| /* | 
 |  * File Name: | 
 |  *   defxx.c | 
 |  * | 
 |  * Copyright Information: | 
 |  *   Copyright Digital Equipment Corporation 1996. | 
 |  * | 
 |  *   This software may be used and distributed according to the terms of | 
 |  *   the GNU General Public License, incorporated herein by reference. | 
 |  * | 
 |  * Abstract: | 
 |  *   A Linux device driver supporting the Digital Equipment Corporation | 
 |  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported | 
 |  *   adapters include: | 
 |  * | 
 |  *		DEC FDDIcontroller/TURBOchannel (DEFTA) | 
 |  *		DEC FDDIcontroller/EISA         (DEFEA) | 
 |  *		DEC FDDIcontroller/PCI          (DEFPA) | 
 |  * | 
 |  * The original author: | 
 |  *   LVS	Lawrence V. Stefani <lstefani@yahoo.com> | 
 |  * | 
 |  * Maintainers: | 
 |  *   macro	Maciej W. Rozycki <macro@linux-mips.org> | 
 |  * | 
 |  * Credits: | 
 |  *   I'd like to thank Patricia Cross for helping me get started with | 
 |  *   Linux, David Davies for a lot of help upgrading and configuring | 
 |  *   my development system and for answering many OS and driver | 
 |  *   development questions, and Alan Cox for recommendations and | 
 |  *   integration help on getting FDDI support into Linux.  LVS | 
 |  * | 
 |  * Driver Architecture: | 
 |  *   The driver architecture is largely based on previous driver work | 
 |  *   for other operating systems.  The upper edge interface and | 
 |  *   functions were largely taken from existing Linux device drivers | 
 |  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C | 
 |  *   driver. | 
 |  * | 
 |  *   Adapter Probe - | 
 |  *		The driver scans for supported EISA adapters by reading the | 
 |  *		SLOT ID register for each EISA slot and making a match | 
 |  *		against the expected value. | 
 |  * | 
 |  *   Bus-Specific Initialization - | 
 |  *		This driver currently supports both EISA and PCI controller | 
 |  *		families.  While the custom DMA chip and FDDI logic is similar | 
 |  *		or identical, the bus logic is very different.  After | 
 |  *		initialization, the	only bus-specific differences is in how the | 
 |  *		driver enables and disables interrupts.  Other than that, the | 
 |  *		run-time critical code behaves the same on both families. | 
 |  *		It's important to note that both adapter families are configured | 
 |  *		to I/O map, rather than memory map, the adapter registers. | 
 |  * | 
 |  *   Driver Open/Close - | 
 |  *		In the driver open routine, the driver ISR (interrupt service | 
 |  *		routine) is registered and the adapter is brought to an | 
 |  *		operational state.  In the driver close routine, the opposite | 
 |  *		occurs; the driver ISR is deregistered and the adapter is | 
 |  *		brought to a safe, but closed state.  Users may use consecutive | 
 |  *		commands to bring the adapter up and down as in the following | 
 |  *		example: | 
 |  *					ifconfig fddi0 up | 
 |  *					ifconfig fddi0 down | 
 |  *					ifconfig fddi0 up | 
 |  * | 
 |  *   Driver Shutdown - | 
 |  *		Apparently, there is no shutdown or halt routine support under | 
 |  *		Linux.  This routine would be called during "reboot" or | 
 |  *		"shutdown" to allow the driver to place the adapter in a safe | 
 |  *		state before a warm reboot occurs.  To be really safe, the user | 
 |  *		should close the adapter before shutdown (eg. ifconfig fddi0 down) | 
 |  *		to ensure that the adapter DMA engine is taken off-line.  However, | 
 |  *		the current driver code anticipates this problem and always issues | 
 |  *		a soft reset of the adapter	at the beginning of driver initialization. | 
 |  *		A future driver enhancement in this area may occur in 2.1.X where | 
 |  *		Alan indicated that a shutdown handler may be implemented. | 
 |  * | 
 |  *   Interrupt Service Routine - | 
 |  *		The driver supports shared interrupts, so the ISR is registered for | 
 |  *		each board with the appropriate flag and the pointer to that board's | 
 |  *		device structure.  This provides the context during interrupt | 
 |  *		processing to support shared interrupts and multiple boards. | 
 |  * | 
 |  *		Interrupt enabling/disabling can occur at many levels.  At the host | 
 |  *		end, you can disable system interrupts, or disable interrupts at the | 
 |  *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters | 
 |  *		have a bus-logic chip interrupt enable/disable as well as a DMA | 
 |  *		controller interrupt enable/disable. | 
 |  * | 
 |  *		The driver currently enables and disables adapter interrupts at the | 
 |  *		bus-logic chip and assumes that Linux will take care of clearing or | 
 |  *		acknowledging any host-based interrupt chips. | 
 |  * | 
 |  *   Control Functions - | 
 |  *		Control functions are those used to support functions such as adding | 
 |  *		or deleting multicast addresses, enabling or disabling packet | 
 |  *		reception filters, or other custom/proprietary commands.  Presently, | 
 |  *		the driver supports the "get statistics", "set multicast list", and | 
 |  *		"set mac address" functions defined by Linux.  A list of possible | 
 |  *		enhancements include: | 
 |  * | 
 |  *				- Custom ioctl interface for executing port interface commands | 
 |  *				- Custom ioctl interface for adding unicast addresses to | 
 |  *				  adapter CAM (to support bridge functions). | 
 |  *				- Custom ioctl interface for supporting firmware upgrades. | 
 |  * | 
 |  *   Hardware (port interface) Support Routines - | 
 |  *		The driver function names that start with "dfx_hw_" represent | 
 |  *		low-level port interface routines that are called frequently.  They | 
 |  *		include issuing a DMA or port control command to the adapter, | 
 |  *		resetting the adapter, or reading the adapter state.  Since the | 
 |  *		driver initialization and run-time code must make calls into the | 
 |  *		port interface, these routines were written to be as generic and | 
 |  *		usable as possible. | 
 |  * | 
 |  *   Receive Path - | 
 |  *		The adapter DMA engine supports a 256 entry receive descriptor block | 
 |  *		of which up to 255 entries can be used at any given time.  The | 
 |  *		architecture is a standard producer, consumer, completion model in | 
 |  *		which the driver "produces" receive buffers to the adapter, the | 
 |  *		adapter "consumes" the receive buffers by DMAing incoming packet data, | 
 |  *		and the driver "completes" the receive buffers by servicing the | 
 |  *		incoming packet, then "produces" a new buffer and starts the cycle | 
 |  *		again.  Receive buffers can be fragmented in up to 16 fragments | 
 |  *		(descriptor	entries).  For simplicity, this driver posts | 
 |  *		single-fragment receive buffers of 4608 bytes, then allocates a | 
 |  *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU | 
 |  *		utilization, a better approach would be to pass up the receive | 
 |  *		buffer (no extra copy) then allocate and post a replacement buffer. | 
 |  *		This is a performance enhancement that should be looked into at | 
 |  *		some point. | 
 |  * | 
 |  *   Transmit Path - | 
 |  *		Like the receive path, the adapter DMA engine supports a 256 entry | 
 |  *		transmit descriptor block of which up to 255 entries can be used at | 
 |  *		any	given time.  Transmit buffers can be fragmented	in up to 255 | 
 |  *		fragments (descriptor entries).  This driver always posts one | 
 |  *		fragment per transmit packet request. | 
 |  * | 
 |  *		The fragment contains the entire packet from FC to end of data. | 
 |  *		Before posting the buffer to the adapter, the driver sets a three-byte | 
 |  *		packet request header (PRH) which is required by the Motorola MAC chip | 
 |  *		used on the adapters.  The PRH tells the MAC the type of token to | 
 |  *		receive/send, whether or not to generate and append the CRC, whether | 
 |  *		synchronous or asynchronous framing is used, etc.  Since the PRH | 
 |  *		definition is not necessarily consistent across all FDDI chipsets, | 
 |  *		the driver, rather than the common FDDI packet handler routines, | 
 |  *		sets these bytes. | 
 |  * | 
 |  *		To reduce the amount of descriptor fetches needed per transmit request, | 
 |  *		the driver takes advantage of the fact that there are at least three | 
 |  *		bytes available before the skb->data field on the outgoing transmit | 
 |  *		request.  This is guaranteed by having fddi_setup() in net_init.c set | 
 |  *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest | 
 |  *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad" | 
 |  *		bytes which we'll use to store the PRH. | 
 |  * | 
 |  *		There's a subtle advantage to adding these pad bytes to the | 
 |  *		hard_header_len, it ensures that the data portion of the packet for | 
 |  *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver | 
 |  *		implementations may not need the extra padding and can start copying | 
 |  *		or DMAing directly from the FC byte which starts at skb->data.  Should | 
 |  *		another driver implementation need ADDITIONAL padding, the net_init.c | 
 |  *		module should be updated and dev->hard_header_len should be increased. | 
 |  *		NOTE: To maintain the alignment on the data portion of the packet, | 
 |  *		dev->hard_header_len should always be evenly divisible by 4 and at | 
 |  *		least 24 bytes in size. | 
 |  * | 
 |  * Modification History: | 
 |  *		Date		Name	Description | 
 |  *		16-Aug-96	LVS		Created. | 
 |  *		20-Aug-96	LVS		Updated dfx_probe so that version information | 
 |  *							string is only displayed if 1 or more cards are | 
 |  *							found.  Changed dfx_rcv_queue_process to copy | 
 |  *							3 NULL bytes before FC to ensure that data is | 
 |  *							longword aligned in receive buffer. | 
 |  *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable | 
 |  *							LLC group promiscuous mode if multicast list | 
 |  *							is too large.  LLC individual/group promiscuous | 
 |  *							mode is now disabled if IFF_PROMISC flag not set. | 
 |  *							dfx_xmt_queue_pkt no longer checks for NULL skb | 
 |  *							on Alan Cox recommendation.  Added node address | 
 |  *							override support. | 
 |  *		12-Sep-96	LVS		Reset current address to factory address during | 
 |  *							device open.  Updated transmit path to post a | 
 |  *							single fragment which includes PRH->end of data. | 
 |  *		Mar 2000	AC		Did various cleanups for 2.3.x | 
 |  *		Jun 2000	jgarzik		PCI and resource alloc cleanups | 
 |  *		Jul 2000	tjeerd		Much cleanup and some bug fixes | 
 |  *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup | 
 |  *		Feb 2001			Skb allocation fixes | 
 |  *		Feb 2001	davej		PCI enable cleanups. | 
 |  *		04 Aug 2003	macro		Converted to the DMA API. | 
 |  *		14 Aug 2004	macro		Fix device names reported. | 
 |  *		14 Jun 2005	macro		Use irqreturn_t. | 
 |  *		23 Oct 2006	macro		Big-endian host support. | 
 |  *		14 Dec 2006	macro		TURBOchannel support. | 
 |  */ | 
 |  | 
 | /* Include files */ | 
 | #include <linux/bitops.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/eisa.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/fddidevice.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/string.h> | 
 | #include <linux/tc.h> | 
 |  | 
 | #include <asm/byteorder.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #include "defxx.h" | 
 |  | 
 | /* Version information string should be updated prior to each new release!  */ | 
 | #define DRV_NAME "defxx" | 
 | #define DRV_VERSION "v1.10" | 
 | #define DRV_RELDATE "2006/12/14" | 
 |  | 
 | static char version[] __devinitdata = | 
 | 	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE | 
 | 	"  Lawrence V. Stefani and others\n"; | 
 |  | 
 | #define DYNAMIC_BUFFERS 1 | 
 |  | 
 | #define SKBUFF_RX_COPYBREAK 200 | 
 | /* | 
 |  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte | 
 |  * alignment for compatibility with old EISA boards. | 
 |  */ | 
 | #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type) | 
 | #else | 
 | #define DFX_BUS_PCI(dev) 0 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_EISA | 
 | #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) | 
 | #else | 
 | #define DFX_BUS_EISA(dev) 0 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_TC | 
 | #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) | 
 | #else | 
 | #define DFX_BUS_TC(dev) 0 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DEFXX_MMIO | 
 | #define DFX_MMIO 1 | 
 | #else | 
 | #define DFX_MMIO 0 | 
 | #endif | 
 |  | 
 | /* Define module-wide (static) routines */ | 
 |  | 
 | static void		dfx_bus_init(struct net_device *dev); | 
 | static void		dfx_bus_uninit(struct net_device *dev); | 
 | static void		dfx_bus_config_check(DFX_board_t *bp); | 
 |  | 
 | static int		dfx_driver_init(struct net_device *dev, | 
 | 					const char *print_name, | 
 | 					resource_size_t bar_start); | 
 | static int		dfx_adap_init(DFX_board_t *bp, int get_buffers); | 
 |  | 
 | static int		dfx_open(struct net_device *dev); | 
 | static int		dfx_close(struct net_device *dev); | 
 |  | 
 | static void		dfx_int_pr_halt_id(DFX_board_t *bp); | 
 | static void		dfx_int_type_0_process(DFX_board_t *bp); | 
 | static void		dfx_int_common(struct net_device *dev); | 
 | static irqreturn_t	dfx_interrupt(int irq, void *dev_id); | 
 |  | 
 | static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev); | 
 | static void		dfx_ctl_set_multicast_list(struct net_device *dev); | 
 | static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr); | 
 | static int		dfx_ctl_update_cam(DFX_board_t *bp); | 
 | static int		dfx_ctl_update_filters(DFX_board_t *bp); | 
 |  | 
 | static int		dfx_hw_dma_cmd_req(DFX_board_t *bp); | 
 | static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); | 
 | static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); | 
 | static int		dfx_hw_adap_state_rd(DFX_board_t *bp); | 
 | static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); | 
 |  | 
 | static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers); | 
 | static void		dfx_rcv_queue_process(DFX_board_t *bp); | 
 | static void		dfx_rcv_flush(DFX_board_t *bp); | 
 |  | 
 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, | 
 | 				     struct net_device *dev); | 
 | static int		dfx_xmt_done(DFX_board_t *bp); | 
 | static void		dfx_xmt_flush(DFX_board_t *bp); | 
 |  | 
 | /* Define module-wide (static) variables */ | 
 |  | 
 | static struct pci_driver dfx_pci_driver; | 
 | static struct eisa_driver dfx_eisa_driver; | 
 | static struct tc_driver dfx_tc_driver; | 
 |  | 
 |  | 
 | /* | 
 |  * ======================= | 
 |  * = dfx_port_write_long = | 
 |  * = dfx_port_read_long  = | 
 |  * ======================= | 
 |  * | 
 |  * Overview: | 
 |  *   Routines for reading and writing values from/to adapter | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp		- pointer to board information | 
 |  *   offset	- register offset from base I/O address | 
 |  *   data	- for dfx_port_write_long, this is a value to write; | 
 |  *		  for dfx_port_read_long, this is a pointer to store | 
 |  *		  the read value | 
 |  * | 
 |  * Functional Description: | 
 |  *   These routines perform the correct operation to read or write | 
 |  *   the adapter register. | 
 |  * | 
 |  *   EISA port block base addresses are based on the slot number in which the | 
 |  *   controller is installed.  For example, if the EISA controller is installed | 
 |  *   in slot 4, the port block base address is 0x4000.  If the controller is | 
 |  *   installed in slot 2, the port block base address is 0x2000, and so on. | 
 |  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board | 
 |  *   registers using the register offsets defined in DEFXX.H. | 
 |  * | 
 |  *   PCI port block base addresses are assigned by the PCI BIOS or system | 
 |  *   firmware.  There is one 128 byte port block which can be accessed.  It | 
 |  *   allows for I/O mapping of both PDQ and PFI registers using the register | 
 |  *   offsets defined in DEFXX.H. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   bp->base is a valid base I/O address for this adapter. | 
 |  *   offset is a valid register offset for this adapter. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Rather than produce macros for these functions, these routines | 
 |  *   are defined using "inline" to ensure that the compiler will | 
 |  *   generate inline code and not waste a procedure call and return. | 
 |  *   This provides all the benefits of macros, but with the | 
 |  *   advantage of strict data type checking. | 
 |  */ | 
 |  | 
 | static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) | 
 | { | 
 | 	writel(data, bp->base.mem + offset); | 
 | 	mb(); | 
 | } | 
 |  | 
 | static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) | 
 | { | 
 | 	outl(data, bp->base.port + offset); | 
 | } | 
 |  | 
 | static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) | 
 | { | 
 | 	struct device __maybe_unused *bdev = bp->bus_dev; | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 |  | 
 | 	if (dfx_use_mmio) | 
 | 		dfx_writel(bp, offset, data); | 
 | 	else | 
 | 		dfx_outl(bp, offset, data); | 
 | } | 
 |  | 
 |  | 
 | static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) | 
 | { | 
 | 	mb(); | 
 | 	*data = readl(bp->base.mem + offset); | 
 | } | 
 |  | 
 | static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) | 
 | { | 
 | 	*data = inl(bp->base.port + offset); | 
 | } | 
 |  | 
 | static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) | 
 | { | 
 | 	struct device __maybe_unused *bdev = bp->bus_dev; | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 |  | 
 | 	if (dfx_use_mmio) | 
 | 		dfx_readl(bp, offset, data); | 
 | 	else | 
 | 		dfx_inl(bp, offset, data); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ================ | 
 |  * = dfx_get_bars = | 
 |  * ================ | 
 |  * | 
 |  * Overview: | 
 |  *   Retrieves the address range used to access control and status | 
 |  *   registers. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bdev	- pointer to device information | 
 |  *   bar_start	- pointer to store the start address | 
 |  *   bar_len	- pointer to store the length of the area | 
 |  * | 
 |  * Assumptions: | 
 |  *   I am sure there are some. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 | static void dfx_get_bars(struct device *bdev, | 
 | 			 resource_size_t *bar_start, resource_size_t *bar_len) | 
 | { | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 |  | 
 | 	if (dfx_bus_pci) { | 
 | 		int num = dfx_use_mmio ? 0 : 1; | 
 |  | 
 | 		*bar_start = pci_resource_start(to_pci_dev(bdev), num); | 
 | 		*bar_len = pci_resource_len(to_pci_dev(bdev), num); | 
 | 	} | 
 | 	if (dfx_bus_eisa) { | 
 | 		unsigned long base_addr = to_eisa_device(bdev)->base_addr; | 
 | 		resource_size_t bar; | 
 |  | 
 | 		if (dfx_use_mmio) { | 
 | 			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2); | 
 | 			bar <<= 8; | 
 | 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1); | 
 | 			bar <<= 8; | 
 | 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0); | 
 | 			bar <<= 16; | 
 | 			*bar_start = bar; | 
 | 			bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2); | 
 | 			bar <<= 8; | 
 | 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1); | 
 | 			bar <<= 8; | 
 | 			bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0); | 
 | 			bar <<= 16; | 
 | 			*bar_len = (bar | PI_MEM_ADD_MASK_M) + 1; | 
 | 		} else { | 
 | 			*bar_start = base_addr; | 
 | 			*bar_len = PI_ESIC_K_CSR_IO_LEN; | 
 | 		} | 
 | 	} | 
 | 	if (dfx_bus_tc) { | 
 | 		*bar_start = to_tc_dev(bdev)->resource.start + | 
 | 			     PI_TC_K_CSR_OFFSET; | 
 | 		*bar_len = PI_TC_K_CSR_LEN; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct net_device_ops dfx_netdev_ops = { | 
 | 	.ndo_open		= dfx_open, | 
 | 	.ndo_stop		= dfx_close, | 
 | 	.ndo_start_xmit		= dfx_xmt_queue_pkt, | 
 | 	.ndo_get_stats		= dfx_ctl_get_stats, | 
 | 	.ndo_set_multicast_list	= dfx_ctl_set_multicast_list, | 
 | 	.ndo_set_mac_address	= dfx_ctl_set_mac_address, | 
 | }; | 
 |  | 
 | /* | 
 |  * ================ | 
 |  * = dfx_register = | 
 |  * ================ | 
 |  * | 
 |  * Overview: | 
 |  *   Initializes a supported FDDI controller | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bdev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  * | 
 |  * Return Codes: | 
 |  *   0		 - This device (fddi0, fddi1, etc) configured successfully | 
 |  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed. | 
 |  * | 
 |  * Assumptions: | 
 |  *   It compiles so it should work :-( (PCI cards do :-) | 
 |  * | 
 |  * Side Effects: | 
 |  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are | 
 |  *   initialized and the board resources are read and stored in | 
 |  *   the device structure. | 
 |  */ | 
 | static int __devinit dfx_register(struct device *bdev) | 
 | { | 
 | 	static int version_disp; | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 | 	const char *print_name = dev_name(bdev); | 
 | 	struct net_device *dev; | 
 | 	DFX_board_t	  *bp;			/* board pointer */ | 
 | 	resource_size_t bar_start = 0;		/* pointer to port */ | 
 | 	resource_size_t bar_len = 0;		/* resource length */ | 
 | 	int alloc_size;				/* total buffer size used */ | 
 | 	struct resource *region; | 
 | 	int err = 0; | 
 |  | 
 | 	if (!version_disp) {	/* display version info if adapter is found */ | 
 | 		version_disp = 1;	/* set display flag to TRUE so that */ | 
 | 		printk(version);	/* we only display this string ONCE */ | 
 | 	} | 
 |  | 
 | 	dev = alloc_fddidev(sizeof(*bp)); | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", | 
 | 		       print_name); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Enable PCI device. */ | 
 | 	if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) { | 
 | 		printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n", | 
 | 		       print_name); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	SET_NETDEV_DEV(dev, bdev); | 
 |  | 
 | 	bp = netdev_priv(dev); | 
 | 	bp->bus_dev = bdev; | 
 | 	dev_set_drvdata(bdev, dev); | 
 |  | 
 | 	dfx_get_bars(bdev, &bar_start, &bar_len); | 
 |  | 
 | 	if (dfx_use_mmio) | 
 | 		region = request_mem_region(bar_start, bar_len, print_name); | 
 | 	else | 
 | 		region = request_region(bar_start, bar_len, print_name); | 
 | 	if (!region) { | 
 | 		printk(KERN_ERR "%s: Cannot reserve I/O resource " | 
 | 		       "0x%lx @ 0x%lx, aborting\n", | 
 | 		       print_name, (long)bar_len, (long)bar_start); | 
 | 		err = -EBUSY; | 
 | 		goto err_out_disable; | 
 | 	} | 
 |  | 
 | 	/* Set up I/O base address. */ | 
 | 	if (dfx_use_mmio) { | 
 | 		bp->base.mem = ioremap_nocache(bar_start, bar_len); | 
 | 		if (!bp->base.mem) { | 
 | 			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); | 
 | 			err = -ENOMEM; | 
 | 			goto err_out_region; | 
 | 		} | 
 | 	} else { | 
 | 		bp->base.port = bar_start; | 
 | 		dev->base_addr = bar_start; | 
 | 	} | 
 |  | 
 | 	/* Initialize new device structure */ | 
 | 	dev->netdev_ops			= &dfx_netdev_ops; | 
 |  | 
 | 	if (dfx_bus_pci) | 
 | 		pci_set_master(to_pci_dev(bdev)); | 
 |  | 
 | 	if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) { | 
 | 		err = -ENODEV; | 
 | 		goto err_out_unmap; | 
 | 	} | 
 |  | 
 | 	err = register_netdev(dev); | 
 | 	if (err) | 
 | 		goto err_out_kfree; | 
 |  | 
 | 	printk("%s: registered as %s\n", print_name, dev->name); | 
 | 	return 0; | 
 |  | 
 | err_out_kfree: | 
 | 	alloc_size = sizeof(PI_DESCR_BLOCK) + | 
 | 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | 
 | #ifndef DYNAMIC_BUFFERS | 
 | 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | 
 | #endif | 
 | 		     sizeof(PI_CONSUMER_BLOCK) + | 
 | 		     (PI_ALIGN_K_DESC_BLK - 1); | 
 | 	if (bp->kmalloced) | 
 | 		dma_free_coherent(bdev, alloc_size, | 
 | 				  bp->kmalloced, bp->kmalloced_dma); | 
 |  | 
 | err_out_unmap: | 
 | 	if (dfx_use_mmio) | 
 | 		iounmap(bp->base.mem); | 
 |  | 
 | err_out_region: | 
 | 	if (dfx_use_mmio) | 
 | 		release_mem_region(bar_start, bar_len); | 
 | 	else | 
 | 		release_region(bar_start, bar_len); | 
 |  | 
 | err_out_disable: | 
 | 	if (dfx_bus_pci) | 
 | 		pci_disable_device(to_pci_dev(bdev)); | 
 |  | 
 | err_out: | 
 | 	free_netdev(dev); | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ================ | 
 |  * = dfx_bus_init = | 
 |  * ================ | 
 |  * | 
 |  * Overview: | 
 |  *   Initializes the bus-specific controller logic. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Determine and save adapter IRQ in device table, | 
 |  *   then perform bus-specific logic initialization. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   bp->base has already been set with the proper | 
 |  *	 base I/O address for this device. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Interrupts are enabled at the adapter bus-specific logic. | 
 |  *   Note:  Interrupts at the DMA engine (PDQ chip) are not | 
 |  *   enabled yet. | 
 |  */ | 
 |  | 
 | static void __devinit dfx_bus_init(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	struct device *bdev = bp->bus_dev; | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 | 	u8 val; | 
 |  | 
 | 	DBG_printk("In dfx_bus_init...\n"); | 
 |  | 
 | 	/* Initialize a pointer back to the net_device struct */ | 
 | 	bp->dev = dev; | 
 |  | 
 | 	/* Initialize adapter based on bus type */ | 
 |  | 
 | 	if (dfx_bus_tc) | 
 | 		dev->irq = to_tc_dev(bdev)->interrupt; | 
 | 	if (dfx_bus_eisa) { | 
 | 		unsigned long base_addr = to_eisa_device(bdev)->base_addr; | 
 |  | 
 | 		/* Get the interrupt level from the ESIC chip.  */ | 
 | 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | 
 | 		val &= PI_CONFIG_STAT_0_M_IRQ; | 
 | 		val >>= PI_CONFIG_STAT_0_V_IRQ; | 
 |  | 
 | 		switch (val) { | 
 | 		case PI_CONFIG_STAT_0_IRQ_K_9: | 
 | 			dev->irq = 9; | 
 | 			break; | 
 |  | 
 | 		case PI_CONFIG_STAT_0_IRQ_K_10: | 
 | 			dev->irq = 10; | 
 | 			break; | 
 |  | 
 | 		case PI_CONFIG_STAT_0_IRQ_K_11: | 
 | 			dev->irq = 11; | 
 | 			break; | 
 |  | 
 | 		case PI_CONFIG_STAT_0_IRQ_K_15: | 
 | 			dev->irq = 15; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Enable memory decoding (MEMCS0) and/or port decoding | 
 | 		 * (IOCS1/IOCS0) as appropriate in Function Control | 
 | 		 * Register.  One of the port chip selects seems to be | 
 | 		 * used for the Burst Holdoff register, but this bit of | 
 | 		 * documentation is missing and as yet it has not been | 
 | 		 * determined which of the two.  This is also the reason | 
 | 		 * the size of the decoded port range is twice as large | 
 | 		 * as one required by the PDQ. | 
 | 		 */ | 
 |  | 
 | 		/* Set the decode range of the board.  */ | 
 | 		val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0); | 
 | 		val = PI_ESIC_K_CSR_IO_LEN - 1; | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff); | 
 | 		outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff); | 
 |  | 
 | 		/* Enable the decoders.  */ | 
 | 		val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0; | 
 | 		if (dfx_use_mmio) | 
 | 			val |= PI_FUNCTION_CNTRL_M_MEMCS0; | 
 | 		outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val); | 
 |  | 
 | 		/* | 
 | 		 * Enable access to the rest of the module | 
 | 		 * (including PDQ and packet memory). | 
 | 		 */ | 
 | 		val = PI_SLOT_CNTRL_M_ENB; | 
 | 		outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val); | 
 |  | 
 | 		/* | 
 | 		 * Map PDQ registers into memory or port space.  This is | 
 | 		 * done with a bit in the Burst Holdoff register. | 
 | 		 */ | 
 | 		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); | 
 | 		if (dfx_use_mmio) | 
 | 			val |= PI_BURST_HOLDOFF_V_MEM_MAP; | 
 | 		else | 
 | 			val &= ~PI_BURST_HOLDOFF_V_MEM_MAP; | 
 | 		outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val); | 
 |  | 
 | 		/* Enable interrupts at EISA bus interface chip (ESIC) */ | 
 | 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | 
 | 		val |= PI_CONFIG_STAT_0_M_INT_ENB; | 
 | 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); | 
 | 	} | 
 | 	if (dfx_bus_pci) { | 
 | 		struct pci_dev *pdev = to_pci_dev(bdev); | 
 |  | 
 | 		/* Get the interrupt level from the PCI Configuration Table */ | 
 |  | 
 | 		dev->irq = pdev->irq; | 
 |  | 
 | 		/* Check Latency Timer and set if less than minimal */ | 
 |  | 
 | 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); | 
 | 		if (val < PFI_K_LAT_TIMER_MIN) { | 
 | 			val = PFI_K_LAT_TIMER_DEF; | 
 | 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); | 
 | 		} | 
 |  | 
 | 		/* Enable interrupts at PCI bus interface chip (PFI) */ | 
 | 		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; | 
 | 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * ================== | 
 |  * = dfx_bus_uninit = | 
 |  * ================== | 
 |  * | 
 |  * Overview: | 
 |  *   Uninitializes the bus-specific controller logic. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Perform bus-specific logic uninitialization. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   bp->base has already been set with the proper | 
 |  *	 base I/O address for this device. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Interrupts are disabled at the adapter bus-specific logic. | 
 |  */ | 
 |  | 
 | static void __devexit dfx_bus_uninit(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	struct device *bdev = bp->bus_dev; | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	u8 val; | 
 |  | 
 | 	DBG_printk("In dfx_bus_uninit...\n"); | 
 |  | 
 | 	/* Uninitialize adapter based on bus type */ | 
 |  | 
 | 	if (dfx_bus_eisa) { | 
 | 		unsigned long base_addr = to_eisa_device(bdev)->base_addr; | 
 |  | 
 | 		/* Disable interrupts at EISA bus interface chip (ESIC) */ | 
 | 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | 
 | 		val &= ~PI_CONFIG_STAT_0_M_INT_ENB; | 
 | 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); | 
 | 	} | 
 | 	if (dfx_bus_pci) { | 
 | 		/* Disable interrupts at PCI bus interface chip (PFI) */ | 
 | 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ======================== | 
 |  * = dfx_bus_config_check = | 
 |  * ======================== | 
 |  * | 
 |  * Overview: | 
 |  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters | 
 |  *   are illegal, then this routine will set new defaults. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later | 
 |  *   PDQ, and all FDDI PCI controllers, all values are legal. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   dfx_adap_init has NOT been called yet so burst size and other items have | 
 |  *   not been set. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static void __devinit dfx_bus_config_check(DFX_board_t *bp) | 
 | { | 
 | 	struct device __maybe_unused *bdev = bp->bus_dev; | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	int	status;				/* return code from adapter port control call */ | 
 | 	u32	host_data;			/* LW data returned from port control call */ | 
 |  | 
 | 	DBG_printk("In dfx_bus_config_check...\n"); | 
 |  | 
 | 	/* Configuration check only valid for EISA adapter */ | 
 |  | 
 | 	if (dfx_bus_eisa) { | 
 | 		/* | 
 | 		 * First check if revision 2 EISA controller.  Rev. 1 cards used | 
 | 		 * PDQ revision B, so no workaround needed in this case.  Rev. 3 | 
 | 		 * cards used PDQ revision E, so no workaround needed in this | 
 | 		 * case, either.  Only Rev. 2 cards used either Rev. D or E | 
 | 		 * chips, so we must verify the chip revision on Rev. 2 cards. | 
 | 		 */ | 
 | 		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { | 
 | 			/* | 
 | 			 * Revision 2 FDDI EISA controller found, | 
 | 			 * so let's check PDQ revision of adapter. | 
 | 			 */ | 
 | 			status = dfx_hw_port_ctrl_req(bp, | 
 | 											PI_PCTRL_M_SUB_CMD, | 
 | 											PI_SUB_CMD_K_PDQ_REV_GET, | 
 | 											0, | 
 | 											&host_data); | 
 | 			if ((status != DFX_K_SUCCESS) || (host_data == 2)) | 
 | 				{ | 
 | 				/* | 
 | 				 * Either we couldn't determine the PDQ revision, or | 
 | 				 * we determined that it is at revision D.  In either case, | 
 | 				 * we need to implement the workaround. | 
 | 				 */ | 
 |  | 
 | 				/* Ensure that the burst size is set to 8 longwords or less */ | 
 |  | 
 | 				switch (bp->burst_size) | 
 | 					{ | 
 | 					case PI_PDATA_B_DMA_BURST_SIZE_32: | 
 | 					case PI_PDATA_B_DMA_BURST_SIZE_16: | 
 | 						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; | 
 | 						break; | 
 |  | 
 | 					default: | 
 | 						break; | 
 | 					} | 
 |  | 
 | 				/* Ensure that full-duplex mode is not enabled */ | 
 |  | 
 | 				bp->full_duplex_enb = PI_SNMP_K_FALSE; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * =================== | 
 |  * = dfx_driver_init = | 
 |  * =================== | 
 |  * | 
 |  * Overview: | 
 |  *   Initializes remaining adapter board structure information | 
 |  *   and makes sure adapter is in a safe state prior to dfx_open(). | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  *   print_name - printable device name | 
 |  * | 
 |  * Functional Description: | 
 |  *   This function allocates additional resources such as the host memory | 
 |  *   blocks needed by the adapter (eg. descriptor and consumer blocks). | 
 |  *	 Remaining bus initialization steps are also completed.  The adapter | 
 |  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS | 
 |  *   must call dfx_open() to open the adapter and bring it on-line. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS	- initialization succeeded | 
 |  *   DFX_K_FAILURE	- initialization failed - could not allocate memory | 
 |  *						or read adapter MAC address | 
 |  * | 
 |  * Assumptions: | 
 |  *   Memory allocated from pci_alloc_consistent() call is physically | 
 |  *   contiguous, locked memory. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Adapter is reset and should be in DMA_UNAVAILABLE state before | 
 |  *   returning from this routine. | 
 |  */ | 
 |  | 
 | static int __devinit dfx_driver_init(struct net_device *dev, | 
 | 				     const char *print_name, | 
 | 				     resource_size_t bar_start) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	struct device *bdev = bp->bus_dev; | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 | 	int alloc_size;			/* total buffer size needed */ | 
 | 	char *top_v, *curr_v;		/* virtual addrs into memory block */ | 
 | 	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */ | 
 | 	u32 data;			/* host data register value */ | 
 | 	__le32 le32; | 
 | 	char *board_name = NULL; | 
 |  | 
 | 	DBG_printk("In dfx_driver_init...\n"); | 
 |  | 
 | 	/* Initialize bus-specific hardware registers */ | 
 |  | 
 | 	dfx_bus_init(dev); | 
 |  | 
 | 	/* | 
 | 	 * Initialize default values for configurable parameters | 
 | 	 * | 
 | 	 * Note: All of these parameters are ones that a user may | 
 | 	 *       want to customize.  It'd be nice to break these | 
 | 	 *		 out into Space.c or someplace else that's more | 
 | 	 *		 accessible/understandable than this file. | 
 | 	 */ | 
 |  | 
 | 	bp->full_duplex_enb		= PI_SNMP_K_FALSE; | 
 | 	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */ | 
 | 	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF; | 
 | 	bp->rcv_bufs_to_post	= RCV_BUFS_DEF; | 
 |  | 
 | 	/* | 
 | 	 * Ensure that HW configuration is OK | 
 | 	 * | 
 | 	 * Note: Depending on the hardware revision, we may need to modify | 
 | 	 *       some of the configurable parameters to workaround hardware | 
 | 	 *       limitations.  We'll perform this configuration check AFTER | 
 | 	 *       setting the parameters to their default values. | 
 | 	 */ | 
 |  | 
 | 	dfx_bus_config_check(bp); | 
 |  | 
 | 	/* Disable PDQ interrupts first */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | 
 |  | 
 | 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | 
 |  | 
 | 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | 
 |  | 
 | 	/*  Read the factory MAC address from the adapter then save it */ | 
 |  | 
 | 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, | 
 | 				 &data) != DFX_K_SUCCESS) { | 
 | 		printk("%s: Could not read adapter factory MAC address!\n", | 
 | 		       print_name); | 
 | 		return DFX_K_FAILURE; | 
 | 	} | 
 | 	le32 = cpu_to_le32(data); | 
 | 	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); | 
 |  | 
 | 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, | 
 | 				 &data) != DFX_K_SUCCESS) { | 
 | 		printk("%s: Could not read adapter factory MAC address!\n", | 
 | 		       print_name); | 
 | 		return DFX_K_FAILURE; | 
 | 	} | 
 | 	le32 = cpu_to_le32(data); | 
 | 	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); | 
 |  | 
 | 	/* | 
 | 	 * Set current address to factory address | 
 | 	 * | 
 | 	 * Note: Node address override support is handled through | 
 | 	 *       dfx_ctl_set_mac_address. | 
 | 	 */ | 
 |  | 
 | 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | 
 | 	if (dfx_bus_tc) | 
 | 		board_name = "DEFTA"; | 
 | 	if (dfx_bus_eisa) | 
 | 		board_name = "DEFEA"; | 
 | 	if (dfx_bus_pci) | 
 | 		board_name = "DEFPA"; | 
 | 	pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", | 
 | 		print_name, board_name, dfx_use_mmio ? "" : "I/O ", | 
 | 		(long long)bar_start, dev->irq, dev->dev_addr); | 
 |  | 
 | 	/* | 
 | 	 * Get memory for descriptor block, consumer block, and other buffers | 
 | 	 * that need to be DMA read or written to by the adapter. | 
 | 	 */ | 
 |  | 
 | 	alloc_size = sizeof(PI_DESCR_BLOCK) + | 
 | 					PI_CMD_REQ_K_SIZE_MAX + | 
 | 					PI_CMD_RSP_K_SIZE_MAX + | 
 | #ifndef DYNAMIC_BUFFERS | 
 | 					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | 
 | #endif | 
 | 					sizeof(PI_CONSUMER_BLOCK) + | 
 | 					(PI_ALIGN_K_DESC_BLK - 1); | 
 | 	bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, | 
 | 						   &bp->kmalloced_dma, | 
 | 						   GFP_ATOMIC); | 
 | 	if (top_v == NULL) { | 
 | 		printk("%s: Could not allocate memory for host buffers " | 
 | 		       "and structures!\n", print_name); | 
 | 		return DFX_K_FAILURE; | 
 | 	} | 
 | 	memset(top_v, 0, alloc_size);	/* zero out memory before continuing */ | 
 | 	top_p = bp->kmalloced_dma;	/* get physical address of buffer */ | 
 |  | 
 | 	/* | 
 | 	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1 | 
 | 	 *  plus the amount of memory needed was allocated.  The physical address | 
 | 	 *	is now 8K aligned.  By carving up the memory in a specific order, | 
 | 	 *  we'll guarantee the alignment requirements for all other structures. | 
 | 	 * | 
 | 	 *  Note: If the assumptions change regarding the non-paged, non-cached, | 
 | 	 *		  physically contiguous nature of the memory block or the address | 
 | 	 *		  alignments, then we'll need to implement a different algorithm | 
 | 	 *		  for allocating the needed memory. | 
 | 	 */ | 
 |  | 
 | 	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); | 
 | 	curr_v = top_v + (curr_p - top_p); | 
 |  | 
 | 	/* Reserve space for descriptor block */ | 
 |  | 
 | 	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; | 
 | 	bp->descr_block_phys = curr_p; | 
 | 	curr_v += sizeof(PI_DESCR_BLOCK); | 
 | 	curr_p += sizeof(PI_DESCR_BLOCK); | 
 |  | 
 | 	/* Reserve space for command request buffer */ | 
 |  | 
 | 	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; | 
 | 	bp->cmd_req_phys = curr_p; | 
 | 	curr_v += PI_CMD_REQ_K_SIZE_MAX; | 
 | 	curr_p += PI_CMD_REQ_K_SIZE_MAX; | 
 |  | 
 | 	/* Reserve space for command response buffer */ | 
 |  | 
 | 	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; | 
 | 	bp->cmd_rsp_phys = curr_p; | 
 | 	curr_v += PI_CMD_RSP_K_SIZE_MAX; | 
 | 	curr_p += PI_CMD_RSP_K_SIZE_MAX; | 
 |  | 
 | 	/* Reserve space for the LLC host receive queue buffers */ | 
 |  | 
 | 	bp->rcv_block_virt = curr_v; | 
 | 	bp->rcv_block_phys = curr_p; | 
 |  | 
 | #ifndef DYNAMIC_BUFFERS | 
 | 	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | 
 | 	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | 
 | #endif | 
 |  | 
 | 	/* Reserve space for the consumer block */ | 
 |  | 
 | 	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; | 
 | 	bp->cons_block_phys = curr_p; | 
 |  | 
 | 	/* Display virtual and physical addresses if debug driver */ | 
 |  | 
 | 	DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", | 
 | 		   print_name, | 
 | 		   (long)bp->descr_block_virt, bp->descr_block_phys); | 
 | 	DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", | 
 | 		   print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); | 
 | 	DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", | 
 | 		   print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); | 
 | 	DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", | 
 | 		   print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); | 
 | 	DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", | 
 | 		   print_name, (long)bp->cons_block_virt, bp->cons_block_phys); | 
 |  | 
 | 	return DFX_K_SUCCESS; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ================= | 
 |  * = dfx_adap_init = | 
 |  * ================= | 
 |  * | 
 |  * Overview: | 
 |  *   Brings the adapter to the link avail/link unavailable state. | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  *   get_buffers - non-zero if buffers to be allocated | 
 |  * | 
 |  * Functional Description: | 
 |  *   Issues the low-level firmware/hardware calls necessary to bring | 
 |  *   the adapter up, or to properly reset and restore adapter during | 
 |  *   run-time. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS - Adapter brought up successfully | 
 |  *   DFX_K_FAILURE - Adapter initialization failed | 
 |  * | 
 |  * Assumptions: | 
 |  *   bp->reset_type should be set to a valid reset type value before | 
 |  *   calling this routine. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | 
 |  *   upon a successful return of this routine. | 
 |  */ | 
 |  | 
 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers) | 
 | 	{ | 
 | 	DBG_printk("In dfx_adap_init...\n"); | 
 |  | 
 | 	/* Disable PDQ interrupts first */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | 
 |  | 
 | 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | 
 |  | 
 | 	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * When the PDQ is reset, some false Type 0 interrupts may be pending, | 
 | 	 * so we'll acknowledge all Type 0 interrupts now before continuing. | 
 | 	 */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); | 
 |  | 
 | 	/* | 
 | 	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state | 
 | 	 * | 
 | 	 * Note: We only need to clear host copies of these registers.  The PDQ reset | 
 | 	 *       takes care of the on-board register values. | 
 | 	 */ | 
 |  | 
 | 	bp->cmd_req_reg.lword	= 0; | 
 | 	bp->cmd_rsp_reg.lword	= 0; | 
 | 	bp->rcv_xmt_reg.lword	= 0; | 
 |  | 
 | 	/* Clear consumer block before going to DMA_AVAILABLE state */ | 
 |  | 
 | 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | 
 |  | 
 | 	/* Initialize the DMA Burst Size */ | 
 |  | 
 | 	if (dfx_hw_port_ctrl_req(bp, | 
 | 							PI_PCTRL_M_SUB_CMD, | 
 | 							PI_SUB_CMD_K_BURST_SIZE_SET, | 
 | 							bp->burst_size, | 
 | 							NULL) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Could not set adapter burst size!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * Set base address of Consumer Block | 
 | 	 * | 
 | 	 * Assumption: 32-bit physical address of consumer block is 64 byte | 
 | 	 *			   aligned.  That is, bits 0-5 of the address must be zero. | 
 | 	 */ | 
 |  | 
 | 	if (dfx_hw_port_ctrl_req(bp, | 
 | 							PI_PCTRL_M_CONS_BLOCK, | 
 | 							bp->cons_block_phys, | 
 | 							0, | 
 | 							NULL) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Could not set consumer block address!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * Set the base address of Descriptor Block and bring adapter | 
 | 	 * to DMA_AVAILABLE state. | 
 | 	 * | 
 | 	 * Note: We also set the literal and data swapping requirements | 
 | 	 *       in this command. | 
 | 	 * | 
 | 	 * Assumption: 32-bit physical address of descriptor block | 
 | 	 *       is 8Kbyte aligned. | 
 | 	 */ | 
 | 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, | 
 | 				 (u32)(bp->descr_block_phys | | 
 | 				       PI_PDATA_A_INIT_M_BSWAP_INIT), | 
 | 				 0, NULL) != DFX_K_SUCCESS) { | 
 | 		printk("%s: Could not set descriptor block address!\n", | 
 | 		       bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 	} | 
 |  | 
 | 	/* Set transmit flush timeout value */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; | 
 | 	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME; | 
 | 	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */ | 
 | 	bp->cmd_req_virt->char_set.item[0].item_index	= 0; | 
 | 	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL; | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: DMA command request failed!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* Set the initial values for eFDXEnable and MACTReq MIB objects */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; | 
 | 	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS; | 
 | 	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb; | 
 | 	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0; | 
 | 	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ; | 
 | 	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt; | 
 | 	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0; | 
 | 	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL; | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: DMA command request failed!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* Initialize adapter CAM */ | 
 |  | 
 | 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Adapter CAM update failed!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* Initialize adapter filters */ | 
 |  | 
 | 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Adapter filters update failed!\n", bp->dev->name); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * Remove any existing dynamic buffers (i.e. if the adapter is being | 
 | 	 * reinitialized) | 
 | 	 */ | 
 |  | 
 | 	if (get_buffers) | 
 | 		dfx_rcv_flush(bp); | 
 |  | 
 | 	/* Initialize receive descriptor block and produce buffers */ | 
 |  | 
 | 	if (dfx_rcv_init(bp, get_buffers)) | 
 | 	        { | 
 | 		printk("%s: Receive buffer allocation failed\n", bp->dev->name); | 
 | 		if (get_buffers) | 
 | 			dfx_rcv_flush(bp); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_START; | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		printk("%s: Start command failed\n", bp->dev->name); | 
 | 		if (get_buffers) | 
 | 			dfx_rcv_flush(bp); | 
 | 		return DFX_K_FAILURE; | 
 | 		} | 
 |  | 
 | 	/* Initialization succeeded, reenable PDQ interrupts */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ============ | 
 |  * = dfx_open = | 
 |  * ============ | 
 |  * | 
 |  * Overview: | 
 |  *   Opens the adapter | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   This function brings the adapter to an operational state. | 
 |  * | 
 |  * Return Codes: | 
 |  *   0		 - Adapter was successfully opened | 
 |  *   -EAGAIN - Could not register IRQ or adapter initialization failed | 
 |  * | 
 |  * Assumptions: | 
 |  *   This routine should only be called for a device that was | 
 |  *   initialized successfully. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | 
 |  *   if the open is successful. | 
 |  */ | 
 |  | 
 | static int dfx_open(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	int ret; | 
 |  | 
 | 	DBG_printk("In dfx_open...\n"); | 
 |  | 
 | 	/* Register IRQ - support shared interrupts by passing device ptr */ | 
 |  | 
 | 	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, | 
 | 			  dev); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set current address to factory MAC address | 
 | 	 * | 
 | 	 * Note: We've already done this step in dfx_driver_init. | 
 | 	 *       However, it's possible that a user has set a node | 
 | 	 *		 address override, then closed and reopened the | 
 | 	 *		 adapter.  Unless we reset the device address field | 
 | 	 *		 now, we'll continue to use the existing modified | 
 | 	 *		 address. | 
 | 	 */ | 
 |  | 
 | 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | 
 |  | 
 | 	/* Clear local unicast/multicast address tables and counts */ | 
 |  | 
 | 	memset(bp->uc_table, 0, sizeof(bp->uc_table)); | 
 | 	memset(bp->mc_table, 0, sizeof(bp->mc_table)); | 
 | 	bp->uc_count = 0; | 
 | 	bp->mc_count = 0; | 
 |  | 
 | 	/* Disable promiscuous filter settings */ | 
 |  | 
 | 	bp->ind_group_prom	= PI_FSTATE_K_BLOCK; | 
 | 	bp->group_prom		= PI_FSTATE_K_BLOCK; | 
 |  | 
 | 	spin_lock_init(&bp->lock); | 
 |  | 
 | 	/* Reset and initialize adapter */ | 
 |  | 
 | 	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */ | 
 | 	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) | 
 | 	{ | 
 | 		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); | 
 | 		free_irq(dev->irq, dev); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* Set device structure info */ | 
 | 	netif_start_queue(dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ============= | 
 |  * = dfx_close = | 
 |  * ============= | 
 |  * | 
 |  * Overview: | 
 |  *   Closes the device/module. | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   This routine closes the adapter and brings it to a safe state. | 
 |  *   The interrupt service routine is deregistered with the OS. | 
 |  *   The adapter can be opened again with another call to dfx_open(). | 
 |  * | 
 |  * Return Codes: | 
 |  *   Always return 0. | 
 |  * | 
 |  * Assumptions: | 
 |  *   No further requests for this adapter are made after this routine is | 
 |  *   called.  dfx_open() can be called to reset and reinitialize the | 
 |  *   adapter. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this | 
 |  *   routine. | 
 |  */ | 
 |  | 
 | static int dfx_close(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 |  | 
 | 	DBG_printk("In dfx_close...\n"); | 
 |  | 
 | 	/* Disable PDQ interrupts first */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | 
 |  | 
 | 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | 
 |  | 
 | 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | 
 |  | 
 | 	/* | 
 | 	 * Flush any pending transmit buffers | 
 | 	 * | 
 | 	 * Note: It's important that we flush the transmit buffers | 
 | 	 *		 BEFORE we clear our copy of the Type 2 register. | 
 | 	 *		 Otherwise, we'll have no idea how many buffers | 
 | 	 *		 we need to free. | 
 | 	 */ | 
 |  | 
 | 	dfx_xmt_flush(bp); | 
 |  | 
 | 	/* | 
 | 	 * Clear Type 1 and Type 2 registers after adapter reset | 
 | 	 * | 
 | 	 * Note: Even though we're closing the adapter, it's | 
 | 	 *       possible that an interrupt will occur after | 
 | 	 *		 dfx_close is called.  Without some assurance to | 
 | 	 *		 the contrary we want to make sure that we don't | 
 | 	 *		 process receive and transmit LLC frames and update | 
 | 	 *		 the Type 2 register with bad information. | 
 | 	 */ | 
 |  | 
 | 	bp->cmd_req_reg.lword	= 0; | 
 | 	bp->cmd_rsp_reg.lword	= 0; | 
 | 	bp->rcv_xmt_reg.lword	= 0; | 
 |  | 
 | 	/* Clear consumer block for the same reason given above */ | 
 |  | 
 | 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | 
 |  | 
 | 	/* Release all dynamically allocate skb in the receive ring. */ | 
 |  | 
 | 	dfx_rcv_flush(bp); | 
 |  | 
 | 	/* Clear device structure flags */ | 
 |  | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* Deregister (free) IRQ */ | 
 |  | 
 | 	free_irq(dev->irq, dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ====================== | 
 |  * = dfx_int_pr_halt_id = | 
 |  * ====================== | 
 |  * | 
 |  * Overview: | 
 |  *   Displays halt id's in string form. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Determine current halt id and display appropriate string. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static void dfx_int_pr_halt_id(DFX_board_t	*bp) | 
 | 	{ | 
 | 	PI_UINT32	port_status;			/* PDQ port status register value */ | 
 | 	PI_UINT32	halt_id;				/* PDQ port status halt ID */ | 
 |  | 
 | 	/* Read the latest port status */ | 
 |  | 
 | 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | 
 |  | 
 | 	/* Display halt state transition information */ | 
 |  | 
 | 	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; | 
 | 	switch (halt_id) | 
 | 		{ | 
 | 		case PI_HALT_ID_K_SELFTEST_TIMEOUT: | 
 | 			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_PARITY_ERROR: | 
 | 			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_HOST_DIR_HALT: | 
 | 			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_SW_FAULT: | 
 | 			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_HW_FAULT: | 
 | 			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_PC_TRACE: | 
 | 			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_DMA_ERROR: | 
 | 			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_IMAGE_CRC_ERROR: | 
 | 			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		case PI_HALT_ID_K_BUS_EXCEPTION: | 
 | 			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ========================== | 
 |  * = dfx_int_type_0_process = | 
 |  * ========================== | 
 |  * | 
 |  * Overview: | 
 |  *   Processes Type 0 interrupts. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt | 
 |  *   is a serious fault on the adapter, then an error message is displayed | 
 |  *   and the adapter is reset. | 
 |  * | 
 |  *   One tricky potential timing window is the rapid succession of "link avail" | 
 |  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0 | 
 |  *   interrupt must be done before reading the state from the Port Status | 
 |  *   register.  This is true because a state change could occur after reading | 
 |  *   the data, but before acknowledging the interrupt.  If this state change | 
 |  *   does happen, it would be lost because the driver is using the old state, | 
 |  *   and it will never know about the new state because it subsequently | 
 |  *   acknowledges the state change interrupt. | 
 |  * | 
 |  *          INCORRECT                                      CORRECT | 
 |  *      read type 0 int reasons                   read type 0 int reasons | 
 |  *      read adapter state                        ack type 0 interrupts | 
 |  *      ack type 0 interrupts                     read adapter state | 
 |  *      ... process interrupt ...                 ... process interrupt ... | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   An adapter reset may occur if the adapter has any Type 0 error interrupts | 
 |  *   or if the port status indicates that the adapter is halted.  The driver | 
 |  *   is responsible for reinitializing the adapter with the current CAM | 
 |  *   contents and adapter filter settings. | 
 |  */ | 
 |  | 
 | static void dfx_int_type_0_process(DFX_board_t	*bp) | 
 |  | 
 | 	{ | 
 | 	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */ | 
 | 	PI_UINT32	state;				/* current adap state (from port status) */ | 
 |  | 
 | 	/* | 
 | 	 * Read host interrupt Type 0 register to determine which Type 0 | 
 | 	 * interrupts are pending.  Immediately write it back out to clear | 
 | 	 * those interrupts. | 
 | 	 */ | 
 |  | 
 | 	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); | 
 |  | 
 | 	/* Check for Type 0 error interrupts */ | 
 |  | 
 | 	if (type_0_status & (PI_TYPE_0_STAT_M_NXM | | 
 | 							PI_TYPE_0_STAT_M_PM_PAR_ERR | | 
 | 							PI_TYPE_0_STAT_M_BUS_PAR_ERR)) | 
 | 		{ | 
 | 		/* Check for Non-Existent Memory error */ | 
 |  | 
 | 		if (type_0_status & PI_TYPE_0_STAT_M_NXM) | 
 | 			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); | 
 |  | 
 | 		/* Check for Packet Memory Parity error */ | 
 |  | 
 | 		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) | 
 | 			printk("%s: Packet Memory Parity Error\n", bp->dev->name); | 
 |  | 
 | 		/* Check for Host Bus Parity error */ | 
 |  | 
 | 		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) | 
 | 			printk("%s: Host Bus Parity Error\n", bp->dev->name); | 
 |  | 
 | 		/* Reset adapter and bring it back on-line */ | 
 |  | 
 | 		bp->link_available = PI_K_FALSE;	/* link is no longer available */ | 
 | 		bp->reset_type = 0;					/* rerun on-board diagnostics */ | 
 | 		printk("%s: Resetting adapter...\n", bp->dev->name); | 
 | 		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | 
 | 			{ | 
 | 			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name); | 
 | 			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | 
 | 			return; | 
 | 			} | 
 | 		printk("%s: Adapter reset successful!\n", bp->dev->name); | 
 | 		return; | 
 | 		} | 
 |  | 
 | 	/* Check for transmit flush interrupt */ | 
 |  | 
 | 	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) | 
 | 		{ | 
 | 		/* Flush any pending xmt's and acknowledge the flush interrupt */ | 
 |  | 
 | 		bp->link_available = PI_K_FALSE;		/* link is no longer available */ | 
 | 		dfx_xmt_flush(bp);						/* flush any outstanding packets */ | 
 | 		(void) dfx_hw_port_ctrl_req(bp, | 
 | 									PI_PCTRL_M_XMT_DATA_FLUSH_DONE, | 
 | 									0, | 
 | 									0, | 
 | 									NULL); | 
 | 		} | 
 |  | 
 | 	/* Check for adapter state change */ | 
 |  | 
 | 	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) | 
 | 		{ | 
 | 		/* Get latest adapter state */ | 
 |  | 
 | 		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */ | 
 | 		if (state == PI_STATE_K_HALTED) | 
 | 			{ | 
 | 			/* | 
 | 			 * Adapter has transitioned to HALTED state, try to reset | 
 | 			 * adapter to bring it back on-line.  If reset fails, | 
 | 			 * leave the adapter in the broken state. | 
 | 			 */ | 
 |  | 
 | 			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); | 
 | 			dfx_int_pr_halt_id(bp);			/* display halt id as string */ | 
 |  | 
 | 			/* Reset adapter and bring it back on-line */ | 
 |  | 
 | 			bp->link_available = PI_K_FALSE;	/* link is no longer available */ | 
 | 			bp->reset_type = 0;					/* rerun on-board diagnostics */ | 
 | 			printk("%s: Resetting adapter...\n", bp->dev->name); | 
 | 			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | 
 | 				{ | 
 | 				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name); | 
 | 				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | 
 | 				return; | 
 | 				} | 
 | 			printk("%s: Adapter reset successful!\n", bp->dev->name); | 
 | 			} | 
 | 		else if (state == PI_STATE_K_LINK_AVAIL) | 
 | 			{ | 
 | 			bp->link_available = PI_K_TRUE;		/* set link available flag */ | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ================== | 
 |  * = dfx_int_common = | 
 |  * ================== | 
 |  * | 
 |  * Overview: | 
 |  *   Interrupt service routine (ISR) | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   This is the ISR which processes incoming adapter interrupts. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   This routine assumes PDQ interrupts have not been disabled. | 
 |  *   When interrupts are disabled at the PDQ, the Port Status register | 
 |  *   is automatically cleared.  This routine uses the Port Status | 
 |  *   register value to determine whether a Type 0 interrupt occurred, | 
 |  *   so it's important that adapter interrupts are not normally | 
 |  *   enabled/disabled at the PDQ. | 
 |  * | 
 |  *   It's vital that this routine is NOT reentered for the | 
 |  *   same board and that the OS is not in another section of | 
 |  *   code (eg. dfx_xmt_queue_pkt) for the same board on a | 
 |  *   different thread. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Pending interrupts are serviced.  Depending on the type of | 
 |  *   interrupt, acknowledging and clearing the interrupt at the | 
 |  *   PDQ involves writing a register to clear the interrupt bit | 
 |  *   or updating completion indices. | 
 |  */ | 
 |  | 
 | static void dfx_int_common(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	PI_UINT32	port_status;		/* Port Status register */ | 
 |  | 
 | 	/* Process xmt interrupts - frequent case, so always call this routine */ | 
 |  | 
 | 	if(dfx_xmt_done(bp))				/* free consumed xmt packets */ | 
 | 		netif_wake_queue(dev); | 
 |  | 
 | 	/* Process rcv interrupts - frequent case, so always call this routine */ | 
 |  | 
 | 	dfx_rcv_queue_process(bp);		/* service received LLC frames */ | 
 |  | 
 | 	/* | 
 | 	 * Transmit and receive producer and completion indices are updated on the | 
 | 	 * adapter by writing to the Type 2 Producer register.  Since the frequent | 
 | 	 * case is that we'll be processing either LLC transmit or receive buffers, | 
 | 	 * we'll optimize I/O writes by doing a single register write here. | 
 | 	 */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | 
 |  | 
 | 	/* Read PDQ Port Status register to find out which interrupts need processing */ | 
 |  | 
 | 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | 
 |  | 
 | 	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ | 
 |  | 
 | 	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) | 
 | 		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */ | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ================= | 
 |  * = dfx_interrupt = | 
 |  * ================= | 
 |  * | 
 |  * Overview: | 
 |  *   Interrupt processing routine | 
 |  * | 
 |  * Returns: | 
 |  *   Whether a valid interrupt was seen. | 
 |  * | 
 |  * Arguments: | 
 |  *   irq	- interrupt vector | 
 |  *   dev_id	- pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   This routine calls the interrupt processing routine for this adapter.  It | 
 |  *   disables and reenables adapter interrupts, as appropriate.  We can support | 
 |  *   shared interrupts since the incoming dev_id pointer provides our device | 
 |  *   structure context. | 
 |  * | 
 |  * Return Codes: | 
 |  *   IRQ_HANDLED - an IRQ was handled. | 
 |  *   IRQ_NONE    - no IRQ was handled. | 
 |  * | 
 |  * Assumptions: | 
 |  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC | 
 |  *   on Intel-based systems) is done by the operating system outside this | 
 |  *   routine. | 
 |  * | 
 |  *	 System interrupts are enabled through this call. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Interrupts are disabled, then reenabled at the adapter. | 
 |  */ | 
 |  | 
 | static irqreturn_t dfx_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	struct device *bdev = bp->bus_dev; | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_eisa = DFX_BUS_EISA(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 |  | 
 | 	/* Service adapter interrupts */ | 
 |  | 
 | 	if (dfx_bus_pci) { | 
 | 		u32 status; | 
 |  | 
 | 		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); | 
 | 		if (!(status & PFI_STATUS_M_PDQ_INT)) | 
 | 			return IRQ_NONE; | 
 |  | 
 | 		spin_lock(&bp->lock); | 
 |  | 
 | 		/* Disable PDQ-PFI interrupts at PFI */ | 
 | 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, | 
 | 				    PFI_MODE_M_DMA_ENB); | 
 |  | 
 | 		/* Call interrupt service routine for this adapter */ | 
 | 		dfx_int_common(dev); | 
 |  | 
 | 		/* Clear PDQ interrupt status bit and reenable interrupts */ | 
 | 		dfx_port_write_long(bp, PFI_K_REG_STATUS, | 
 | 				    PFI_STATUS_M_PDQ_INT); | 
 | 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, | 
 | 				    (PFI_MODE_M_PDQ_INT_ENB | | 
 | 				     PFI_MODE_M_DMA_ENB)); | 
 |  | 
 | 		spin_unlock(&bp->lock); | 
 | 	} | 
 | 	if (dfx_bus_eisa) { | 
 | 		unsigned long base_addr = to_eisa_device(bdev)->base_addr; | 
 | 		u8 status; | 
 |  | 
 | 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | 
 | 		if (!(status & PI_CONFIG_STAT_0_M_PEND)) | 
 | 			return IRQ_NONE; | 
 |  | 
 | 		spin_lock(&bp->lock); | 
 |  | 
 | 		/* Disable interrupts at the ESIC */ | 
 | 		status &= ~PI_CONFIG_STAT_0_M_INT_ENB; | 
 | 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); | 
 |  | 
 | 		/* Call interrupt service routine for this adapter */ | 
 | 		dfx_int_common(dev); | 
 |  | 
 | 		/* Reenable interrupts at the ESIC */ | 
 | 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | 
 | 		status |= PI_CONFIG_STAT_0_M_INT_ENB; | 
 | 		outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); | 
 |  | 
 | 		spin_unlock(&bp->lock); | 
 | 	} | 
 | 	if (dfx_bus_tc) { | 
 | 		u32 status; | 
 |  | 
 | 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); | 
 | 		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | | 
 | 				PI_PSTATUS_M_XMT_DATA_PENDING | | 
 | 				PI_PSTATUS_M_SMT_HOST_PENDING | | 
 | 				PI_PSTATUS_M_UNSOL_PENDING | | 
 | 				PI_PSTATUS_M_CMD_RSP_PENDING | | 
 | 				PI_PSTATUS_M_CMD_REQ_PENDING | | 
 | 				PI_PSTATUS_M_TYPE_0_PENDING))) | 
 | 			return IRQ_NONE; | 
 |  | 
 | 		spin_lock(&bp->lock); | 
 |  | 
 | 		/* Call interrupt service routine for this adapter */ | 
 | 		dfx_int_common(dev); | 
 |  | 
 | 		spin_unlock(&bp->lock); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ===================== | 
 |  * = dfx_ctl_get_stats = | 
 |  * ===================== | 
 |  * | 
 |  * Overview: | 
 |  *   Get statistics for FDDI adapter | 
 |  * | 
 |  * Returns: | 
 |  *   Pointer to FDDI statistics structure | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Gets current MIB objects from adapter, then | 
 |  *   returns FDDI statistics structure as defined | 
 |  *   in if_fddi.h. | 
 |  * | 
 |  *   Note: Since the FDDI statistics structure is | 
 |  *   still new and the device structure doesn't | 
 |  *   have an FDDI-specific get statistics handler, | 
 |  *   we'll return the FDDI statistics structure as | 
 |  *   a pointer to an Ethernet statistics structure. | 
 |  *   That way, at least the first part of the statistics | 
 |  *   structure can be decoded properly, and it allows | 
 |  *   "smart" applications to perform a second cast to | 
 |  *   decode the FDDI-specific statistics. | 
 |  * | 
 |  *   We'll have to pay attention to this routine as the | 
 |  *   device structure becomes more mature and LAN media | 
 |  *   independent. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) | 
 | 	{ | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 |  | 
 | 	/* Fill the bp->stats structure with driver-maintained counters */ | 
 |  | 
 | 	bp->stats.gen.rx_packets = bp->rcv_total_frames; | 
 | 	bp->stats.gen.tx_packets = bp->xmt_total_frames; | 
 | 	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes; | 
 | 	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes; | 
 | 	bp->stats.gen.rx_errors  = bp->rcv_crc_errors + | 
 | 				   bp->rcv_frame_status_errors + | 
 | 				   bp->rcv_length_errors; | 
 | 	bp->stats.gen.tx_errors  = bp->xmt_length_errors; | 
 | 	bp->stats.gen.rx_dropped = bp->rcv_discards; | 
 | 	bp->stats.gen.tx_dropped = bp->xmt_discards; | 
 | 	bp->stats.gen.multicast  = bp->rcv_multicast_frames; | 
 | 	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */ | 
 |  | 
 | 	/* Get FDDI SMT MIB objects */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		return (struct net_device_stats *)&bp->stats; | 
 |  | 
 | 	/* Fill the bp->stats structure with the SMT MIB object values */ | 
 |  | 
 | 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); | 
 | 	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; | 
 | 	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; | 
 | 	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; | 
 | 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); | 
 | 	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; | 
 | 	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; | 
 | 	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; | 
 | 	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; | 
 | 	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; | 
 | 	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; | 
 | 	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; | 
 | 	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; | 
 | 	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; | 
 | 	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; | 
 | 	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; | 
 | 	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; | 
 | 	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; | 
 | 	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; | 
 | 	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; | 
 | 	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status; | 
 | 	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; | 
 | 	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; | 
 | 	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; | 
 | 	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; | 
 | 	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; | 
 | 	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; | 
 | 	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; | 
 | 	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path; | 
 | 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); | 
 | 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); | 
 | 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); | 
 | 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); | 
 | 	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; | 
 | 	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; | 
 | 	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; | 
 | 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); | 
 | 	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req; | 
 | 	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; | 
 | 	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max; | 
 | 	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; | 
 | 	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; | 
 | 	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; | 
 | 	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; | 
 | 	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; | 
 | 	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; | 
 | 	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; | 
 | 	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; | 
 | 	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; | 
 | 	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; | 
 | 	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; | 
 | 	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; | 
 | 	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; | 
 | 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); | 
 | 	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; | 
 | 	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; | 
 | 	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; | 
 | 	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; | 
 | 	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; | 
 | 	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; | 
 | 	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; | 
 | 	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; | 
 | 	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; | 
 | 	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; | 
 | 	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); | 
 | 	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); | 
 | 	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; | 
 | 	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; | 
 | 	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; | 
 | 	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; | 
 | 	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; | 
 | 	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; | 
 | 	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; | 
 | 	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; | 
 | 	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; | 
 | 	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; | 
 | 	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; | 
 | 	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; | 
 | 	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; | 
 | 	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; | 
 | 	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; | 
 | 	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; | 
 | 	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; | 
 | 	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; | 
 | 	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; | 
 | 	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; | 
 | 	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; | 
 | 	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; | 
 | 	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; | 
 | 	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; | 
 | 	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; | 
 | 	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; | 
 |  | 
 | 	/* Get FDDI counters */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		return (struct net_device_stats *)&bp->stats; | 
 |  | 
 | 	/* Fill the bp->stats structure with the FDDI counter values */ | 
 |  | 
 | 	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; | 
 | 	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; | 
 | 	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; | 
 | 	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; | 
 | 	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; | 
 | 	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; | 
 | 	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; | 
 | 	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; | 
 | 	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; | 
 | 	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; | 
 | 	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; | 
 |  | 
 | 	return (struct net_device_stats *)&bp->stats; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ============================== | 
 |  * = dfx_ctl_set_multicast_list = | 
 |  * ============================== | 
 |  * | 
 |  * Overview: | 
 |  *   Enable/Disable LLC frame promiscuous mode reception | 
 |  *   on the adapter and/or update multicast address table. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   This routine follows a fairly simple algorithm for setting the | 
 |  *   adapter filters and CAM: | 
 |  * | 
 |  *		if IFF_PROMISC flag is set | 
 |  *			enable LLC individual/group promiscuous mode | 
 |  *		else | 
 |  *			disable LLC individual/group promiscuous mode | 
 |  *			if number of incoming multicast addresses > | 
 |  *					(CAM max size - number of unicast addresses in CAM) | 
 |  *				enable LLC group promiscuous mode | 
 |  *				set driver-maintained multicast address count to zero | 
 |  *			else | 
 |  *				disable LLC group promiscuous mode | 
 |  *				set driver-maintained multicast address count to incoming count | 
 |  *			update adapter CAM | 
 |  *		update adapter filters | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   Multicast addresses are presented in canonical (LSB) format. | 
 |  * | 
 |  * Side Effects: | 
 |  *   On-board adapter CAM and filters are updated. | 
 |  */ | 
 |  | 
 | static void dfx_ctl_set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	int					i;			/* used as index in for loop */ | 
 | 	struct netdev_hw_addr *ha; | 
 |  | 
 | 	/* Enable LLC frame promiscuous mode, if necessary */ | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) | 
 | 		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */ | 
 |  | 
 | 	/* Else, update multicast address table */ | 
 |  | 
 | 	else | 
 | 		{ | 
 | 		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */ | 
 | 		/* | 
 | 		 * Check whether incoming multicast address count exceeds table size | 
 | 		 * | 
 | 		 * Note: The adapters utilize an on-board 64 entry CAM for | 
 | 		 *       supporting perfect filtering of multicast packets | 
 | 		 *		 and bridge functions when adding unicast addresses. | 
 | 		 *		 There is no hash function available.  To support | 
 | 		 *		 additional multicast addresses, the all multicast | 
 | 		 *		 filter (LLC group promiscuous mode) must be enabled. | 
 | 		 * | 
 | 		 *		 The firmware reserves two CAM entries for SMT-related | 
 | 		 *		 multicast addresses, which leaves 62 entries available. | 
 | 		 *		 The following code ensures that we're not being asked | 
 | 		 *		 to add more than 62 addresses to the CAM.  If we are, | 
 | 		 *		 the driver will enable the all multicast filter. | 
 | 		 *		 Should the number of multicast addresses drop below | 
 | 		 *		 the high water mark, the filter will be disabled and | 
 | 		 *		 perfect filtering will be used. | 
 | 		 */ | 
 |  | 
 | 		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) | 
 | 			{ | 
 | 			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */ | 
 | 			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */ | 
 | 			} | 
 | 		else | 
 | 			{ | 
 | 			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */ | 
 | 			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */ | 
 | 			} | 
 |  | 
 | 		/* Copy addresses to multicast address table, then update adapter CAM */ | 
 |  | 
 | 		i = 0; | 
 | 		netdev_for_each_mc_addr(ha, dev) | 
 | 			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], | 
 | 			       ha->addr, FDDI_K_ALEN); | 
 |  | 
 | 		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | 
 | 			{ | 
 | 			DBG_printk("%s: Could not update multicast address table!\n", dev->name); | 
 | 			} | 
 | 		else | 
 | 			{ | 
 | 			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	/* Update adapter filters */ | 
 |  | 
 | 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		DBG_printk("%s: Could not update adapter filters!\n", dev->name); | 
 | 		} | 
 | 	else | 
 | 		{ | 
 | 		DBG_printk("%s: Adapter filters updated!\n", dev->name); | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * =========================== | 
 |  * = dfx_ctl_set_mac_address = | 
 |  * =========================== | 
 |  * | 
 |  * Overview: | 
 |  *   Add node address override (unicast address) to adapter | 
 |  *   CAM and update dev_addr field in device table. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   dev  - pointer to device information | 
 |  *   addr - pointer to sockaddr structure containing unicast address to add | 
 |  * | 
 |  * Functional Description: | 
 |  *   The adapter supports node address overrides by adding one or more | 
 |  *   unicast addresses to the adapter CAM.  This is similar to adding | 
 |  *   multicast addresses.  In this routine we'll update the driver and | 
 |  *   device structures with the new address, then update the adapter CAM | 
 |  *   to ensure that the adapter will copy and strip frames destined and | 
 |  *   sourced by that address. | 
 |  * | 
 |  * Return Codes: | 
 |  *   Always returns zero. | 
 |  * | 
 |  * Assumptions: | 
 |  *   The address pointed to by addr->sa_data is a valid unicast | 
 |  *   address and is presented in canonical (LSB) format. | 
 |  * | 
 |  * Side Effects: | 
 |  *   On-board adapter CAM is updated.  On-board adapter filters | 
 |  *   may be updated. | 
 |  */ | 
 |  | 
 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) | 
 | 	{ | 
 | 	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr; | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 |  | 
 | 	/* Copy unicast address to driver-maintained structs and update count */ | 
 |  | 
 | 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */ | 
 | 	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */ | 
 | 	bp->uc_count = 1; | 
 |  | 
 | 	/* | 
 | 	 * Verify we're not exceeding the CAM size by adding unicast address | 
 | 	 * | 
 | 	 * Note: It's possible that before entering this routine we've | 
 | 	 *       already filled the CAM with 62 multicast addresses. | 
 | 	 *		 Since we need to place the node address override into | 
 | 	 *		 the CAM, we have to check to see that we're not | 
 | 	 *		 exceeding the CAM size.  If we are, we have to enable | 
 | 	 *		 the LLC group (multicast) promiscuous mode filter as | 
 | 	 *		 in dfx_ctl_set_multicast_list. | 
 | 	 */ | 
 |  | 
 | 	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) | 
 | 		{ | 
 | 		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */ | 
 | 		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */ | 
 |  | 
 | 		/* Update adapter filters */ | 
 |  | 
 | 		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | 
 | 			{ | 
 | 			DBG_printk("%s: Could not update adapter filters!\n", dev->name); | 
 | 			} | 
 | 		else | 
 | 			{ | 
 | 			DBG_printk("%s: Adapter filters updated!\n", dev->name); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	/* Update adapter CAM with new unicast address */ | 
 |  | 
 | 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | 
 | 		{ | 
 | 		DBG_printk("%s: Could not set new MAC address!\n", dev->name); | 
 | 		} | 
 | 	else | 
 | 		{ | 
 | 		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); | 
 | 		} | 
 | 	return 0;			/* always return zero */ | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ====================== | 
 |  * = dfx_ctl_update_cam = | 
 |  * ====================== | 
 |  * | 
 |  * Overview: | 
 |  *   Procedure to update adapter CAM (Content Addressable Memory) | 
 |  *   with desired unicast and multicast address entries. | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Updates adapter CAM with current contents of board structure | 
 |  *   unicast and multicast address tables.  Since there are only 62 | 
 |  *   free entries in CAM, this routine ensures that the command | 
 |  *   request buffer is not overrun. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS - Request succeeded | 
 |  *   DFX_K_FAILURE - Request failed | 
 |  * | 
 |  * Assumptions: | 
 |  *   All addresses being added (unicast and multicast) are in canonical | 
 |  *   order. | 
 |  * | 
 |  * Side Effects: | 
 |  *   On-board adapter CAM is updated. | 
 |  */ | 
 |  | 
 | static int dfx_ctl_update_cam(DFX_board_t *bp) | 
 | 	{ | 
 | 	int			i;				/* used as index */ | 
 | 	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */ | 
 |  | 
 | 	/* | 
 | 	 * Fill in command request information | 
 | 	 * | 
 | 	 * Note: Even though both the unicast and multicast address | 
 | 	 *       table entries are stored as contiguous 6 byte entries, | 
 | 	 *		 the firmware address filter set command expects each | 
 | 	 *		 entry to be two longwords (8 bytes total).  We must be | 
 | 	 *		 careful to only copy the six bytes of each unicast and | 
 | 	 *		 multicast table entry into each command entry.  This | 
 | 	 *		 is also why we must first clear the entire command | 
 | 	 *		 request buffer. | 
 | 	 */ | 
 |  | 
 | 	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */ | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; | 
 | 	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; | 
 |  | 
 | 	/* Now add unicast addresses to command request buffer, if any */ | 
 |  | 
 | 	for (i=0; i < (int)bp->uc_count; i++) | 
 | 		{ | 
 | 		if (i < PI_CMD_ADDR_FILTER_K_SIZE) | 
 | 			{ | 
 | 			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | 
 | 			p_addr++;			/* point to next command entry */ | 
 | 			} | 
 | 		} | 
 |  | 
 | 	/* Now add multicast addresses to command request buffer, if any */ | 
 |  | 
 | 	for (i=0; i < (int)bp->mc_count; i++) | 
 | 		{ | 
 | 		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) | 
 | 			{ | 
 | 			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | 
 | 			p_addr++;			/* point to next command entry */ | 
 | 			} | 
 | 		} | 
 |  | 
 | 	/* Issue command to update adapter CAM, then return */ | 
 |  | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		return DFX_K_FAILURE; | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ========================== | 
 |  * = dfx_ctl_update_filters = | 
 |  * ========================== | 
 |  * | 
 |  * Overview: | 
 |  *   Procedure to update adapter filters with desired | 
 |  *   filter settings. | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Enables or disables filter using current filter settings. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS - Request succeeded. | 
 |  *   DFX_K_FAILURE - Request failed. | 
 |  * | 
 |  * Assumptions: | 
 |  *   We must always pass up packets destined to the broadcast | 
 |  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the | 
 |  *   broadcast filter enabled. | 
 |  * | 
 |  * Side Effects: | 
 |  *   On-board adapter filters are updated. | 
 |  */ | 
 |  | 
 | static int dfx_ctl_update_filters(DFX_board_t *bp) | 
 | 	{ | 
 | 	int	i = 0;					/* used as index */ | 
 |  | 
 | 	/* Fill in command request information */ | 
 |  | 
 | 	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; | 
 |  | 
 | 	/* Initialize Broadcast filter - * ALWAYS ENABLED * */ | 
 |  | 
 | 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST; | 
 | 	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS; | 
 |  | 
 | 	/* Initialize LLC Individual/Group Promiscuous filter */ | 
 |  | 
 | 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM; | 
 | 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom; | 
 |  | 
 | 	/* Initialize LLC Group Promiscuous filter */ | 
 |  | 
 | 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM; | 
 | 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom; | 
 |  | 
 | 	/* Terminate the item code list */ | 
 |  | 
 | 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL; | 
 |  | 
 | 	/* Issue command to update adapter filters, then return */ | 
 |  | 
 | 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | 
 | 		return DFX_K_FAILURE; | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ====================== | 
 |  * = dfx_hw_dma_cmd_req = | 
 |  * ====================== | 
 |  * | 
 |  * Overview: | 
 |  *   Sends PDQ DMA command to adapter firmware | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   The command request and response buffers are posted to the adapter in the manner | 
 |  *   described in the PDQ Port Specification: | 
 |  * | 
 |  *		1. Command Response Buffer is posted to adapter. | 
 |  *		2. Command Request Buffer is posted to adapter. | 
 |  *		3. Command Request consumer index is polled until it indicates that request | 
 |  *         buffer has been DMA'd to adapter. | 
 |  *		4. Command Response consumer index is polled until it indicates that response | 
 |  *         buffer has been DMA'd from adapter. | 
 |  * | 
 |  *   This ordering ensures that a response buffer is already available for the firmware | 
 |  *   to use once it's done processing the request buffer. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS	  - DMA command succeeded | 
 |  * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state | 
 |  *   DFX_K_HW_TIMEOUT - DMA command timed out | 
 |  * | 
 |  * Assumptions: | 
 |  *   Command request buffer has already been filled with desired DMA command. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp) | 
 | 	{ | 
 | 	int status;			/* adapter status */ | 
 | 	int timeout_cnt;	/* used in for loops */ | 
 |  | 
 | 	/* Make sure the adapter is in a state that we can issue the DMA command in */ | 
 |  | 
 | 	status = dfx_hw_adap_state_rd(bp); | 
 | 	if ((status == PI_STATE_K_RESET)		|| | 
 | 		(status == PI_STATE_K_HALTED)		|| | 
 | 		(status == PI_STATE_K_DMA_UNAVAIL)	|| | 
 | 		(status == PI_STATE_K_UPGRADE)) | 
 | 		return DFX_K_OUTSTATE; | 
 |  | 
 | 	/* Put response buffer on the command response queue */ | 
 |  | 
 | 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | 
 | 			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | 
 | 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; | 
 |  | 
 | 	/* Bump (and wrap) the producer index and write out to register */ | 
 |  | 
 | 	bp->cmd_rsp_reg.index.prod += 1; | 
 | 	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | 
 |  | 
 | 	/* Put request buffer on the command request queue */ | 
 |  | 
 | 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | | 
 | 			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); | 
 | 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; | 
 |  | 
 | 	/* Bump (and wrap) the producer index and write out to register */ | 
 |  | 
 | 	bp->cmd_req_reg.index.prod += 1; | 
 | 	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | 
 |  | 
 | 	/* | 
 | 	 * Here we wait for the command request consumer index to be equal | 
 | 	 * to the producer, indicating that the adapter has DMAed the request. | 
 | 	 */ | 
 |  | 
 | 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | 
 | 		{ | 
 | 		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) | 
 | 			break; | 
 | 		udelay(100);			/* wait for 100 microseconds */ | 
 | 		} | 
 | 	if (timeout_cnt == 0) | 
 | 		return DFX_K_HW_TIMEOUT; | 
 |  | 
 | 	/* Bump (and wrap) the completion index and write out to register */ | 
 |  | 
 | 	bp->cmd_req_reg.index.comp += 1; | 
 | 	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | 
 |  | 
 | 	/* | 
 | 	 * Here we wait for the command response consumer index to be equal | 
 | 	 * to the producer, indicating that the adapter has DMAed the response. | 
 | 	 */ | 
 |  | 
 | 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | 
 | 		{ | 
 | 		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) | 
 | 			break; | 
 | 		udelay(100);			/* wait for 100 microseconds */ | 
 | 		} | 
 | 	if (timeout_cnt == 0) | 
 | 		return DFX_K_HW_TIMEOUT; | 
 |  | 
 | 	/* Bump (and wrap) the completion index and write out to register */ | 
 |  | 
 | 	bp->cmd_rsp_reg.index.comp += 1; | 
 | 	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ======================== | 
 |  * = dfx_hw_port_ctrl_req = | 
 |  * ======================== | 
 |  * | 
 |  * Overview: | 
 |  *   Sends PDQ port control command to adapter firmware | 
 |  * | 
 |  * Returns: | 
 |  *   Host data register value in host_data if ptr is not NULL | 
 |  * | 
 |  * Arguments: | 
 |  *   bp			- pointer to board information | 
 |  *	 command	- port control command | 
 |  *	 data_a		- port data A register value | 
 |  *	 data_b		- port data B register value | 
 |  *	 host_data	- ptr to host data register value | 
 |  * | 
 |  * Functional Description: | 
 |  *   Send generic port control command to adapter by writing | 
 |  *   to various PDQ port registers, then polling for completion. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS	  - port control command succeeded | 
 |  *   DFX_K_HW_TIMEOUT - port control command timed out | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static int dfx_hw_port_ctrl_req( | 
 | 	DFX_board_t	*bp, | 
 | 	PI_UINT32	command, | 
 | 	PI_UINT32	data_a, | 
 | 	PI_UINT32	data_b, | 
 | 	PI_UINT32	*host_data | 
 | 	) | 
 |  | 
 | 	{ | 
 | 	PI_UINT32	port_cmd;		/* Port Control command register value */ | 
 | 	int			timeout_cnt;	/* used in for loops */ | 
 |  | 
 | 	/* Set Command Error bit in command longword */ | 
 |  | 
 | 	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); | 
 |  | 
 | 	/* Issue port command to the adapter */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); | 
 |  | 
 | 	/* Now wait for command to complete */ | 
 |  | 
 | 	if (command == PI_PCTRL_M_BLAST_FLASH) | 
 | 		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */ | 
 | 	else | 
 | 		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */ | 
 |  | 
 | 	for (; timeout_cnt > 0; timeout_cnt--) | 
 | 		{ | 
 | 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); | 
 | 		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) | 
 | 			break; | 
 | 		udelay(100);			/* wait for 100 microseconds */ | 
 | 		} | 
 | 	if (timeout_cnt == 0) | 
 | 		return DFX_K_HW_TIMEOUT; | 
 |  | 
 | 	/* | 
 | 	 * If the address of host_data is non-zero, assume caller has supplied a | 
 | 	 * non NULL pointer, and return the contents of the HOST_DATA register in | 
 | 	 * it. | 
 | 	 */ | 
 |  | 
 | 	if (host_data != NULL) | 
 | 		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ===================== | 
 |  * = dfx_hw_adap_reset = | 
 |  * ===================== | 
 |  * | 
 |  * Overview: | 
 |  *   Resets adapter | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp   - pointer to board information | 
 |  *   type - type of reset to perform | 
 |  * | 
 |  * Functional Description: | 
 |  *   Issue soft reset to adapter by writing to PDQ Port Reset | 
 |  *   register.  Use incoming reset type to tell adapter what | 
 |  *   kind of reset operation to perform. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   This routine merely issues a soft reset to the adapter. | 
 |  *   It is expected that after this routine returns, the caller | 
 |  *   will appropriately poll the Port Status register for the | 
 |  *   adapter to enter the proper state. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Internal adapter registers are cleared. | 
 |  */ | 
 |  | 
 | static void dfx_hw_adap_reset( | 
 | 	DFX_board_t	*bp, | 
 | 	PI_UINT32	type | 
 | 	) | 
 |  | 
 | 	{ | 
 | 	/* Set Reset type and assert reset */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */ | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); | 
 |  | 
 | 	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ | 
 |  | 
 | 	udelay(20); | 
 |  | 
 | 	/* Deassert reset */ | 
 |  | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ======================== | 
 |  * = dfx_hw_adap_state_rd = | 
 |  * ======================== | 
 |  * | 
 |  * Overview: | 
 |  *   Returns current adapter state | 
 |  * | 
 |  * Returns: | 
 |  *   Adapter state per PDQ Port Specification | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Reads PDQ Port Status register and returns adapter state. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static int dfx_hw_adap_state_rd(DFX_board_t *bp) | 
 | 	{ | 
 | 	PI_UINT32 port_status;		/* Port Status register value */ | 
 |  | 
 | 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | 
 | 	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ===================== | 
 |  * = dfx_hw_dma_uninit = | 
 |  * ===================== | 
 |  * | 
 |  * Overview: | 
 |  *   Brings adapter to DMA_UNAVAILABLE state | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bp   - pointer to board information | 
 |  *   type - type of reset to perform | 
 |  * | 
 |  * Functional Description: | 
 |  *   Bring adapter to DMA_UNAVAILABLE state by performing the following: | 
 |  *		1. Set reset type bit in Port Data A Register then reset adapter. | 
 |  *		2. Check that adapter is in DMA_UNAVAILABLE state. | 
 |  * | 
 |  * Return Codes: | 
 |  *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state | 
 |  *   DFX_K_HW_TIMEOUT - adapter did not reset properly | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   Internal adapter registers are cleared. | 
 |  */ | 
 |  | 
 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) | 
 | 	{ | 
 | 	int timeout_cnt;	/* used in for loops */ | 
 |  | 
 | 	/* Set reset type bit and reset adapter */ | 
 |  | 
 | 	dfx_hw_adap_reset(bp, type); | 
 |  | 
 | 	/* Now wait for adapter to enter DMA_UNAVAILABLE state */ | 
 |  | 
 | 	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) | 
 | 		{ | 
 | 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) | 
 | 			break; | 
 | 		udelay(100);					/* wait for 100 microseconds */ | 
 | 		} | 
 | 	if (timeout_cnt == 0) | 
 | 		return DFX_K_HW_TIMEOUT; | 
 | 	return DFX_K_SUCCESS; | 
 | 	} | 
 |  | 
 | /* | 
 |  *	Align an sk_buff to a boundary power of 2 | 
 |  * | 
 |  */ | 
 |  | 
 | static void my_skb_align(struct sk_buff *skb, int n) | 
 | { | 
 | 	unsigned long x = (unsigned long)skb->data; | 
 | 	unsigned long v; | 
 |  | 
 | 	v = ALIGN(x, n);	/* Where we want to be */ | 
 |  | 
 | 	skb_reserve(skb, v - x); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ================ | 
 |  * = dfx_rcv_init = | 
 |  * ================ | 
 |  * | 
 |  * Overview: | 
 |  *   Produces buffers to adapter LLC Host receive descriptor block | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  *   get_buffers - non-zero if buffers to be allocated | 
 |  * | 
 |  * Functional Description: | 
 |  *   This routine can be called during dfx_adap_init() or during an adapter | 
 |  *	 reset.  It initializes the descriptor block and produces all allocated | 
 |  *   LLC Host queue receive buffers. | 
 |  * | 
 |  * Return Codes: | 
 |  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using | 
 |  *   dynamic buffer allocation). If the buffer allocation failed, the | 
 |  *   already allocated buffers will not be released and the caller should do | 
 |  *   this. | 
 |  * | 
 |  * Assumptions: | 
 |  *   The PDQ has been reset and the adapter and driver maintained Type 2 | 
 |  *   register indices are cleared. | 
 |  * | 
 |  * Side Effects: | 
 |  *   Receive buffers are posted to the adapter LLC queue and the adapter | 
 |  *   is notified. | 
 |  */ | 
 |  | 
 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) | 
 | 	{ | 
 | 	int	i, j;					/* used in for loop */ | 
 |  | 
 | 	/* | 
 | 	 *  Since each receive buffer is a single fragment of same length, initialize | 
 | 	 *  first longword in each receive descriptor for entire LLC Host descriptor | 
 | 	 *  block.  Also initialize second longword in each receive descriptor with | 
 | 	 *  physical address of receive buffer.  We'll always allocate receive | 
 | 	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor | 
 | 	 *  block and produce new receive buffers by simply updating the receive | 
 | 	 *  producer index. | 
 | 	 * | 
 | 	 * 	Assumptions: | 
 | 	 *		To support all shipping versions of PDQ, the receive buffer size | 
 | 	 *		must be mod 128 in length and the physical address must be 128 byte | 
 | 	 *		aligned.  In other words, bits 0-6 of the length and address must | 
 | 	 *		be zero for the following descriptor field entries to be correct on | 
 | 	 *		all PDQ-based boards.  We guaranteed both requirements during | 
 | 	 *		driver initialization when we allocated memory for the receive buffers. | 
 | 	 */ | 
 |  | 
 | 	if (get_buffers) { | 
 | #ifdef DYNAMIC_BUFFERS | 
 | 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | 
 | 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | 
 | 		{ | 
 | 			struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO); | 
 | 			if (!newskb) | 
 | 				return -ENOMEM; | 
 | 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | 
 | 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | 
 | 			/* | 
 | 			 * align to 128 bytes for compatibility with | 
 | 			 * the old EISA boards. | 
 | 			 */ | 
 |  | 
 | 			my_skb_align(newskb, 128); | 
 | 			bp->descr_block_virt->rcv_data[i + j].long_1 = | 
 | 				(u32)dma_map_single(bp->bus_dev, newskb->data, | 
 | 						    NEW_SKB_SIZE, | 
 | 						    DMA_FROM_DEVICE); | 
 | 			/* | 
 | 			 * p_rcv_buff_va is only used inside the | 
 | 			 * kernel so we put the skb pointer here. | 
 | 			 */ | 
 | 			bp->p_rcv_buff_va[i+j] = (char *) newskb; | 
 | 		} | 
 | #else | 
 | 	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) | 
 | 		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | 
 | 			{ | 
 | 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | 
 | 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | 
 | 			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); | 
 | 			bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); | 
 | 			} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Update receive producer and Type 2 register */ | 
 |  | 
 | 	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | 
 | 	return 0; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ========================= | 
 |  * = dfx_rcv_queue_process = | 
 |  * ========================= | 
 |  * | 
 |  * Overview: | 
 |  *   Process received LLC frames. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Received LLC frames are processed until there are no more consumed frames. | 
 |  *   Once all frames are processed, the receive buffers are returned to the | 
 |  *   adapter.  Note that this algorithm fixes the length of time that can be spent | 
 |  *   in this routine, because there are a fixed number of receive buffers to | 
 |  *   process and buffers are not produced until this routine exits and returns | 
 |  *   to the ISR. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static void dfx_rcv_queue_process( | 
 | 	DFX_board_t *bp | 
 | 	) | 
 |  | 
 | 	{ | 
 | 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */ | 
 | 	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */ | 
 | 	u32					descr, pkt_len;		/* FMC descriptor field and packet length */ | 
 | 	struct sk_buff		*skb;				/* pointer to a sk_buff to hold incoming packet data */ | 
 |  | 
 | 	/* Service all consumed LLC receive frames */ | 
 |  | 
 | 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | 
 | 	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) | 
 | 		{ | 
 | 		/* Process any errors */ | 
 |  | 
 | 		int entry; | 
 |  | 
 | 		entry = bp->rcv_xmt_reg.index.rcv_comp; | 
 | #ifdef DYNAMIC_BUFFERS | 
 | 		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); | 
 | #else | 
 | 		p_buff = (char *) bp->p_rcv_buff_va[entry]; | 
 | #endif | 
 | 		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); | 
 |  | 
 | 		if (descr & PI_FMC_DESCR_M_RCC_FLUSH) | 
 | 			{ | 
 | 			if (descr & PI_FMC_DESCR_M_RCC_CRC) | 
 | 				bp->rcv_crc_errors++; | 
 | 			else | 
 | 				bp->rcv_frame_status_errors++; | 
 | 			} | 
 | 		else | 
 | 		{ | 
 | 			int rx_in_place = 0; | 
 |  | 
 | 			/* The frame was received without errors - verify packet length */ | 
 |  | 
 | 			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); | 
 | 			pkt_len -= 4;				/* subtract 4 byte CRC */ | 
 | 			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | 
 | 				bp->rcv_length_errors++; | 
 | 			else{ | 
 | #ifdef DYNAMIC_BUFFERS | 
 | 				if (pkt_len > SKBUFF_RX_COPYBREAK) { | 
 | 					struct sk_buff *newskb; | 
 |  | 
 | 					newskb = dev_alloc_skb(NEW_SKB_SIZE); | 
 | 					if (newskb){ | 
 | 						rx_in_place = 1; | 
 |  | 
 | 						my_skb_align(newskb, 128); | 
 | 						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; | 
 | 						dma_unmap_single(bp->bus_dev, | 
 | 							bp->descr_block_virt->rcv_data[entry].long_1, | 
 | 							NEW_SKB_SIZE, | 
 | 							DMA_FROM_DEVICE); | 
 | 						skb_reserve(skb, RCV_BUFF_K_PADDING); | 
 | 						bp->p_rcv_buff_va[entry] = (char *)newskb; | 
 | 						bp->descr_block_virt->rcv_data[entry].long_1 = | 
 | 							(u32)dma_map_single(bp->bus_dev, | 
 | 								newskb->data, | 
 | 								NEW_SKB_SIZE, | 
 | 								DMA_FROM_DEVICE); | 
 | 					} else | 
 | 						skb = NULL; | 
 | 				} else | 
 | #endif | 
 | 					skb = dev_alloc_skb(pkt_len+3);	/* alloc new buffer to pass up, add room for PRH */ | 
 | 				if (skb == NULL) | 
 | 					{ | 
 | 					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name); | 
 | 					bp->rcv_discards++; | 
 | 					break; | 
 | 					} | 
 | 				else { | 
 | #ifndef DYNAMIC_BUFFERS | 
 | 					if (! rx_in_place) | 
 | #endif | 
 | 					{ | 
 | 						/* Receive buffer allocated, pass receive packet up */ | 
 |  | 
 | 						skb_copy_to_linear_data(skb, | 
 | 							       p_buff + RCV_BUFF_K_PADDING, | 
 | 							       pkt_len + 3); | 
 | 					} | 
 |  | 
 | 					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */ | 
 | 					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */ | 
 | 					skb->protocol = fddi_type_trans(skb, bp->dev); | 
 | 					bp->rcv_total_bytes += skb->len; | 
 | 					netif_rx(skb); | 
 |  | 
 | 					/* Update the rcv counters */ | 
 | 					bp->rcv_total_frames++; | 
 | 					if (*(p_buff + RCV_BUFF_K_DA) & 0x01) | 
 | 						bp->rcv_multicast_frames++; | 
 | 				} | 
 | 			} | 
 | 			} | 
 |  | 
 | 		/* | 
 | 		 * Advance the producer (for recycling) and advance the completion | 
 | 		 * (for servicing received frames).  Note that it is okay to | 
 | 		 * advance the producer without checking that it passes the | 
 | 		 * completion index because they are both advanced at the same | 
 | 		 * rate. | 
 | 		 */ | 
 |  | 
 | 		bp->rcv_xmt_reg.index.rcv_prod += 1; | 
 | 		bp->rcv_xmt_reg.index.rcv_comp += 1; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ===================== | 
 |  * = dfx_xmt_queue_pkt = | 
 |  * ===================== | 
 |  * | 
 |  * Overview: | 
 |  *   Queues packets for transmission | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   skb - pointer to sk_buff to queue for transmission | 
 |  *   dev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Here we assume that an incoming skb transmit request | 
 |  *   is contained in a single physically contiguous buffer | 
 |  *   in which the virtual address of the start of packet | 
 |  *   (skb->data) can be converted to a physical address | 
 |  *   by using pci_map_single(). | 
 |  * | 
 |  *   Since the adapter architecture requires a three byte | 
 |  *   packet request header to prepend the start of packet, | 
 |  *   we'll write the three byte field immediately prior to | 
 |  *   the FC byte.  This assumption is valid because we've | 
 |  *   ensured that dev->hard_header_len includes three pad | 
 |  *   bytes.  By posting a single fragment to the adapter, | 
 |  *   we'll reduce the number of descriptor fetches and | 
 |  *   bus traffic needed to send the request. | 
 |  * | 
 |  *   Also, we can't free the skb until after it's been DMA'd | 
 |  *   out by the adapter, so we'll queue it in the driver and | 
 |  *   return it in dfx_xmt_done. | 
 |  * | 
 |  * Return Codes: | 
 |  *   0 - driver queued packet, link is unavailable, or skbuff was bad | 
 |  *	 1 - caller should requeue the sk_buff for later transmission | 
 |  * | 
 |  * Assumptions: | 
 |  *	 First and foremost, we assume the incoming skb pointer | 
 |  *   is NOT NULL and is pointing to a valid sk_buff structure. | 
 |  * | 
 |  *   The outgoing packet is complete, starting with the | 
 |  *   frame control byte including the last byte of data, | 
 |  *   but NOT including the 4 byte CRC.  We'll let the | 
 |  *   adapter hardware generate and append the CRC. | 
 |  * | 
 |  *   The entire packet is stored in one physically | 
 |  *   contiguous buffer which is not cached and whose | 
 |  *   32-bit physical address can be determined. | 
 |  * | 
 |  *   It's vital that this routine is NOT reentered for the | 
 |  *   same board and that the OS is not in another section of | 
 |  *   code (eg. dfx_int_common) for the same board on a | 
 |  *   different thread. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, | 
 | 				     struct net_device *dev) | 
 | 	{ | 
 | 	DFX_board_t		*bp = netdev_priv(dev); | 
 | 	u8			prod;				/* local transmit producer index */ | 
 | 	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */ | 
 | 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */ | 
 | 	unsigned long		flags; | 
 |  | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* | 
 | 	 * Verify that incoming transmit request is OK | 
 | 	 * | 
 | 	 * Note: The packet size check is consistent with other | 
 | 	 *		 Linux device drivers, although the correct packet | 
 | 	 *		 size should be verified before calling the | 
 | 	 *		 transmit routine. | 
 | 	 */ | 
 |  | 
 | 	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | 
 | 	{ | 
 | 		printk("%s: Invalid packet length - %u bytes\n", | 
 | 			dev->name, skb->len); | 
 | 		bp->xmt_length_errors++;		/* bump error counter */ | 
 | 		netif_wake_queue(dev); | 
 | 		dev_kfree_skb(skb); | 
 | 		return NETDEV_TX_OK;			/* return "success" */ | 
 | 	} | 
 | 	/* | 
 | 	 * See if adapter link is available, if not, free buffer | 
 | 	 * | 
 | 	 * Note: If the link isn't available, free buffer and return 0 | 
 | 	 *		 rather than tell the upper layer to requeue the packet. | 
 | 	 *		 The methodology here is that by the time the link | 
 | 	 *		 becomes available, the packet to be sent will be | 
 | 	 *		 fairly stale.  By simply dropping the packet, the | 
 | 	 *		 higher layer protocols will eventually time out | 
 | 	 *		 waiting for response packets which it won't receive. | 
 | 	 */ | 
 |  | 
 | 	if (bp->link_available == PI_K_FALSE) | 
 | 		{ | 
 | 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */ | 
 | 			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */ | 
 | 		else | 
 | 			{ | 
 | 			bp->xmt_discards++;					/* bump error counter */ | 
 | 			dev_kfree_skb(skb);		/* free sk_buff now */ | 
 | 			netif_wake_queue(dev); | 
 | 			return NETDEV_TX_OK;		/* return "success" */ | 
 | 			} | 
 | 		} | 
 |  | 
 | 	spin_lock_irqsave(&bp->lock, flags); | 
 |  | 
 | 	/* Get the current producer and the next free xmt data descriptor */ | 
 |  | 
 | 	prod		= bp->rcv_xmt_reg.index.xmt_prod; | 
 | 	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); | 
 |  | 
 | 	/* | 
 | 	 * Get pointer to auxiliary queue entry to contain information | 
 | 	 * for this packet. | 
 | 	 * | 
 | 	 * Note: The current xmt producer index will become the | 
 | 	 *	 current xmt completion index when we complete this | 
 | 	 *	 packet later on.  So, we'll get the pointer to the | 
 | 	 *	 next auxiliary queue entry now before we bump the | 
 | 	 *	 producer index. | 
 | 	 */ | 
 |  | 
 | 	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */ | 
 |  | 
 | 	/* Write the three PRH bytes immediately before the FC byte */ | 
 |  | 
 | 	skb_push(skb,3); | 
 | 	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */ | 
 | 	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */ | 
 | 	skb->data[2] = DFX_PRH2_BYTE;	/* specification */ | 
 |  | 
 | 	/* | 
 | 	 * Write the descriptor with buffer info and bump producer | 
 | 	 * | 
 | 	 * Note: Since we need to start DMA from the packet request | 
 | 	 *		 header, we'll add 3 bytes to the DMA buffer length, | 
 | 	 *		 and we'll determine the physical address of the | 
 | 	 *		 buffer from the PRH, not skb->data. | 
 | 	 * | 
 | 	 * Assumptions: | 
 | 	 *		 1. Packet starts with the frame control (FC) byte | 
 | 	 *		    at skb->data. | 
 | 	 *		 2. The 4-byte CRC is not appended to the buffer or | 
 | 	 *			included in the length. | 
 | 	 *		 3. Packet length (skb->len) is from FC to end of | 
 | 	 *			data, inclusive. | 
 | 	 *		 4. The packet length does not exceed the maximum | 
 | 	 *			FDDI LLC frame length of 4491 bytes. | 
 | 	 *		 5. The entire packet is contained in a physically | 
 | 	 *			contiguous, non-cached, locked memory space | 
 | 	 *			comprised of a single buffer pointed to by | 
 | 	 *			skb->data. | 
 | 	 *		 6. The physical address of the start of packet | 
 | 	 *			can be determined from the virtual address | 
 | 	 *			by using pci_map_single() and is only 32-bits | 
 | 	 *			wide. | 
 | 	 */ | 
 |  | 
 | 	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); | 
 | 	p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data, | 
 | 						  skb->len, DMA_TO_DEVICE); | 
 |  | 
 | 	/* | 
 | 	 * Verify that descriptor is actually available | 
 | 	 * | 
 | 	 * Note: If descriptor isn't available, return 1 which tells | 
 | 	 *	 the upper layer to requeue the packet for later | 
 | 	 *	 transmission. | 
 | 	 * | 
 | 	 *       We need to ensure that the producer never reaches the | 
 | 	 *	 completion, except to indicate that the queue is empty. | 
 | 	 */ | 
 |  | 
 | 	if (prod == bp->rcv_xmt_reg.index.xmt_comp) | 
 | 	{ | 
 | 		skb_pull(skb,3); | 
 | 		spin_unlock_irqrestore(&bp->lock, flags); | 
 | 		return NETDEV_TX_BUSY;	/* requeue packet for later */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save info for this packet for xmt done indication routine | 
 | 	 * | 
 | 	 * Normally, we'd save the producer index in the p_xmt_drv_descr | 
 | 	 * structure so that we'd have it handy when we complete this | 
 | 	 * packet later (in dfx_xmt_done).  However, since the current | 
 | 	 * transmit architecture guarantees a single fragment for the | 
 | 	 * entire packet, we can simply bump the completion index by | 
 | 	 * one (1) for each completed packet. | 
 | 	 * | 
 | 	 * Note: If this assumption changes and we're presented with | 
 | 	 *	 an inconsistent number of transmit fragments for packet | 
 | 	 *	 data, we'll need to modify this code to save the current | 
 | 	 *	 transmit producer index. | 
 | 	 */ | 
 |  | 
 | 	p_xmt_drv_descr->p_skb = skb; | 
 |  | 
 | 	/* Update Type 2 register */ | 
 |  | 
 | 	bp->rcv_xmt_reg.index.xmt_prod = prod; | 
 | 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | 
 | 	spin_unlock_irqrestore(&bp->lock, flags); | 
 | 	netif_wake_queue(dev); | 
 | 	return NETDEV_TX_OK;	/* packet queued to adapter */ | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ================ | 
 |  * = dfx_xmt_done = | 
 |  * ================ | 
 |  * | 
 |  * Overview: | 
 |  *   Processes all frames that have been transmitted. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   For all consumed transmit descriptors that have not | 
 |  *   yet been completed, we'll free the skb we were holding | 
 |  *   onto using dev_kfree_skb and bump the appropriate | 
 |  *   counters. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   The Type 2 register is not updated in this routine.  It is | 
 |  *   assumed that it will be updated in the ISR when dfx_xmt_done | 
 |  *   returns. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static int dfx_xmt_done(DFX_board_t *bp) | 
 | 	{ | 
 | 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */ | 
 | 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */ | 
 | 	u8			comp;			/* local transmit completion index */ | 
 | 	int 			freed = 0;		/* buffers freed */ | 
 |  | 
 | 	/* Service all consumed transmit frames */ | 
 |  | 
 | 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | 
 | 	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) | 
 | 		{ | 
 | 		/* Get pointer to the transmit driver descriptor block information */ | 
 |  | 
 | 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | 
 |  | 
 | 		/* Increment transmit counters */ | 
 |  | 
 | 		bp->xmt_total_frames++; | 
 | 		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; | 
 |  | 
 | 		/* Return skb to operating system */ | 
 | 		comp = bp->rcv_xmt_reg.index.xmt_comp; | 
 | 		dma_unmap_single(bp->bus_dev, | 
 | 				 bp->descr_block_virt->xmt_data[comp].long_1, | 
 | 				 p_xmt_drv_descr->p_skb->len, | 
 | 				 DMA_TO_DEVICE); | 
 | 		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); | 
 |  | 
 | 		/* | 
 | 		 * Move to start of next packet by updating completion index | 
 | 		 * | 
 | 		 * Here we assume that a transmit packet request is always | 
 | 		 * serviced by posting one fragment.  We can therefore | 
 | 		 * simplify the completion code by incrementing the | 
 | 		 * completion index by one.  This code will need to be | 
 | 		 * modified if this assumption changes.  See comments | 
 | 		 * in dfx_xmt_queue_pkt for more details. | 
 | 		 */ | 
 |  | 
 | 		bp->rcv_xmt_reg.index.xmt_comp += 1; | 
 | 		freed++; | 
 | 		} | 
 | 	return freed; | 
 | 	} | 
 |  | 
 |  | 
 | /* | 
 |  * ================= | 
 |  * = dfx_rcv_flush = | 
 |  * ================= | 
 |  * | 
 |  * Overview: | 
 |  *   Remove all skb's in the receive ring. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   Free's all the dynamically allocated skb's that are | 
 |  *   currently attached to the device receive ring. This | 
 |  *   function is typically only used when the device is | 
 |  *   initialized or reinitialized. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 | #ifdef DYNAMIC_BUFFERS | 
 | static void dfx_rcv_flush( DFX_board_t *bp ) | 
 | 	{ | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | 
 | 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | 
 | 		{ | 
 | 			struct sk_buff *skb; | 
 | 			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; | 
 | 			if (skb) | 
 | 				dev_kfree_skb(skb); | 
 | 			bp->p_rcv_buff_va[i+j] = NULL; | 
 | 		} | 
 |  | 
 | 	} | 
 | #else | 
 | static inline void dfx_rcv_flush( DFX_board_t *bp ) | 
 | { | 
 | } | 
 | #endif /* DYNAMIC_BUFFERS */ | 
 |  | 
 | /* | 
 |  * ================= | 
 |  * = dfx_xmt_flush = | 
 |  * ================= | 
 |  * | 
 |  * Overview: | 
 |  *   Processes all frames whether they've been transmitted | 
 |  *   or not. | 
 |  * | 
 |  * Returns: | 
 |  *   None | 
 |  * | 
 |  * Arguments: | 
 |  *   bp - pointer to board information | 
 |  * | 
 |  * Functional Description: | 
 |  *   For all produced transmit descriptors that have not | 
 |  *   yet been completed, we'll free the skb we were holding | 
 |  *   onto using dev_kfree_skb and bump the appropriate | 
 |  *   counters.  Of course, it's possible that some of | 
 |  *   these transmit requests actually did go out, but we | 
 |  *   won't make that distinction here.  Finally, we'll | 
 |  *   update the consumer index to match the producer. | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   This routine does NOT update the Type 2 register.  It | 
 |  *   is assumed that this routine is being called during a | 
 |  *   transmit flush interrupt, or a shutdown or close routine. | 
 |  * | 
 |  * Side Effects: | 
 |  *   None | 
 |  */ | 
 |  | 
 | static void dfx_xmt_flush( DFX_board_t *bp ) | 
 | 	{ | 
 | 	u32			prod_cons;		/* rcv/xmt consumer block longword */ | 
 | 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */ | 
 | 	u8			comp;			/* local transmit completion index */ | 
 |  | 
 | 	/* Flush all outstanding transmit frames */ | 
 |  | 
 | 	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) | 
 | 		{ | 
 | 		/* Get pointer to the transmit driver descriptor block information */ | 
 |  | 
 | 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | 
 |  | 
 | 		/* Return skb to operating system */ | 
 | 		comp = bp->rcv_xmt_reg.index.xmt_comp; | 
 | 		dma_unmap_single(bp->bus_dev, | 
 | 				 bp->descr_block_virt->xmt_data[comp].long_1, | 
 | 				 p_xmt_drv_descr->p_skb->len, | 
 | 				 DMA_TO_DEVICE); | 
 | 		dev_kfree_skb(p_xmt_drv_descr->p_skb); | 
 |  | 
 | 		/* Increment transmit error counter */ | 
 |  | 
 | 		bp->xmt_discards++; | 
 |  | 
 | 		/* | 
 | 		 * Move to start of next packet by updating completion index | 
 | 		 * | 
 | 		 * Here we assume that a transmit packet request is always | 
 | 		 * serviced by posting one fragment.  We can therefore | 
 | 		 * simplify the completion code by incrementing the | 
 | 		 * completion index by one.  This code will need to be | 
 | 		 * modified if this assumption changes.  See comments | 
 | 		 * in dfx_xmt_queue_pkt for more details. | 
 | 		 */ | 
 |  | 
 | 		bp->rcv_xmt_reg.index.xmt_comp += 1; | 
 | 		} | 
 |  | 
 | 	/* Update the transmit consumer index in the consumer block */ | 
 |  | 
 | 	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); | 
 | 	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); | 
 | 	bp->cons_block_virt->xmt_rcv_data = prod_cons; | 
 | 	} | 
 |  | 
 | /* | 
 |  * ================== | 
 |  * = dfx_unregister = | 
 |  * ================== | 
 |  * | 
 |  * Overview: | 
 |  *   Shuts down an FDDI controller | 
 |  * | 
 |  * Returns: | 
 |  *   Condition code | 
 |  * | 
 |  * Arguments: | 
 |  *   bdev - pointer to device information | 
 |  * | 
 |  * Functional Description: | 
 |  * | 
 |  * Return Codes: | 
 |  *   None | 
 |  * | 
 |  * Assumptions: | 
 |  *   It compiles so it should work :-( (PCI cards do :-) | 
 |  * | 
 |  * Side Effects: | 
 |  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are | 
 |  *   freed. | 
 |  */ | 
 | static void __devexit dfx_unregister(struct device *bdev) | 
 | { | 
 | 	struct net_device *dev = dev_get_drvdata(bdev); | 
 | 	DFX_board_t *bp = netdev_priv(dev); | 
 | 	int dfx_bus_pci = DFX_BUS_PCI(bdev); | 
 | 	int dfx_bus_tc = DFX_BUS_TC(bdev); | 
 | 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | 
 | 	resource_size_t bar_start = 0;		/* pointer to port */ | 
 | 	resource_size_t bar_len = 0;		/* resource length */ | 
 | 	int		alloc_size;		/* total buffer size used */ | 
 |  | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	alloc_size = sizeof(PI_DESCR_BLOCK) + | 
 | 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | 
 | #ifndef DYNAMIC_BUFFERS | 
 | 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | 
 | #endif | 
 | 		     sizeof(PI_CONSUMER_BLOCK) + | 
 | 		     (PI_ALIGN_K_DESC_BLK - 1); | 
 | 	if (bp->kmalloced) | 
 | 		dma_free_coherent(bdev, alloc_size, | 
 | 				  bp->kmalloced, bp->kmalloced_dma); | 
 |  | 
 | 	dfx_bus_uninit(dev); | 
 |  | 
 | 	dfx_get_bars(bdev, &bar_start, &bar_len); | 
 | 	if (dfx_use_mmio) { | 
 | 		iounmap(bp->base.mem); | 
 | 		release_mem_region(bar_start, bar_len); | 
 | 	} else | 
 | 		release_region(bar_start, bar_len); | 
 |  | 
 | 	if (dfx_bus_pci) | 
 | 		pci_disable_device(to_pci_dev(bdev)); | 
 |  | 
 | 	free_netdev(dev); | 
 | } | 
 |  | 
 |  | 
 | static int __devinit __maybe_unused dfx_dev_register(struct device *); | 
 | static int __devexit __maybe_unused dfx_dev_unregister(struct device *); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | static int __devinit dfx_pci_register(struct pci_dev *, | 
 | 				      const struct pci_device_id *); | 
 | static void __devexit dfx_pci_unregister(struct pci_dev *); | 
 |  | 
 | static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = { | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, dfx_pci_table); | 
 |  | 
 | static struct pci_driver dfx_pci_driver = { | 
 | 	.name		= "defxx", | 
 | 	.id_table	= dfx_pci_table, | 
 | 	.probe		= dfx_pci_register, | 
 | 	.remove		= __devexit_p(dfx_pci_unregister), | 
 | }; | 
 |  | 
 | static __devinit int dfx_pci_register(struct pci_dev *pdev, | 
 | 				      const struct pci_device_id *ent) | 
 | { | 
 | 	return dfx_register(&pdev->dev); | 
 | } | 
 |  | 
 | static void __devexit dfx_pci_unregister(struct pci_dev *pdev) | 
 | { | 
 | 	dfx_unregister(&pdev->dev); | 
 | } | 
 | #endif /* CONFIG_PCI */ | 
 |  | 
 | #ifdef CONFIG_EISA | 
 | static struct eisa_device_id dfx_eisa_table[] = { | 
 |         { "DEC3001", DEFEA_PROD_ID_1 }, | 
 |         { "DEC3002", DEFEA_PROD_ID_2 }, | 
 |         { "DEC3003", DEFEA_PROD_ID_3 }, | 
 |         { "DEC3004", DEFEA_PROD_ID_4 }, | 
 |         { } | 
 | }; | 
 | MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); | 
 |  | 
 | static struct eisa_driver dfx_eisa_driver = { | 
 | 	.id_table	= dfx_eisa_table, | 
 | 	.driver		= { | 
 | 		.name	= "defxx", | 
 | 		.bus	= &eisa_bus_type, | 
 | 		.probe	= dfx_dev_register, | 
 | 		.remove	= __devexit_p(dfx_dev_unregister), | 
 | 	}, | 
 | }; | 
 | #endif /* CONFIG_EISA */ | 
 |  | 
 | #ifdef CONFIG_TC | 
 | static struct tc_device_id const dfx_tc_table[] = { | 
 | 	{ "DEC     ", "PMAF-FA " }, | 
 | 	{ "DEC     ", "PMAF-FD " }, | 
 | 	{ "DEC     ", "PMAF-FS " }, | 
 | 	{ "DEC     ", "PMAF-FU " }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(tc, dfx_tc_table); | 
 |  | 
 | static struct tc_driver dfx_tc_driver = { | 
 | 	.id_table	= dfx_tc_table, | 
 | 	.driver		= { | 
 | 		.name	= "defxx", | 
 | 		.bus	= &tc_bus_type, | 
 | 		.probe	= dfx_dev_register, | 
 | 		.remove	= __devexit_p(dfx_dev_unregister), | 
 | 	}, | 
 | }; | 
 | #endif /* CONFIG_TC */ | 
 |  | 
 | static int __devinit __maybe_unused dfx_dev_register(struct device *dev) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	status = dfx_register(dev); | 
 | 	if (!status) | 
 | 		get_device(dev); | 
 | 	return status; | 
 | } | 
 |  | 
 | static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev) | 
 | { | 
 | 	put_device(dev); | 
 | 	dfx_unregister(dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int __devinit dfx_init(void) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	status = pci_register_driver(&dfx_pci_driver); | 
 | 	if (!status) | 
 | 		status = eisa_driver_register(&dfx_eisa_driver); | 
 | 	if (!status) | 
 | 		status = tc_register_driver(&dfx_tc_driver); | 
 | 	return status; | 
 | } | 
 |  | 
 | static void __devexit dfx_cleanup(void) | 
 | { | 
 | 	tc_unregister_driver(&dfx_tc_driver); | 
 | 	eisa_driver_unregister(&dfx_eisa_driver); | 
 | 	pci_unregister_driver(&dfx_pci_driver); | 
 | } | 
 |  | 
 | module_init(dfx_init); | 
 | module_exit(dfx_cleanup); | 
 | MODULE_AUTHOR("Lawrence V. Stefani"); | 
 | MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " | 
 | 		   DRV_VERSION " " DRV_RELDATE); | 
 | MODULE_LICENSE("GPL"); |