 
 | 	regs->flags &= ~X86_EFLAGS_TF; | 
 | 	regs->flags |= ctx->saved_flags; | 
 |  | 
 | 	/* These were acquired in kmmio_handler(). */ | 
 | 	ctx->active--; | 
 | 	BUG_ON(ctx->active); | 
 | 	rcu_read_unlock(); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, flags | 
 | 	 * will have TF set, in which case, continue the remaining processing | 
 | 	 * of do_debug, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (!(regs->flags & X86_EFLAGS_TF)) | 
 | 		ret = 1; | 
 | out: | 
 | 	put_cpu_var(kmmio_ctx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* You must be holding kmmio_lock. */ | 
 | static int add_kmmio_fault_page(unsigned long page) | 
 | { | 
 | 	struct kmmio_fault_page *f; | 
 |  | 
 | 	page &= PAGE_MASK; | 
 | 	f = get_kmmio_fault_page(page); | 
 | 	if (f) { | 
 | 		if (!f->count) | 
 | 			arm_kmmio_fault_page(f->page, NULL); | 
 | 		f->count++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	f = kmalloc(sizeof(*f), GFP_ATOMIC); | 
 | 	if (!f) | 
 | 		return -1; | 
 |  | 
 | 	f->count = 1; | 
 | 	f->page = page; | 
 | 	list_add_rcu(&f->list, kmmio_page_list(f->page)); | 
 |  | 
 | 	arm_kmmio_fault_page(f->page, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* You must be holding kmmio_lock. */ | 
 | static void release_kmmio_fault_page(unsigned long page, | 
 | 				struct kmmio_fault_page **release_list) | 
 | { | 
 | 	struct kmmio_fault_page *f; | 
 |  | 
 | 	page &= PAGE_MASK; | 
 | 	f = get_kmmio_fault_page(page); | 
 | 	if (!f) | 
 | 		return; | 
 |  | 
 | 	f->count--; | 
 | 	BUG_ON(f->count < 0); | 
 | 	if (!f->count) { | 
 | 		disarm_kmmio_fault_page(f->page, NULL); | 
 | 		f->release_next = *release_list; | 
 | 		*release_list = f; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * With page-unaligned ioremaps, one or two armed pages may contain | 
 |  * addresses from outside the intended mapping. Events for these addresses | 
 |  * are currently silently dropped. The events may result only from programming | 
 |  * mistakes by accessing addresses before the beginning or past the end of a | 
 |  * mapping. | 
 |  */ | 
 | int register_kmmio_probe(struct kmmio_probe *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	unsigned long size = 0; | 
 | 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
 |  | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	if (get_kmmio_probe(p->addr)) { | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 | 	kmmio_count++; | 
 | 	list_add_rcu(&p->list, &kmmio_probes); | 
 | 	while (size < size_lim) { | 
 | 		if (add_kmmio_fault_page(p->addr + size)) | 
 | 			pr_err("kmmio: Unable to set page fault.\n"); | 
 | 		size += PAGE_SIZE; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 | 	/* | 
 | 	 * XXX: What should I do here? | 
 | 	 * Here was a call to global_flush_tlb(), but it does not exist | 
 | 	 * anymore. It seems it's not needed after all. | 
 | 	 */ | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(register_kmmio_probe); | 
 |  | 
 | static void rcu_free_kmmio_fault_pages(struct rcu_head *head) | 
 | { | 
 | 	struct kmmio_delayed_release *dr = container_of( | 
 | 						head, | 
 | 						struct kmmio_delayed_release, | 
 | 						rcu); | 
 | 	struct kmmio_fault_page *p = dr->release_list; | 
 | 	while (p) { | 
 | 		struct kmmio_fault_page *next = p->release_next; | 
 | 		BUG_ON(p->count); | 
 | 		kfree(p); | 
 | 		p = next; | 
 | 	} | 
 | 	kfree(dr); | 
 | } | 
 |  | 
 | static void remove_kmmio_fault_pages(struct rcu_head *head) | 
 | { | 
 | 	struct kmmio_delayed_release *dr = container_of( | 
 | 						head, | 
 | 						struct kmmio_delayed_release, | 
 | 						rcu); | 
 | 	struct kmmio_fault_page *p = dr->release_list; | 
 | 	struct kmmio_fault_page **prevp = &dr->release_list; | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	while (p) { | 
 | 		if (!p->count) | 
 | 			list_del_rcu(&p->list); | 
 | 		else | 
 | 			*prevp = p->release_next; | 
 | 		prevp = &p->release_next; | 
 | 		p = p->release_next; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 | 	/* This is the real RCU destroy call. */ | 
 | 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a kmmio probe. You have to synchronize_rcu() before you can be | 
 |  * sure that the callbacks will not be called anymore. Only after that | 
 |  * you may actually release your struct kmmio_probe. | 
 |  * | 
 |  * Unregistering a kmmio fault page has three steps: | 
 |  * 1. release_kmmio_fault_page() | 
 |  *    Disarm the page, wait a grace period to let all faults finish. | 
 |  * 2. remove_kmmio_fault_pages() | 
 |  *    Remove the pages from kmmio_page_table. | 
 |  * 3. rcu_free_kmmio_fault_pages() | 
 |  *    Actally free the kmmio_fault_page structs as with RCU. | 
 |  */ | 
 | void unregister_kmmio_probe(struct kmmio_probe *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long size = 0; | 
 | 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
 | 	struct kmmio_fault_page *release_list = NULL; | 
 | 	struct kmmio_delayed_release *drelease; | 
 |  | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	while (size < size_lim) { | 
 | 		release_kmmio_fault_page(p->addr + size, &release_list); | 
 | 		size += PAGE_SIZE; | 
 | 	} | 
 | 	list_del_rcu(&p->list); | 
 | 	kmmio_count--; | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 |  | 
 | 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); | 
 | 	if (!drelease) { | 
 | 		pr_crit("kmmio: leaking kmmio_fault_page objects.\n"); | 
 | 		return; | 
 | 	} | 
 | 	drelease->release_list = release_list; | 
 |  | 
 | 	/* | 
 | 	 * This is not really RCU here. We have just disarmed a set of | 
 | 	 * pages so that they cannot trigger page faults anymore. However, | 
 | 	 * we cannot remove the pages from kmmio_page_table, | 
 | 	 * because a probe hit might be in flight on another CPU. The | 
 | 	 * pages are collected into a list, and they will be removed from | 
 | 	 * kmmio_page_table when it is certain that no probe hit related to | 
 | 	 * these pages can be in flight. RCU grace period sounds like a | 
 | 	 * good choice. | 
 | 	 * | 
 | 	 * If we removed the pages too early, kmmio page fault handler might | 
 | 	 * not find the respective kmmio_fault_page and determine it's not | 
 | 	 * a kmmio fault, when it actually is. This would lead to madness. | 
 | 	 */ | 
 | 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages); | 
 | } | 
 | EXPORT_SYMBOL(unregister_kmmio_probe); | 
 |  | 
 | static int kmmio_die_notifier(struct notifier_block *nb, unsigned long val, | 
 | 								void *args) | 
 | { | 
 | 	struct die_args *arg = args; | 
 |  | 
 | 	if (val == DIE_DEBUG && (arg->err & DR_STEP)) | 
 | 		if (post_kmmio_handler(arg->err, arg->regs) == 1) | 
 | 			return NOTIFY_STOP; | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block nb_die = { | 
 | 	.notifier_call = kmmio_die_notifier | 
 | }; | 
 |  | 
 | static int __init init_kmmio(void) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) | 
 | 		INIT_LIST_HEAD(&kmmio_page_table[i]); | 
 | 	return register_die_notifier(&nb_die); | 
 | } | 
 | fs_initcall(init_kmmio); /* should be before device_initcall() */ |