| /* | 
 |  * processor_idle - idle state submodule to the ACPI processor driver | 
 |  * | 
 |  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | 
 |  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | 
 |  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> | 
 |  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
 |  *  			- Added processor hotplug support | 
 |  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
 |  *  			- Added support for C3 on SMP | 
 |  * | 
 |  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2 of the License, or (at | 
 |  *  your option) any later version. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, but | 
 |  *  WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  *  General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License along | 
 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 |  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | 
 |  * | 
 |  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/sched.h>	/* need_resched() */ | 
 | #include <linux/pm_qos_params.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/cpuidle.h> | 
 |  | 
 | /* | 
 |  * Include the apic definitions for x86 to have the APIC timer related defines | 
 |  * available also for UP (on SMP it gets magically included via linux/smp.h). | 
 |  * asm/acpi.h is not an option, as it would require more include magic. Also | 
 |  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. | 
 |  */ | 
 | #ifdef CONFIG_X86 | 
 | #include <asm/apic.h> | 
 | #endif | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include <acpi/acpi_bus.h> | 
 | #include <acpi/processor.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #define ACPI_PROCESSOR_COMPONENT        0x01000000 | 
 | #define ACPI_PROCESSOR_CLASS            "processor" | 
 | #define _COMPONENT              ACPI_PROCESSOR_COMPONENT | 
 | ACPI_MODULE_NAME("processor_idle"); | 
 | #define ACPI_PROCESSOR_FILE_POWER	"power" | 
 | #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000) | 
 | #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY) | 
 | #ifndef CONFIG_CPU_IDLE | 
 | #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */ | 
 | #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */ | 
 | static void (*pm_idle_save) (void) __read_mostly; | 
 | #else | 
 | #define C2_OVERHEAD			1	/* 1us */ | 
 | #define C3_OVERHEAD			1	/* 1us */ | 
 | #endif | 
 | #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) | 
 |  | 
 | static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; | 
 | #ifdef CONFIG_CPU_IDLE | 
 | module_param(max_cstate, uint, 0000); | 
 | #else | 
 | module_param(max_cstate, uint, 0644); | 
 | #endif | 
 | static unsigned int nocst __read_mostly; | 
 | module_param(nocst, uint, 0000); | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | /* | 
 |  * bm_history -- bit-mask with a bit per jiffy of bus-master activity | 
 |  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms | 
 |  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms | 
 |  * 100 HZ: 0x0000000F: 4 jiffies = 40ms | 
 |  * reduce history for more aggressive entry into C3 | 
 |  */ | 
 | static unsigned int bm_history __read_mostly = | 
 |     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); | 
 | module_param(bm_history, uint, 0644); | 
 |  | 
 | static int acpi_processor_set_power_policy(struct acpi_processor *pr); | 
 |  | 
 | #else	/* CONFIG_CPU_IDLE */ | 
 | static unsigned int latency_factor __read_mostly = 2; | 
 | module_param(latency_factor, uint, 0644); | 
 | #endif | 
 |  | 
 | /* | 
 |  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. | 
 |  * For now disable this. Probably a bug somewhere else. | 
 |  * | 
 |  * To skip this limit, boot/load with a large max_cstate limit. | 
 |  */ | 
 | static int set_max_cstate(const struct dmi_system_id *id) | 
 | { | 
 | 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER) | 
 | 		return 0; | 
 |  | 
 | 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." | 
 | 	       " Override with \"processor.max_cstate=%d\"\n", id->ident, | 
 | 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); | 
 |  | 
 | 	max_cstate = (long)id->driver_data; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Actually this shouldn't be __cpuinitdata, would be better to fix the | 
 |    callers to only run once -AK */ | 
 | static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "IBM ThinkPad R40e", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, | 
 | 	{ set_max_cstate, "Medion 41700", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, | 
 | 	{ set_max_cstate, "Clevo 5600D", { | 
 | 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), | 
 | 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, | 
 | 	 (void *)2}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static inline u32 ticks_elapsed(u32 t1, u32 t2) | 
 | { | 
 | 	if (t2 >= t1) | 
 | 		return (t2 - t1); | 
 | 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER)) | 
 | 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); | 
 | 	else | 
 | 		return ((0xFFFFFFFF - t1) + t2); | 
 | } | 
 |  | 
 | static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2) | 
 | { | 
 | 	if (t2 >= t1) | 
 | 		return PM_TIMER_TICKS_TO_US(t2 - t1); | 
 | 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER)) | 
 | 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); | 
 | 	else | 
 | 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2); | 
 | } | 
 |  | 
 | /* | 
 |  * Callers should disable interrupts before the call and enable | 
 |  * interrupts after return. | 
 |  */ | 
 | static void acpi_safe_halt(void) | 
 | { | 
 | 	current_thread_info()->status &= ~TS_POLLING; | 
 | 	/* | 
 | 	 * TS_POLLING-cleared state must be visible before we | 
 | 	 * test NEED_RESCHED: | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (!need_resched()) { | 
 | 		safe_halt(); | 
 | 		local_irq_disable(); | 
 | 	} | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 | } | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 |  | 
 | static void | 
 | acpi_processor_power_activate(struct acpi_processor *pr, | 
 | 			      struct acpi_processor_cx *new) | 
 | { | 
 | 	struct acpi_processor_cx *old; | 
 |  | 
 | 	if (!pr || !new) | 
 | 		return; | 
 |  | 
 | 	old = pr->power.state; | 
 |  | 
 | 	if (old) | 
 | 		old->promotion.count = 0; | 
 | 	new->demotion.count = 0; | 
 |  | 
 | 	/* Cleanup from old state. */ | 
 | 	if (old) { | 
 | 		switch (old->type) { | 
 | 		case ACPI_STATE_C3: | 
 | 			/* Disable bus master reload */ | 
 | 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) | 
 | 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Prepare to use new state. */ | 
 | 	switch (new->type) { | 
 | 	case ACPI_STATE_C3: | 
 | 		/* Enable bus master reload */ | 
 | 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) | 
 | 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	pr->power.state = new; | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static atomic_t c3_cpu_count; | 
 |  | 
 | /* Common C-state entry for C2, C3, .. */ | 
 | static void acpi_cstate_enter(struct acpi_processor_cx *cstate) | 
 | { | 
 | 	if (cstate->entry_method == ACPI_CSTATE_FFH) { | 
 | 		/* Call into architectural FFH based C-state */ | 
 | 		acpi_processor_ffh_cstate_enter(cstate); | 
 | 	} else { | 
 | 		int unused; | 
 | 		/* IO port based C-state */ | 
 | 		inb(cstate->address); | 
 | 		/* Dummy wait op - must do something useless after P_LVL2 read | 
 | 		   because chipsets cannot guarantee that STPCLK# signal | 
 | 		   gets asserted in time to freeze execution properly. */ | 
 | 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	} | 
 | } | 
 | #endif /* !CONFIG_CPU_IDLE */ | 
 |  | 
 | #ifdef ARCH_APICTIMER_STOPS_ON_C3 | 
 |  | 
 | /* | 
 |  * Some BIOS implementations switch to C3 in the published C2 state. | 
 |  * This seems to be a common problem on AMD boxen, but other vendors | 
 |  * are affected too. We pick the most conservative approach: we assume | 
 |  * that the local APIC stops in both C2 and C3. | 
 |  */ | 
 | static void acpi_timer_check_state(int state, struct acpi_processor *pr, | 
 | 				   struct acpi_processor_cx *cx) | 
 | { | 
 | 	struct acpi_processor_power *pwr = &pr->power; | 
 | 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; | 
 |  | 
 | 	/* | 
 | 	 * Check, if one of the previous states already marked the lapic | 
 | 	 * unstable | 
 | 	 */ | 
 | 	if (pwr->timer_broadcast_on_state < state) | 
 | 		return; | 
 |  | 
 | 	if (cx->type >= type) | 
 | 		pr->power.timer_broadcast_on_state = state; | 
 | } | 
 |  | 
 | static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned long reason; | 
 |  | 
 | 	reason = pr->power.timer_broadcast_on_state < INT_MAX ? | 
 | 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; | 
 |  | 
 | 	clockevents_notify(reason, &pr->id); | 
 | } | 
 |  | 
 | /* Power(C) State timer broadcast control */ | 
 | static void acpi_state_timer_broadcast(struct acpi_processor *pr, | 
 | 				       struct acpi_processor_cx *cx, | 
 | 				       int broadcast) | 
 | { | 
 | 	int state = cx - pr->power.states; | 
 |  | 
 | 	if (state >= pr->power.timer_broadcast_on_state) { | 
 | 		unsigned long reason; | 
 |  | 
 | 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER : | 
 | 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT; | 
 | 		clockevents_notify(reason, &pr->id); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void acpi_timer_check_state(int state, struct acpi_processor *pr, | 
 | 				   struct acpi_processor_cx *cstate) { } | 
 | static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { } | 
 | static void acpi_state_timer_broadcast(struct acpi_processor *pr, | 
 | 				       struct acpi_processor_cx *cx, | 
 | 				       int broadcast) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Suspend / resume control | 
 |  */ | 
 | static int acpi_idle_suspend; | 
 |  | 
 | int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) | 
 | { | 
 | 	acpi_idle_suspend = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_resume(struct acpi_device * device) | 
 | { | 
 | 	acpi_idle_suspend = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) | 
 | static int tsc_halts_in_c(int state) | 
 | { | 
 | 	switch (boot_cpu_data.x86_vendor) { | 
 | 	case X86_VENDOR_AMD: | 
 | 		/* | 
 | 		 * AMD Fam10h TSC will tick in all | 
 | 		 * C/P/S0/S1 states when this bit is set. | 
 | 		 */ | 
 | 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
 | 			return 0; | 
 | 		/*FALL THROUGH*/ | 
 | 	case X86_VENDOR_INTEL: | 
 | 		/* Several cases known where TSC halts in C2 too */ | 
 | 	default: | 
 | 		return state > ACPI_STATE_C1; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | static void acpi_processor_idle(void) | 
 | { | 
 | 	struct acpi_processor *pr = NULL; | 
 | 	struct acpi_processor_cx *cx = NULL; | 
 | 	struct acpi_processor_cx *next_state = NULL; | 
 | 	int sleep_ticks = 0; | 
 | 	u32 t1, t2 = 0; | 
 |  | 
 | 	/* | 
 | 	 * Interrupts must be disabled during bus mastering calculations and | 
 | 	 * for C2/C3 transitions. | 
 | 	 */ | 
 | 	local_irq_disable(); | 
 |  | 
 | 	pr = __get_cpu_var(processors); | 
 | 	if (!pr) { | 
 | 		local_irq_enable(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check whether we truly need to go idle, or should | 
 | 	 * reschedule: | 
 | 	 */ | 
 | 	if (unlikely(need_resched())) { | 
 | 		local_irq_enable(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cx = pr->power.state; | 
 | 	if (!cx || acpi_idle_suspend) { | 
 | 		if (pm_idle_save) { | 
 | 			pm_idle_save(); /* enables IRQs */ | 
 | 		} else { | 
 | 			acpi_safe_halt(); | 
 | 			local_irq_enable(); | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check BM Activity | 
 | 	 * ----------------- | 
 | 	 * Check for bus mastering activity (if required), record, and check | 
 | 	 * for demotion. | 
 | 	 */ | 
 | 	if (pr->flags.bm_check) { | 
 | 		u32 bm_status = 0; | 
 | 		unsigned long diff = jiffies - pr->power.bm_check_timestamp; | 
 |  | 
 | 		if (diff > 31) | 
 | 			diff = 31; | 
 |  | 
 | 		pr->power.bm_activity <<= diff; | 
 |  | 
 | 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); | 
 | 		if (bm_status) { | 
 | 			pr->power.bm_activity |= 0x1; | 
 | 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); | 
 | 		} | 
 | 		/* | 
 | 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect | 
 | 		 * the true state of bus mastering activity; forcing us to | 
 | 		 * manually check the BMIDEA bit of each IDE channel. | 
 | 		 */ | 
 | 		else if (errata.piix4.bmisx) { | 
 | 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) | 
 | 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) | 
 | 				pr->power.bm_activity |= 0x1; | 
 | 		} | 
 |  | 
 | 		pr->power.bm_check_timestamp = jiffies; | 
 |  | 
 | 		/* | 
 | 		 * If bus mastering is or was active this jiffy, demote | 
 | 		 * to avoid a faulty transition.  Note that the processor | 
 | 		 * won't enter a low-power state during this call (to this | 
 | 		 * function) but should upon the next. | 
 | 		 * | 
 | 		 * TBD: A better policy might be to fallback to the demotion | 
 | 		 *      state (use it for this quantum only) istead of | 
 | 		 *      demoting -- and rely on duration as our sole demotion | 
 | 		 *      qualification.  This may, however, introduce DMA | 
 | 		 *      issues (e.g. floppy DMA transfer overrun/underrun). | 
 | 		 */ | 
 | 		if ((pr->power.bm_activity & 0x1) && | 
 | 		    cx->demotion.threshold.bm) { | 
 | 			local_irq_enable(); | 
 | 			next_state = cx->demotion.state; | 
 | 			goto end; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	/* | 
 | 	 * Check for P_LVL2_UP flag before entering C2 and above on | 
 | 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL | 
 | 	 * detection phase, to work cleanly with logical CPU hotplug. | 
 | 	 */ | 
 | 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
 | 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
 | 		cx = &pr->power.states[ACPI_STATE_C1]; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Sleep: | 
 | 	 * ------ | 
 | 	 * Invoke the current Cx state to put the processor to sleep. | 
 | 	 */ | 
 | 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { | 
 | 		current_thread_info()->status &= ~TS_POLLING; | 
 | 		/* | 
 | 		 * TS_POLLING-cleared state must be visible before we | 
 | 		 * test NEED_RESCHED: | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		if (need_resched()) { | 
 | 			current_thread_info()->status |= TS_POLLING; | 
 | 			local_irq_enable(); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	switch (cx->type) { | 
 |  | 
 | 	case ACPI_STATE_C1: | 
 | 		/* | 
 | 		 * Invoke C1. | 
 | 		 * Use the appropriate idle routine, the one that would | 
 | 		 * be used without acpi C-states. | 
 | 		 */ | 
 | 		if (pm_idle_save) { | 
 | 			pm_idle_save(); /* enables IRQs */ | 
 | 		} else { | 
 | 			acpi_safe_halt(); | 
 | 			local_irq_enable(); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * TBD: Can't get time duration while in C1, as resumes | 
 | 		 *      go to an ISR rather than here.  Need to instrument | 
 | 		 *      base interrupt handler. | 
 | 		 * | 
 | 		 * Note: the TSC better not stop in C1, sched_clock() will | 
 | 		 *       skew otherwise. | 
 | 		 */ | 
 | 		sleep_ticks = 0xFFFFFFFF; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case ACPI_STATE_C2: | 
 | 		/* Get start time (ticks) */ | 
 | 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 		/* Tell the scheduler that we are going deep-idle: */ | 
 | 		sched_clock_idle_sleep_event(); | 
 | 		/* Invoke C2 */ | 
 | 		acpi_state_timer_broadcast(pr, cx, 1); | 
 | 		acpi_cstate_enter(cx); | 
 | 		/* Get end time (ticks) */ | 
 | 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 |  | 
 | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) | 
 | 		/* TSC halts in C2, so notify users */ | 
 | 		if (tsc_halts_in_c(ACPI_STATE_C2)) | 
 | 			mark_tsc_unstable("possible TSC halt in C2"); | 
 | #endif | 
 | 		/* Compute time (ticks) that we were actually asleep */ | 
 | 		sleep_ticks = ticks_elapsed(t1, t2); | 
 |  | 
 | 		/* Tell the scheduler how much we idled: */ | 
 | 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
 |  | 
 | 		/* Re-enable interrupts */ | 
 | 		local_irq_enable(); | 
 | 		/* Do not account our idle-switching overhead: */ | 
 | 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD; | 
 |  | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 | 		acpi_state_timer_broadcast(pr, cx, 0); | 
 | 		break; | 
 |  | 
 | 	case ACPI_STATE_C3: | 
 | 		acpi_unlazy_tlb(smp_processor_id()); | 
 | 		/* | 
 | 		 * Must be done before busmaster disable as we might | 
 | 		 * need to access HPET ! | 
 | 		 */ | 
 | 		acpi_state_timer_broadcast(pr, cx, 1); | 
 | 		/* | 
 | 		 * disable bus master | 
 | 		 * bm_check implies we need ARB_DIS | 
 | 		 * !bm_check implies we need cache flush | 
 | 		 * bm_control implies whether we can do ARB_DIS | 
 | 		 * | 
 | 		 * That leaves a case where bm_check is set and bm_control is | 
 | 		 * not set. In that case we cannot do much, we enter C3 | 
 | 		 * without doing anything. | 
 | 		 */ | 
 | 		if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 			if (atomic_inc_return(&c3_cpu_count) == | 
 | 			    num_online_cpus()) { | 
 | 				/* | 
 | 				 * All CPUs are trying to go to C3 | 
 | 				 * Disable bus master arbitration | 
 | 				 */ | 
 | 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); | 
 | 			} | 
 | 		} else if (!pr->flags.bm_check) { | 
 | 			/* SMP with no shared cache... Invalidate cache  */ | 
 | 			ACPI_FLUSH_CPU_CACHE(); | 
 | 		} | 
 |  | 
 | 		/* Get start time (ticks) */ | 
 | 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 		/* Invoke C3 */ | 
 | 		/* Tell the scheduler that we are going deep-idle: */ | 
 | 		sched_clock_idle_sleep_event(); | 
 | 		acpi_cstate_enter(cx); | 
 | 		/* Get end time (ticks) */ | 
 | 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 		if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 			/* Enable bus master arbitration */ | 
 | 			atomic_dec(&c3_cpu_count); | 
 | 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); | 
 | 		} | 
 |  | 
 | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) | 
 | 		/* TSC halts in C3, so notify users */ | 
 | 		if (tsc_halts_in_c(ACPI_STATE_C3)) | 
 | 			mark_tsc_unstable("TSC halts in C3"); | 
 | #endif | 
 | 		/* Compute time (ticks) that we were actually asleep */ | 
 | 		sleep_ticks = ticks_elapsed(t1, t2); | 
 | 		/* Tell the scheduler how much we idled: */ | 
 | 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
 |  | 
 | 		/* Re-enable interrupts */ | 
 | 		local_irq_enable(); | 
 | 		/* Do not account our idle-switching overhead: */ | 
 | 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD; | 
 |  | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 | 		acpi_state_timer_broadcast(pr, cx, 0); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		local_irq_enable(); | 
 | 		return; | 
 | 	} | 
 | 	cx->usage++; | 
 | 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) | 
 | 		cx->time += sleep_ticks; | 
 |  | 
 | 	next_state = pr->power.state; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	/* Don't do promotion/demotion */ | 
 | 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
 | 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) { | 
 | 		next_state = cx; | 
 | 		goto end; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Promotion? | 
 | 	 * ---------- | 
 | 	 * Track the number of longs (time asleep is greater than threshold) | 
 | 	 * and promote when the count threshold is reached.  Note that bus | 
 | 	 * mastering activity may prevent promotions. | 
 | 	 * Do not promote above max_cstate. | 
 | 	 */ | 
 | 	if (cx->promotion.state && | 
 | 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) { | 
 | 		if (sleep_ticks > cx->promotion.threshold.ticks && | 
 | 		  cx->promotion.state->latency <= | 
 | 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) { | 
 | 			cx->promotion.count++; | 
 | 			cx->demotion.count = 0; | 
 | 			if (cx->promotion.count >= | 
 | 			    cx->promotion.threshold.count) { | 
 | 				if (pr->flags.bm_check) { | 
 | 					if (! | 
 | 					    (pr->power.bm_activity & cx-> | 
 | 					     promotion.threshold.bm)) { | 
 | 						next_state = | 
 | 						    cx->promotion.state; | 
 | 						goto end; | 
 | 					} | 
 | 				} else { | 
 | 					next_state = cx->promotion.state; | 
 | 					goto end; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Demotion? | 
 | 	 * --------- | 
 | 	 * Track the number of shorts (time asleep is less than time threshold) | 
 | 	 * and demote when the usage threshold is reached. | 
 | 	 */ | 
 | 	if (cx->demotion.state) { | 
 | 		if (sleep_ticks < cx->demotion.threshold.ticks) { | 
 | 			cx->demotion.count++; | 
 | 			cx->promotion.count = 0; | 
 | 			if (cx->demotion.count >= cx->demotion.threshold.count) { | 
 | 				next_state = cx->demotion.state; | 
 | 				goto end; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 |       end: | 
 | 	/* | 
 | 	 * Demote if current state exceeds max_cstate | 
 | 	 * or if the latency of the current state is unacceptable | 
 | 	 */ | 
 | 	if ((pr->power.state - pr->power.states) > max_cstate || | 
 | 		pr->power.state->latency > | 
 | 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) { | 
 | 		if (cx->demotion.state) | 
 | 			next_state = cx->demotion.state; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * New Cx State? | 
 | 	 * ------------- | 
 | 	 * If we're going to start using a new Cx state we must clean up | 
 | 	 * from the previous and prepare to use the new. | 
 | 	 */ | 
 | 	if (next_state != pr->power.state) | 
 | 		acpi_processor_power_activate(pr, next_state); | 
 | } | 
 |  | 
 | static int acpi_processor_set_power_policy(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int state_is_set = 0; | 
 | 	struct acpi_processor_cx *lower = NULL; | 
 | 	struct acpi_processor_cx *higher = NULL; | 
 | 	struct acpi_processor_cx *cx; | 
 |  | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * This function sets the default Cx state policy (OS idle handler). | 
 | 	 * Our scheme is to promote quickly to C2 but more conservatively | 
 | 	 * to C3.  We're favoring C2  for its characteristics of low latency | 
 | 	 * (quick response), good power savings, and ability to allow bus | 
 | 	 * mastering activity.  Note that the Cx state policy is completely | 
 | 	 * customizable and can be altered dynamically. | 
 | 	 */ | 
 |  | 
 | 	/* startup state */ | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
 | 		cx = &pr->power.states[i]; | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | 		if (!state_is_set) | 
 | 			pr->power.state = cx; | 
 | 		state_is_set++; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (!state_is_set) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* demotion */ | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
 | 		cx = &pr->power.states[i]; | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | 		if (lower) { | 
 | 			cx->demotion.state = lower; | 
 | 			cx->demotion.threshold.ticks = cx->latency_ticks; | 
 | 			cx->demotion.threshold.count = 1; | 
 | 			if (cx->type == ACPI_STATE_C3) | 
 | 				cx->demotion.threshold.bm = bm_history; | 
 | 		} | 
 |  | 
 | 		lower = cx; | 
 | 	} | 
 |  | 
 | 	/* promotion */ | 
 | 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { | 
 | 		cx = &pr->power.states[i]; | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | 		if (higher) { | 
 | 			cx->promotion.state = higher; | 
 | 			cx->promotion.threshold.ticks = cx->latency_ticks; | 
 | 			if (cx->type >= ACPI_STATE_C2) | 
 | 				cx->promotion.threshold.count = 4; | 
 | 			else | 
 | 				cx->promotion.threshold.count = 10; | 
 | 			if (higher->type == ACPI_STATE_C3) | 
 | 				cx->promotion.threshold.bm = bm_history; | 
 | 		} | 
 |  | 
 | 		higher = cx; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* !CONFIG_CPU_IDLE */ | 
 |  | 
 | static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) | 
 | { | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!pr->pblk) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* if info is obtained from pblk/fadt, type equals state */ | 
 | 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; | 
 | 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; | 
 |  | 
 | #ifndef CONFIG_HOTPLUG_CPU | 
 | 	/* | 
 | 	 * Check for P_LVL2_UP flag before entering C2 and above on | 
 | 	 * an SMP system. | 
 | 	 */ | 
 | 	if ((num_online_cpus() > 1) && | 
 | 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
 | 		return -ENODEV; | 
 | #endif | 
 |  | 
 | 	/* determine C2 and C3 address from pblk */ | 
 | 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; | 
 | 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; | 
 |  | 
 | 	/* determine latencies from FADT */ | 
 | 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; | 
 | 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; | 
 |  | 
 | 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 			  "lvl2[0x%08x] lvl3[0x%08x]\n", | 
 | 			  pr->power.states[ACPI_STATE_C2].address, | 
 | 			  pr->power.states[ACPI_STATE_C3].address)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info_default(struct acpi_processor *pr) | 
 | { | 
 | 	if (!pr->power.states[ACPI_STATE_C1].valid) { | 
 | 		/* set the first C-State to C1 */ | 
 | 		/* all processors need to support C1 */ | 
 | 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; | 
 | 		pr->power.states[ACPI_STATE_C1].valid = 1; | 
 | 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; | 
 | 	} | 
 | 	/* the C0 state only exists as a filler in our array */ | 
 | 	pr->power.states[ACPI_STATE_C0].valid = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) | 
 | { | 
 | 	acpi_status status = 0; | 
 | 	acpi_integer count; | 
 | 	int current_count; | 
 | 	int i; | 
 | 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
 | 	union acpi_object *cst; | 
 |  | 
 |  | 
 | 	if (nocst) | 
 | 		return -ENODEV; | 
 |  | 
 | 	current_count = 0; | 
 |  | 
 | 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); | 
 | 	if (ACPI_FAILURE(status)) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	cst = buffer.pointer; | 
 |  | 
 | 	/* There must be at least 2 elements */ | 
 | 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { | 
 | 		printk(KERN_ERR PREFIX "not enough elements in _CST\n"); | 
 | 		status = -EFAULT; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	count = cst->package.elements[0].integer.value; | 
 |  | 
 | 	/* Validate number of power states. */ | 
 | 	if (count < 1 || count != cst->package.count - 1) { | 
 | 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); | 
 | 		status = -EFAULT; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	/* Tell driver that at least _CST is supported. */ | 
 | 	pr->flags.has_cst = 1; | 
 |  | 
 | 	for (i = 1; i <= count; i++) { | 
 | 		union acpi_object *element; | 
 | 		union acpi_object *obj; | 
 | 		struct acpi_power_register *reg; | 
 | 		struct acpi_processor_cx cx; | 
 |  | 
 | 		memset(&cx, 0, sizeof(cx)); | 
 |  | 
 | 		element = &(cst->package.elements[i]); | 
 | 		if (element->type != ACPI_TYPE_PACKAGE) | 
 | 			continue; | 
 |  | 
 | 		if (element->package.count != 4) | 
 | 			continue; | 
 |  | 
 | 		obj = &(element->package.elements[0]); | 
 |  | 
 | 		if (obj->type != ACPI_TYPE_BUFFER) | 
 | 			continue; | 
 |  | 
 | 		reg = (struct acpi_power_register *)obj->buffer.pointer; | 
 |  | 
 | 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && | 
 | 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) | 
 | 			continue; | 
 |  | 
 | 		/* There should be an easy way to extract an integer... */ | 
 | 		obj = &(element->package.elements[1]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.type = obj->integer.value; | 
 | 		/* | 
 | 		 * Some buggy BIOSes won't list C1 in _CST - | 
 | 		 * Let acpi_processor_get_power_info_default() handle them later | 
 | 		 */ | 
 | 		if (i == 1 && cx.type != ACPI_STATE_C1) | 
 | 			current_count++; | 
 |  | 
 | 		cx.address = reg->address; | 
 | 		cx.index = current_count + 1; | 
 |  | 
 | 		cx.entry_method = ACPI_CSTATE_SYSTEMIO; | 
 | 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { | 
 | 			if (acpi_processor_ffh_cstate_probe | 
 | 					(pr->id, &cx, reg) == 0) { | 
 | 				cx.entry_method = ACPI_CSTATE_FFH; | 
 | 			} else if (cx.type == ACPI_STATE_C1) { | 
 | 				/* | 
 | 				 * C1 is a special case where FIXED_HARDWARE | 
 | 				 * can be handled in non-MWAIT way as well. | 
 | 				 * In that case, save this _CST entry info. | 
 | 				 * Otherwise, ignore this info and continue. | 
 | 				 */ | 
 | 				cx.entry_method = ACPI_CSTATE_HALT; | 
 | 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); | 
 | 			} else { | 
 | 				continue; | 
 | 			} | 
 | 			if (cx.type == ACPI_STATE_C1 && | 
 | 					(idle_halt || idle_nomwait)) { | 
 | 				/* | 
 | 				 * In most cases the C1 space_id obtained from | 
 | 				 * _CST object is FIXED_HARDWARE access mode. | 
 | 				 * But when the option of idle=halt is added, | 
 | 				 * the entry_method type should be changed from | 
 | 				 * CSTATE_FFH to CSTATE_HALT. | 
 | 				 * When the option of idle=nomwait is added, | 
 | 				 * the C1 entry_method type should be | 
 | 				 * CSTATE_HALT. | 
 | 				 */ | 
 | 				cx.entry_method = ACPI_CSTATE_HALT; | 
 | 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); | 
 | 			} | 
 | 		} else { | 
 | 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", | 
 | 				 cx.address); | 
 | 		} | 
 |  | 
 | 		if (cx.type == ACPI_STATE_C1) { | 
 | 			cx.valid = 1; | 
 | 		} | 
 |  | 
 | 		obj = &(element->package.elements[2]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.latency = obj->integer.value; | 
 |  | 
 | 		obj = &(element->package.elements[3]); | 
 | 		if (obj->type != ACPI_TYPE_INTEGER) | 
 | 			continue; | 
 |  | 
 | 		cx.power = obj->integer.value; | 
 |  | 
 | 		current_count++; | 
 | 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); | 
 |  | 
 | 		/* | 
 | 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1 | 
 | 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) | 
 | 		 */ | 
 | 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { | 
 | 			printk(KERN_WARNING | 
 | 			       "Limiting number of power states to max (%d)\n", | 
 | 			       ACPI_PROCESSOR_MAX_POWER); | 
 | 			printk(KERN_WARNING | 
 | 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", | 
 | 			  current_count)); | 
 |  | 
 | 	/* Validate number of power states discovered */ | 
 | 	if (current_count < 2) | 
 | 		status = -EFAULT; | 
 |  | 
 |       end: | 
 | 	kfree(buffer.pointer); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) | 
 | { | 
 |  | 
 | 	if (!cx->address) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * C2 latency must be less than or equal to 100 | 
 | 	 * microseconds. | 
 | 	 */ | 
 | 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 				  "latency too large [%d]\n", cx->latency)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise we've met all of our C2 requirements. | 
 | 	 * Normalize the C2 latency to expidite policy | 
 | 	 */ | 
 | 	cx->valid = 1; | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); | 
 | #else | 
 | 	cx->latency_ticks = cx->latency; | 
 | #endif | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static void acpi_processor_power_verify_c3(struct acpi_processor *pr, | 
 | 					   struct acpi_processor_cx *cx) | 
 | { | 
 | 	static int bm_check_flag; | 
 |  | 
 |  | 
 | 	if (!cx->address) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * C3 latency must be less than or equal to 1000 | 
 | 	 * microseconds. | 
 | 	 */ | 
 | 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 				  "latency too large [%d]\n", cx->latency)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) | 
 | 	 * DMA transfers are used by any ISA device to avoid livelock. | 
 | 	 * Note that we could disable Type-F DMA (as recommended by | 
 | 	 * the erratum), but this is known to disrupt certain ISA | 
 | 	 * devices thus we take the conservative approach. | 
 | 	 */ | 
 | 	else if (errata.piix4.fdma) { | 
 | 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 				  "C3 not supported on PIIX4 with Type-F DMA\n")); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* All the logic here assumes flags.bm_check is same across all CPUs */ | 
 | 	if (!bm_check_flag) { | 
 | 		/* Determine whether bm_check is needed based on CPU  */ | 
 | 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id); | 
 | 		bm_check_flag = pr->flags.bm_check; | 
 | 	} else { | 
 | 		pr->flags.bm_check = bm_check_flag; | 
 | 	} | 
 |  | 
 | 	if (pr->flags.bm_check) { | 
 | 		if (!pr->flags.bm_control) { | 
 | 			if (pr->flags.has_cst != 1) { | 
 | 				/* bus mastering control is necessary */ | 
 | 				ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					"C3 support requires BM control\n")); | 
 | 				return; | 
 | 			} else { | 
 | 				/* Here we enter C3 without bus mastering */ | 
 | 				ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					"C3 support without BM control\n")); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * WBINVD should be set in fadt, for C3 state to be | 
 | 		 * supported on when bm_check is not required. | 
 | 		 */ | 
 | 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { | 
 | 			ACPI_DEBUG_PRINT((ACPI_DB_INFO, | 
 | 					  "Cache invalidation should work properly" | 
 | 					  " for C3 to be enabled on SMP systems\n")); | 
 | 			return; | 
 | 		} | 
 | 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise we've met all of our C3 requirements. | 
 | 	 * Normalize the C3 latency to expidite policy.  Enable | 
 | 	 * checking of bus mastering status (bm_check) so we can | 
 | 	 * use this in our C3 policy | 
 | 	 */ | 
 | 	cx->valid = 1; | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); | 
 | #else | 
 | 	cx->latency_ticks = cx->latency; | 
 | #endif | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static int acpi_processor_power_verify(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int working = 0; | 
 |  | 
 | 	pr->power.timer_broadcast_on_state = INT_MAX; | 
 |  | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
 | 		struct acpi_processor_cx *cx = &pr->power.states[i]; | 
 |  | 
 | 		switch (cx->type) { | 
 | 		case ACPI_STATE_C1: | 
 | 			cx->valid = 1; | 
 | 			break; | 
 |  | 
 | 		case ACPI_STATE_C2: | 
 | 			acpi_processor_power_verify_c2(cx); | 
 | 			if (cx->valid) | 
 | 				acpi_timer_check_state(i, pr, cx); | 
 | 			break; | 
 |  | 
 | 		case ACPI_STATE_C3: | 
 | 			acpi_processor_power_verify_c3(pr, cx); | 
 | 			if (cx->valid) | 
 | 				acpi_timer_check_state(i, pr, cx); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (cx->valid) | 
 | 			working++; | 
 | 	} | 
 |  | 
 | 	acpi_propagate_timer_broadcast(pr); | 
 |  | 
 | 	return (working); | 
 | } | 
 |  | 
 | static int acpi_processor_get_power_info(struct acpi_processor *pr) | 
 | { | 
 | 	unsigned int i; | 
 | 	int result; | 
 |  | 
 |  | 
 | 	/* NOTE: the idle thread may not be running while calling | 
 | 	 * this function */ | 
 |  | 
 | 	/* Zero initialize all the C-states info. */ | 
 | 	memset(pr->power.states, 0, sizeof(pr->power.states)); | 
 |  | 
 | 	result = acpi_processor_get_power_info_cst(pr); | 
 | 	if (result == -ENODEV) | 
 | 		result = acpi_processor_get_power_info_fadt(pr); | 
 |  | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	acpi_processor_get_power_info_default(pr); | 
 |  | 
 | 	pr->power.count = acpi_processor_power_verify(pr); | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | 	/* | 
 | 	 * Set Default Policy | 
 | 	 * ------------------ | 
 | 	 * Now that we know which states are supported, set the default | 
 | 	 * policy.  Note that this policy can be changed dynamically | 
 | 	 * (e.g. encourage deeper sleeps to conserve battery life when | 
 | 	 * not on AC). | 
 | 	 */ | 
 | 	result = acpi_processor_set_power_policy(pr); | 
 | 	if (result) | 
 | 		return result; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * if one state of type C2 or C3 is available, mark this | 
 | 	 * CPU as being "idle manageable" | 
 | 	 */ | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { | 
 | 		if (pr->power.states[i].valid) { | 
 | 			pr->power.count = i; | 
 | 			if (pr->power.states[i].type >= ACPI_STATE_C2) | 
 | 				pr->flags.power = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) | 
 | { | 
 | 	struct acpi_processor *pr = seq->private; | 
 | 	unsigned int i; | 
 |  | 
 |  | 
 | 	if (!pr) | 
 | 		goto end; | 
 |  | 
 | 	seq_printf(seq, "active state:            C%zd\n" | 
 | 		   "max_cstate:              C%d\n" | 
 | 		   "bus master activity:     %08x\n" | 
 | 		   "maximum allowed latency: %d usec\n", | 
 | 		   pr->power.state ? pr->power.state - pr->power.states : 0, | 
 | 		   max_cstate, (unsigned)pr->power.bm_activity, | 
 | 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); | 
 |  | 
 | 	seq_puts(seq, "states:\n"); | 
 |  | 
 | 	for (i = 1; i <= pr->power.count; i++) { | 
 | 		seq_printf(seq, "   %cC%d:                  ", | 
 | 			   (&pr->power.states[i] == | 
 | 			    pr->power.state ? '*' : ' '), i); | 
 |  | 
 | 		if (!pr->power.states[i].valid) { | 
 | 			seq_puts(seq, "<not supported>\n"); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		switch (pr->power.states[i].type) { | 
 | 		case ACPI_STATE_C1: | 
 | 			seq_printf(seq, "type[C1] "); | 
 | 			break; | 
 | 		case ACPI_STATE_C2: | 
 | 			seq_printf(seq, "type[C2] "); | 
 | 			break; | 
 | 		case ACPI_STATE_C3: | 
 | 			seq_printf(seq, "type[C3] "); | 
 | 			break; | 
 | 		default: | 
 | 			seq_printf(seq, "type[--] "); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (pr->power.states[i].promotion.state) | 
 | 			seq_printf(seq, "promotion[C%zd] ", | 
 | 				   (pr->power.states[i].promotion.state - | 
 | 				    pr->power.states)); | 
 | 		else | 
 | 			seq_puts(seq, "promotion[--] "); | 
 |  | 
 | 		if (pr->power.states[i].demotion.state) | 
 | 			seq_printf(seq, "demotion[C%zd] ", | 
 | 				   (pr->power.states[i].demotion.state - | 
 | 				    pr->power.states)); | 
 | 		else | 
 | 			seq_puts(seq, "demotion[--] "); | 
 |  | 
 | 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", | 
 | 			   pr->power.states[i].latency, | 
 | 			   pr->power.states[i].usage, | 
 | 			   (unsigned long long)pr->power.states[i].time); | 
 | 	} | 
 |  | 
 |       end: | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) | 
 | { | 
 | 	return single_open(file, acpi_processor_power_seq_show, | 
 | 			   PDE(inode)->data); | 
 | } | 
 |  | 
 | static const struct file_operations acpi_processor_power_fops = { | 
 | 	.owner = THIS_MODULE, | 
 | 	.open = acpi_processor_power_open_fs, | 
 | 	.read = seq_read, | 
 | 	.llseek = seq_lseek, | 
 | 	.release = single_release, | 
 | }; | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 |  | 
 | int acpi_processor_cst_has_changed(struct acpi_processor *pr) | 
 | { | 
 | 	int result = 0; | 
 |  | 
 | 	if (boot_option_idle_override) | 
 | 		return 0; | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (nocst) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (!pr->flags.power_setup_done) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Fall back to the default idle loop */ | 
 | 	pm_idle = pm_idle_save; | 
 | 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */ | 
 |  | 
 | 	pr->flags.power = 0; | 
 | 	result = acpi_processor_get_power_info(pr); | 
 | 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) | 
 | 		pm_idle = acpi_processor_idle; | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static void smp_callback(void *v) | 
 | { | 
 | 	/* we already woke the CPU up, nothing more to do */ | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets called when a part of the kernel has a new latency | 
 |  * requirement.  This means we need to get all processors out of their C-state, | 
 |  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that | 
 |  * wakes them all right up. | 
 |  */ | 
 | static int acpi_processor_latency_notify(struct notifier_block *b, | 
 | 		unsigned long l, void *v) | 
 | { | 
 | 	smp_call_function(smp_callback, NULL, 1); | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block acpi_processor_latency_notifier = { | 
 | 	.notifier_call = acpi_processor_latency_notify, | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | #else /* CONFIG_CPU_IDLE */ | 
 |  | 
 | /** | 
 |  * acpi_idle_bm_check - checks if bus master activity was detected | 
 |  */ | 
 | static int acpi_idle_bm_check(void) | 
 | { | 
 | 	u32 bm_status = 0; | 
 |  | 
 | 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); | 
 | 	if (bm_status) | 
 | 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); | 
 | 	/* | 
 | 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect | 
 | 	 * the true state of bus mastering activity; forcing us to | 
 | 	 * manually check the BMIDEA bit of each IDE channel. | 
 | 	 */ | 
 | 	else if (errata.piix4.bmisx) { | 
 | 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) | 
 | 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) | 
 | 			bm_status = 1; | 
 | 	} | 
 | 	return bm_status; | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state | 
 |  * @pr: the processor | 
 |  * @target: the new target state | 
 |  */ | 
 | static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr, | 
 | 					   struct acpi_processor_cx *target) | 
 | { | 
 | 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) { | 
 | 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | 
 | 		pr->flags.bm_rld_set = 0; | 
 | 	} | 
 |  | 
 | 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) { | 
 | 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); | 
 | 		pr->flags.bm_rld_set = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry | 
 |  * @cx: cstate data | 
 |  * | 
 |  * Caller disables interrupt before call and enables interrupt after return. | 
 |  */ | 
 | static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) | 
 | { | 
 | 	if (cx->entry_method == ACPI_CSTATE_FFH) { | 
 | 		/* Call into architectural FFH based C-state */ | 
 | 		acpi_processor_ffh_cstate_enter(cx); | 
 | 	} else if (cx->entry_method == ACPI_CSTATE_HALT) { | 
 | 		acpi_safe_halt(); | 
 | 	} else { | 
 | 		int unused; | 
 | 		/* IO port based C-state */ | 
 | 		inb(cx->address); | 
 | 		/* Dummy wait op - must do something useless after P_LVL2 read | 
 | 		   because chipsets cannot guarantee that STPCLK# signal | 
 | 		   gets asserted in time to freeze execution properly. */ | 
 | 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_c1 - enters an ACPI C1 state-type | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  * | 
 |  * This is equivalent to the HALT instruction. | 
 |  */ | 
 | static int acpi_idle_enter_c1(struct cpuidle_device *dev, | 
 | 			      struct cpuidle_state *state) | 
 | { | 
 | 	u32 t1, t2; | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 |  | 
 | 	pr = __get_cpu_var(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	/* Do not access any ACPI IO ports in suspend path */ | 
 | 	if (acpi_idle_suspend) { | 
 | 		acpi_safe_halt(); | 
 | 		local_irq_enable(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (pr->flags.bm_check) | 
 | 		acpi_idle_update_bm_rld(pr, cx); | 
 |  | 
 | 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	acpi_idle_do_entry(cx); | 
 | 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	cx->usage++; | 
 |  | 
 | 	return ticks_elapsed_in_us(t1, t2); | 
 | } | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_simple - enters an ACPI state without BM handling | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  */ | 
 | static int acpi_idle_enter_simple(struct cpuidle_device *dev, | 
 | 				  struct cpuidle_state *state) | 
 | { | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 | 	u32 t1, t2; | 
 | 	int sleep_ticks = 0; | 
 |  | 
 | 	pr = __get_cpu_var(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	if (acpi_idle_suspend) | 
 | 		return(acpi_idle_enter_c1(dev, state)); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	current_thread_info()->status &= ~TS_POLLING; | 
 | 	/* | 
 | 	 * TS_POLLING-cleared state must be visible before we test | 
 | 	 * NEED_RESCHED: | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (unlikely(need_resched())) { | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 | 		local_irq_enable(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Must be done before busmaster disable as we might need to | 
 | 	 * access HPET ! | 
 | 	 */ | 
 | 	acpi_state_timer_broadcast(pr, cx, 1); | 
 |  | 
 | 	if (pr->flags.bm_check) | 
 | 		acpi_idle_update_bm_rld(pr, cx); | 
 |  | 
 | 	if (cx->type == ACPI_STATE_C3) | 
 | 		ACPI_FLUSH_CPU_CACHE(); | 
 |  | 
 | 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	/* Tell the scheduler that we are going deep-idle: */ | 
 | 	sched_clock_idle_sleep_event(); | 
 | 	acpi_idle_do_entry(cx); | 
 | 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 |  | 
 | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) | 
 | 	/* TSC could halt in idle, so notify users */ | 
 | 	if (tsc_halts_in_c(cx->type)) | 
 | 		mark_tsc_unstable("TSC halts in idle");; | 
 | #endif | 
 | 	sleep_ticks = ticks_elapsed(t1, t2); | 
 |  | 
 | 	/* Tell the scheduler how much we idled: */ | 
 | 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	cx->usage++; | 
 |  | 
 | 	acpi_state_timer_broadcast(pr, cx, 0); | 
 | 	cx->time += sleep_ticks; | 
 | 	return ticks_elapsed_in_us(t1, t2); | 
 | } | 
 |  | 
 | static int c3_cpu_count; | 
 | static DEFINE_SPINLOCK(c3_lock); | 
 |  | 
 | /** | 
 |  * acpi_idle_enter_bm - enters C3 with proper BM handling | 
 |  * @dev: the target CPU | 
 |  * @state: the state data | 
 |  * | 
 |  * If BM is detected, the deepest non-C3 idle state is entered instead. | 
 |  */ | 
 | static int acpi_idle_enter_bm(struct cpuidle_device *dev, | 
 | 			      struct cpuidle_state *state) | 
 | { | 
 | 	struct acpi_processor *pr; | 
 | 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state); | 
 | 	u32 t1, t2; | 
 | 	int sleep_ticks = 0; | 
 |  | 
 | 	pr = __get_cpu_var(processors); | 
 |  | 
 | 	if (unlikely(!pr)) | 
 | 		return 0; | 
 |  | 
 | 	if (acpi_idle_suspend) | 
 | 		return(acpi_idle_enter_c1(dev, state)); | 
 |  | 
 | 	if (acpi_idle_bm_check()) { | 
 | 		if (dev->safe_state) { | 
 | 			return dev->safe_state->enter(dev, dev->safe_state); | 
 | 		} else { | 
 | 			local_irq_disable(); | 
 | 			acpi_safe_halt(); | 
 | 			local_irq_enable(); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_disable(); | 
 | 	current_thread_info()->status &= ~TS_POLLING; | 
 | 	/* | 
 | 	 * TS_POLLING-cleared state must be visible before we test | 
 | 	 * NEED_RESCHED: | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (unlikely(need_resched())) { | 
 | 		current_thread_info()->status |= TS_POLLING; | 
 | 		local_irq_enable(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	acpi_unlazy_tlb(smp_processor_id()); | 
 |  | 
 | 	/* Tell the scheduler that we are going deep-idle: */ | 
 | 	sched_clock_idle_sleep_event(); | 
 | 	/* | 
 | 	 * Must be done before busmaster disable as we might need to | 
 | 	 * access HPET ! | 
 | 	 */ | 
 | 	acpi_state_timer_broadcast(pr, cx, 1); | 
 |  | 
 | 	acpi_idle_update_bm_rld(pr, cx); | 
 |  | 
 | 	/* | 
 | 	 * disable bus master | 
 | 	 * bm_check implies we need ARB_DIS | 
 | 	 * !bm_check implies we need cache flush | 
 | 	 * bm_control implies whether we can do ARB_DIS | 
 | 	 * | 
 | 	 * That leaves a case where bm_check is set and bm_control is | 
 | 	 * not set. In that case we cannot do much, we enter C3 | 
 | 	 * without doing anything. | 
 | 	 */ | 
 | 	if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 		spin_lock(&c3_lock); | 
 | 		c3_cpu_count++; | 
 | 		/* Disable bus master arbitration when all CPUs are in C3 */ | 
 | 		if (c3_cpu_count == num_online_cpus()) | 
 | 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); | 
 | 		spin_unlock(&c3_lock); | 
 | 	} else if (!pr->flags.bm_check) { | 
 | 		ACPI_FLUSH_CPU_CACHE(); | 
 | 	} | 
 |  | 
 | 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 | 	acpi_idle_do_entry(cx); | 
 | 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); | 
 |  | 
 | 	/* Re-enable bus master arbitration */ | 
 | 	if (pr->flags.bm_check && pr->flags.bm_control) { | 
 | 		spin_lock(&c3_lock); | 
 | 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); | 
 | 		c3_cpu_count--; | 
 | 		spin_unlock(&c3_lock); | 
 | 	} | 
 |  | 
 | #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) | 
 | 	/* TSC could halt in idle, so notify users */ | 
 | 	if (tsc_halts_in_c(ACPI_STATE_C3)) | 
 | 		mark_tsc_unstable("TSC halts in idle"); | 
 | #endif | 
 | 	sleep_ticks = ticks_elapsed(t1, t2); | 
 | 	/* Tell the scheduler how much we idled: */ | 
 | 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	cx->usage++; | 
 |  | 
 | 	acpi_state_timer_broadcast(pr, cx, 0); | 
 | 	cx->time += sleep_ticks; | 
 | 	return ticks_elapsed_in_us(t1, t2); | 
 | } | 
 |  | 
 | struct cpuidle_driver acpi_idle_driver = { | 
 | 	.name =		"acpi_idle", | 
 | 	.owner =	THIS_MODULE, | 
 | }; | 
 |  | 
 | /** | 
 |  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE | 
 |  * @pr: the ACPI processor | 
 |  */ | 
 | static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) | 
 | { | 
 | 	int i, count = CPUIDLE_DRIVER_STATE_START; | 
 | 	struct acpi_processor_cx *cx; | 
 | 	struct cpuidle_state *state; | 
 | 	struct cpuidle_device *dev = &pr->power.dev; | 
 |  | 
 | 	if (!pr->flags.power_setup_done) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pr->flags.power == 0) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	dev->cpu = pr->id; | 
 | 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) { | 
 | 		dev->states[i].name[0] = '\0'; | 
 | 		dev->states[i].desc[0] = '\0'; | 
 | 	} | 
 |  | 
 | 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { | 
 | 		cx = &pr->power.states[i]; | 
 | 		state = &dev->states[count]; | 
 |  | 
 | 		if (!cx->valid) | 
 | 			continue; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && | 
 | 		    !pr->flags.has_cst && | 
 | 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) | 
 | 			continue; | 
 | #endif | 
 | 		cpuidle_set_statedata(state, cx); | 
 |  | 
 | 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); | 
 | 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); | 
 | 		state->exit_latency = cx->latency; | 
 | 		state->target_residency = cx->latency * latency_factor; | 
 | 		state->power_usage = cx->power; | 
 |  | 
 | 		state->flags = 0; | 
 | 		switch (cx->type) { | 
 | 			case ACPI_STATE_C1: | 
 | 			state->flags |= CPUIDLE_FLAG_SHALLOW; | 
 | 			if (cx->entry_method == ACPI_CSTATE_FFH) | 
 | 				state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 |  | 
 | 			state->enter = acpi_idle_enter_c1; | 
 | 			dev->safe_state = state; | 
 | 			break; | 
 |  | 
 | 			case ACPI_STATE_C2: | 
 | 			state->flags |= CPUIDLE_FLAG_BALANCED; | 
 | 			state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 | 			state->enter = acpi_idle_enter_simple; | 
 | 			dev->safe_state = state; | 
 | 			break; | 
 |  | 
 | 			case ACPI_STATE_C3: | 
 | 			state->flags |= CPUIDLE_FLAG_DEEP; | 
 | 			state->flags |= CPUIDLE_FLAG_TIME_VALID; | 
 | 			state->flags |= CPUIDLE_FLAG_CHECK_BM; | 
 | 			state->enter = pr->flags.bm_check ? | 
 | 					acpi_idle_enter_bm : | 
 | 					acpi_idle_enter_simple; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		count++; | 
 | 		if (count == CPUIDLE_STATE_MAX) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	dev->state_count = count; | 
 |  | 
 | 	if (!count) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_cst_has_changed(struct acpi_processor *pr) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (boot_option_idle_override) | 
 | 		return 0; | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (nocst) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (!pr->flags.power_setup_done) | 
 | 		return -ENODEV; | 
 |  | 
 | 	cpuidle_pause_and_lock(); | 
 | 	cpuidle_disable_device(&pr->power.dev); | 
 | 	acpi_processor_get_power_info(pr); | 
 | 	if (pr->flags.power) { | 
 | 		acpi_processor_setup_cpuidle(pr); | 
 | 		ret = cpuidle_enable_device(&pr->power.dev); | 
 | 	} | 
 | 	cpuidle_resume_and_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_CPU_IDLE */ | 
 |  | 
 | int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, | 
 | 			      struct acpi_device *device) | 
 | { | 
 | 	acpi_status status = 0; | 
 | 	static int first_run; | 
 | 	struct proc_dir_entry *entry = NULL; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (boot_option_idle_override) | 
 | 		return 0; | 
 |  | 
 | 	if (!first_run) { | 
 | 		if (idle_halt) { | 
 | 			/* | 
 | 			 * When the boot option of "idle=halt" is added, halt | 
 | 			 * is used for CPU IDLE. | 
 | 			 * In such case C2/C3 is meaningless. So the max_cstate | 
 | 			 * is set to one. | 
 | 			 */ | 
 | 			max_cstate = 1; | 
 | 		} | 
 | 		dmi_check_system(processor_power_dmi_table); | 
 | 		max_cstate = acpi_processor_cstate_check(max_cstate); | 
 | 		if (max_cstate < ACPI_C_STATES_MAX) | 
 | 			printk(KERN_NOTICE | 
 | 			       "ACPI: processor limited to max C-state %d\n", | 
 | 			       max_cstate); | 
 | 		first_run++; | 
 | #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP) | 
 | 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, | 
 | 				&acpi_processor_latency_notifier); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (!pr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (acpi_gbl_FADT.cst_control && !nocst) { | 
 | 		status = | 
 | 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); | 
 | 		if (ACPI_FAILURE(status)) { | 
 | 			ACPI_EXCEPTION((AE_INFO, status, | 
 | 					"Notifying BIOS of _CST ability failed")); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	acpi_processor_get_power_info(pr); | 
 | 	pr->flags.power_setup_done = 1; | 
 |  | 
 | 	/* | 
 | 	 * Install the idle handler if processor power management is supported. | 
 | 	 * Note that we use previously set idle handler will be used on | 
 | 	 * platforms that only support C1. | 
 | 	 */ | 
 | 	if (pr->flags.power) { | 
 | #ifdef CONFIG_CPU_IDLE | 
 | 		acpi_processor_setup_cpuidle(pr); | 
 | 		if (cpuidle_register_device(&pr->power.dev)) | 
 | 			return -EIO; | 
 | #endif | 
 |  | 
 | 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); | 
 | 		for (i = 1; i <= pr->power.count; i++) | 
 | 			if (pr->power.states[i].valid) | 
 | 				printk(" C%d[C%d]", i, | 
 | 				       pr->power.states[i].type); | 
 | 		printk(")\n"); | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 | 		if (pr->id == 0) { | 
 | 			pm_idle_save = pm_idle; | 
 | 			pm_idle = acpi_processor_idle; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* 'power' [R] */ | 
 | 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, | 
 | 				 S_IRUGO, acpi_device_dir(device), | 
 | 				 &acpi_processor_power_fops, | 
 | 				 acpi_driver_data(device)); | 
 | 	if (!entry) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int acpi_processor_power_exit(struct acpi_processor *pr, | 
 | 			      struct acpi_device *device) | 
 | { | 
 | 	if (boot_option_idle_override) | 
 | 		return 0; | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | 	cpuidle_unregister_device(&pr->power.dev); | 
 | #endif | 
 | 	pr->flags.power_setup_done = 0; | 
 |  | 
 | 	if (acpi_device_dir(device)) | 
 | 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, | 
 | 				  acpi_device_dir(device)); | 
 |  | 
 | #ifndef CONFIG_CPU_IDLE | 
 |  | 
 | 	/* Unregister the idle handler when processor #0 is removed. */ | 
 | 	if (pr->id == 0) { | 
 | 		pm_idle = pm_idle_save; | 
 |  | 
 | 		/* | 
 | 		 * We are about to unload the current idle thread pm callback | 
 | 		 * (pm_idle), Wait for all processors to update cached/local | 
 | 		 * copies of pm_idle before proceeding. | 
 | 		 */ | 
 | 		cpu_idle_wait(); | 
 | #ifdef CONFIG_SMP | 
 | 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY, | 
 | 				&acpi_processor_latency_notifier); | 
 | #endif | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } |