| /* | 
 |  * Performance events core code: | 
 |  * | 
 |  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
 |  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
 |  * | 
 |  * For licensing details see kernel-base/COPYING | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/file.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/dcache.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/perf_event.h> | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | /* | 
 |  * Each CPU has a list of per CPU events: | 
 |  */ | 
 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | 
 |  | 
 | int perf_max_events __read_mostly = 1; | 
 | static int perf_reserved_percpu __read_mostly; | 
 | static int perf_overcommit __read_mostly = 1; | 
 |  | 
 | static atomic_t nr_events __read_mostly; | 
 | static atomic_t nr_mmap_events __read_mostly; | 
 | static atomic_t nr_comm_events __read_mostly; | 
 | static atomic_t nr_task_events __read_mostly; | 
 |  | 
 | /* | 
 |  * perf event paranoia level: | 
 |  *  -1 - not paranoid at all | 
 |  *   0 - disallow raw tracepoint access for unpriv | 
 |  *   1 - disallow cpu events for unpriv | 
 |  *   2 - disallow kernel profiling for unpriv | 
 |  */ | 
 | int sysctl_perf_event_paranoid __read_mostly = 1; | 
 |  | 
 | static inline bool perf_paranoid_tracepoint_raw(void) | 
 | { | 
 | 	return sysctl_perf_event_paranoid > -1; | 
 | } | 
 |  | 
 | static inline bool perf_paranoid_cpu(void) | 
 | { | 
 | 	return sysctl_perf_event_paranoid > 0; | 
 | } | 
 |  | 
 | static inline bool perf_paranoid_kernel(void) | 
 | { | 
 | 	return sysctl_perf_event_paranoid > 1; | 
 | } | 
 |  | 
 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | 
 |  | 
 | /* | 
 |  * max perf event sample rate | 
 |  */ | 
 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | 
 |  | 
 | static atomic64_t perf_event_id; | 
 |  | 
 | /* | 
 |  * Lock for (sysadmin-configurable) event reservations: | 
 |  */ | 
 | static DEFINE_SPINLOCK(perf_resource_lock); | 
 |  | 
 | /* | 
 |  * Architecture provided APIs - weak aliases: | 
 |  */ | 
 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void __weak hw_perf_disable(void)		{ barrier(); } | 
 | void __weak hw_perf_enable(void)		{ barrier(); } | 
 |  | 
 | void __weak hw_perf_event_setup(int cpu)	{ barrier(); } | 
 | void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); } | 
 |  | 
 | int __weak | 
 | hw_perf_group_sched_in(struct perf_event *group_leader, | 
 | 	       struct perf_cpu_context *cpuctx, | 
 | 	       struct perf_event_context *ctx, int cpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __weak perf_event_print_debug(void)	{ } | 
 |  | 
 | static DEFINE_PER_CPU(int, perf_disable_count); | 
 |  | 
 | void __perf_disable(void) | 
 | { | 
 | 	__get_cpu_var(perf_disable_count)++; | 
 | } | 
 |  | 
 | bool __perf_enable(void) | 
 | { | 
 | 	return !--__get_cpu_var(perf_disable_count); | 
 | } | 
 |  | 
 | void perf_disable(void) | 
 | { | 
 | 	__perf_disable(); | 
 | 	hw_perf_disable(); | 
 | } | 
 |  | 
 | void perf_enable(void) | 
 | { | 
 | 	if (__perf_enable()) | 
 | 		hw_perf_enable(); | 
 | } | 
 |  | 
 | static void get_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 
 | } | 
 |  | 
 | static void free_ctx(struct rcu_head *head) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = container_of(head, struct perf_event_context, rcu_head); | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | static void put_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	if (atomic_dec_and_test(&ctx->refcount)) { | 
 | 		if (ctx->parent_ctx) | 
 | 			put_ctx(ctx->parent_ctx); | 
 | 		if (ctx->task) | 
 | 			put_task_struct(ctx->task); | 
 | 		call_rcu(&ctx->rcu_head, free_ctx); | 
 | 	} | 
 | } | 
 |  | 
 | static void unclone_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	if (ctx->parent_ctx) { | 
 | 		put_ctx(ctx->parent_ctx); | 
 | 		ctx->parent_ctx = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If we inherit events we want to return the parent event id | 
 |  * to userspace. | 
 |  */ | 
 | static u64 primary_event_id(struct perf_event *event) | 
 | { | 
 | 	u64 id = event->id; | 
 |  | 
 | 	if (event->parent) | 
 | 		id = event->parent->id; | 
 |  | 
 | 	return id; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the perf_event_context for a task and lock it. | 
 |  * This has to cope with with the fact that until it is locked, | 
 |  * the context could get moved to another task. | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  retry: | 
 | 	ctx = rcu_dereference(task->perf_event_ctxp); | 
 | 	if (ctx) { | 
 | 		/* | 
 | 		 * If this context is a clone of another, it might | 
 | 		 * get swapped for another underneath us by | 
 | 		 * perf_event_task_sched_out, though the | 
 | 		 * rcu_read_lock() protects us from any context | 
 | 		 * getting freed.  Lock the context and check if it | 
 | 		 * got swapped before we could get the lock, and retry | 
 | 		 * if so.  If we locked the right context, then it | 
 | 		 * can't get swapped on us any more. | 
 | 		 */ | 
 | 		spin_lock_irqsave(&ctx->lock, *flags); | 
 | 		if (ctx != rcu_dereference(task->perf_event_ctxp)) { | 
 | 			spin_unlock_irqrestore(&ctx->lock, *flags); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		if (!atomic_inc_not_zero(&ctx->refcount)) { | 
 | 			spin_unlock_irqrestore(&ctx->lock, *flags); | 
 | 			ctx = NULL; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ctx; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the context for a task and increment its pin_count so it | 
 |  * can't get swapped to another task.  This also increments its | 
 |  * reference count so that the context can't get freed. | 
 |  */ | 
 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ctx = perf_lock_task_context(task, &flags); | 
 | 	if (ctx) { | 
 | 		++ctx->pin_count; | 
 | 		spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static void perf_unpin_context(struct perf_event_context *ctx) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&ctx->lock, flags); | 
 | 	--ctx->pin_count; | 
 | 	spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	put_ctx(ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * Add a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *group_leader = event->group_leader; | 
 |  | 
 | 	/* | 
 | 	 * Depending on whether it is a standalone or sibling event, | 
 | 	 * add it straight to the context's event list, or to the group | 
 | 	 * leader's sibling list: | 
 | 	 */ | 
 | 	if (group_leader == event) | 
 | 		list_add_tail(&event->group_entry, &ctx->group_list); | 
 | 	else { | 
 | 		list_add_tail(&event->group_entry, &group_leader->sibling_list); | 
 | 		group_leader->nr_siblings++; | 
 | 	} | 
 |  | 
 | 	list_add_rcu(&event->event_entry, &ctx->event_list); | 
 | 	ctx->nr_events++; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat++; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *sibling, *tmp; | 
 |  | 
 | 	if (list_empty(&event->group_entry)) | 
 | 		return; | 
 | 	ctx->nr_events--; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat--; | 
 |  | 
 | 	list_del_init(&event->group_entry); | 
 | 	list_del_rcu(&event->event_entry); | 
 |  | 
 | 	if (event->group_leader != event) | 
 | 		event->group_leader->nr_siblings--; | 
 |  | 
 | 	/* | 
 | 	 * If this was a group event with sibling events then | 
 | 	 * upgrade the siblings to singleton events by adding them | 
 | 	 * to the context list directly: | 
 | 	 */ | 
 | 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | 
 |  | 
 | 		list_move_tail(&sibling->group_entry, &ctx->group_list); | 
 | 		sibling->group_leader = sibling; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | event_sched_out(struct perf_event *event, | 
 | 		  struct perf_cpu_context *cpuctx, | 
 | 		  struct perf_event_context *ctx) | 
 | { | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 | 	event->tstamp_stopped = ctx->time; | 
 | 	event->pmu->disable(event); | 
 | 	event->oncpu = -1; | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu--; | 
 | 	ctx->nr_active--; | 
 | 	if (event->attr.exclusive || !cpuctx->active_oncpu) | 
 | 		cpuctx->exclusive = 0; | 
 | } | 
 |  | 
 | static void | 
 | group_sched_out(struct perf_event *group_event, | 
 | 		struct perf_cpu_context *cpuctx, | 
 | 		struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (group_event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Schedule out siblings (if any): | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	if (group_event->attr.exclusive) | 
 | 		cpuctx->exclusive = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to remove a performance event | 
 |  * | 
 |  * We disable the event on the hardware level first. After that we | 
 |  * remove it from the context list. | 
 |  */ | 
 | static void __perf_event_remove_from_context(void *info) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	/* | 
 | 	 * If this is a task context, we need to check whether it is | 
 | 	 * the current task context of this cpu. If not it has been | 
 | 	 * scheduled out before the smp call arrived. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	/* | 
 | 	 * Protect the list operation against NMI by disabling the | 
 | 	 * events on a global level. | 
 | 	 */ | 
 | 	perf_disable(); | 
 |  | 
 | 	event_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	list_del_event(event, ctx); | 
 |  | 
 | 	if (!ctx->task) { | 
 | 		/* | 
 | 		 * Allow more per task events with respect to the | 
 | 		 * reservation: | 
 | 		 */ | 
 | 		cpuctx->max_pertask = | 
 | 			min(perf_max_events - ctx->nr_events, | 
 | 			    perf_max_events - perf_reserved_percpu); | 
 | 	} | 
 |  | 
 | 	perf_enable(); | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Remove the event from a task's (or a CPU's) list of events. | 
 |  * | 
 |  * Must be called with ctx->mutex held. | 
 |  * | 
 |  * CPU events are removed with a smp call. For task events we only | 
 |  * call when the task is on a CPU. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This is OK when called from perf_release since | 
 |  * that only calls us on the top-level context, which can't be a clone. | 
 |  * When called from perf_event_exit_task, it's OK because the | 
 |  * context has been detached from its task. | 
 |  */ | 
 | static void perf_event_remove_from_context(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Per cpu events are removed via an smp call and | 
 | 		 * the removal is always sucessful. | 
 | 		 */ | 
 | 		smp_call_function_single(event->cpu, | 
 | 					 __perf_event_remove_from_context, | 
 | 					 event, 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	task_oncpu_function_call(task, __perf_event_remove_from_context, | 
 | 				 event); | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * If the context is active we need to retry the smp call. | 
 | 	 */ | 
 | 	if (ctx->nr_active && !list_empty(&event->group_entry)) { | 
 | 		spin_unlock_irq(&ctx->lock); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The lock prevents that this context is scheduled in so we | 
 | 	 * can remove the event safely, if the call above did not | 
 | 	 * succeed. | 
 | 	 */ | 
 | 	if (!list_empty(&event->group_entry)) { | 
 | 		list_del_event(event, ctx); | 
 | 	} | 
 | 	spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | static inline u64 perf_clock(void) | 
 | { | 
 | 	return cpu_clock(smp_processor_id()); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the record of the current time in a context. | 
 |  */ | 
 | static void update_context_time(struct perf_event_context *ctx) | 
 | { | 
 | 	u64 now = perf_clock(); | 
 |  | 
 | 	ctx->time += now - ctx->timestamp; | 
 | 	ctx->timestamp = now; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the total_time_enabled and total_time_running fields for a event. | 
 |  */ | 
 | static void update_event_times(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	u64 run_end; | 
 |  | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE || | 
 | 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return; | 
 |  | 
 | 	event->total_time_enabled = ctx->time - event->tstamp_enabled; | 
 |  | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE) | 
 | 		run_end = event->tstamp_stopped; | 
 | 	else | 
 | 		run_end = ctx->time; | 
 |  | 
 | 	event->total_time_running = run_end - event->tstamp_running; | 
 | } | 
 |  | 
 | /* | 
 |  * Update total_time_enabled and total_time_running for all events in a group. | 
 |  */ | 
 | static void update_group_times(struct perf_event *leader) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	update_event_times(leader); | 
 | 	list_for_each_entry(event, &leader->sibling_list, group_entry) | 
 | 		update_event_times(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to disable a performance event | 
 |  */ | 
 | static void __perf_event_disable(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	/* | 
 | 	 * If this is a per-task event, need to check whether this | 
 | 	 * event's task is the current task on this cpu. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * If the event is on, turn it off. | 
 | 	 * If it is in error state, leave it in error state. | 
 | 	 */ | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) { | 
 | 		update_context_time(ctx); | 
 | 		update_group_times(event); | 
 | 		if (event == event->group_leader) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 		else | 
 | 			event_sched_out(event, cpuctx, ctx); | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisifed when called through | 
 |  * perf_event_for_each_child or perf_event_for_each because they | 
 |  * hold the top-level event's child_mutex, so any descendant that | 
 |  * goes to exit will block in sync_child_event. | 
 |  * When called from perf_pending_event it's OK because event->ctx | 
 |  * is the current context on this CPU and preemption is disabled, | 
 |  * hence we can't get into perf_event_task_sched_out for this context. | 
 |  */ | 
 | static void perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Disable the event on the cpu that it's on | 
 | 		 */ | 
 | 		smp_call_function_single(event->cpu, __perf_event_disable, | 
 | 					 event, 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 |  retry: | 
 | 	task_oncpu_function_call(task, __perf_event_disable, event); | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * If the event is still active, we need to retry the cross-call. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 		spin_unlock_irq(&ctx->lock); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since we have the lock this context can't be scheduled | 
 | 	 * in, so we can change the state safely. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 		update_group_times(event); | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | static int | 
 | event_sched_in(struct perf_event *event, | 
 | 		 struct perf_cpu_context *cpuctx, | 
 | 		 struct perf_event_context *ctx, | 
 | 		 int cpu) | 
 | { | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_ACTIVE; | 
 | 	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */ | 
 | 	/* | 
 | 	 * The new state must be visible before we turn it on in the hardware: | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (event->pmu->enable(event)) { | 
 | 		event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 		event->oncpu = -1; | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	event->tstamp_running += ctx->time - event->tstamp_stopped; | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu++; | 
 | 	ctx->nr_active++; | 
 |  | 
 | 	if (event->attr.exclusive) | 
 | 		cpuctx->exclusive = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | group_sched_in(struct perf_event *group_event, | 
 | 	       struct perf_cpu_context *cpuctx, | 
 | 	       struct perf_event_context *ctx, | 
 | 	       int cpu) | 
 | { | 
 | 	struct perf_event *event, *partial_group; | 
 | 	int ret; | 
 |  | 
 | 	if (group_event->state == PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | 
 | 	if (ret) | 
 | 		return ret < 0 ? ret : 0; | 
 |  | 
 | 	if (event_sched_in(group_event, cpuctx, ctx, cpu)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * Schedule in siblings as one group (if any): | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
 | 		if (event_sched_in(event, cpuctx, ctx, cpu)) { | 
 | 			partial_group = event; | 
 | 			goto group_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | group_error: | 
 | 	/* | 
 | 	 * Groups can be scheduled in as one unit only, so undo any | 
 | 	 * partial group before returning: | 
 | 	 */ | 
 | 	list_for_each_entry(event, &group_event->sibling_list, group_entry) { | 
 | 		if (event == partial_group) | 
 | 			break; | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 for a group consisting entirely of software events, | 
 |  * 0 if the group contains any hardware events. | 
 |  */ | 
 | static int is_software_only_group(struct perf_event *leader) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (!is_software_event(leader)) | 
 | 		return 0; | 
 |  | 
 | 	list_for_each_entry(event, &leader->sibling_list, group_entry) | 
 | 		if (!is_software_event(event)) | 
 | 			return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Work out whether we can put this event group on the CPU now. | 
 |  */ | 
 | static int group_can_go_on(struct perf_event *event, | 
 | 			   struct perf_cpu_context *cpuctx, | 
 | 			   int can_add_hw) | 
 | { | 
 | 	/* | 
 | 	 * Groups consisting entirely of software events can always go on. | 
 | 	 */ | 
 | 	if (is_software_only_group(event)) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * If an exclusive group is already on, no other hardware | 
 | 	 * events can go on. | 
 | 	 */ | 
 | 	if (cpuctx->exclusive) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If this group is exclusive and there are already | 
 | 	 * events on the CPU, it can't go on. | 
 | 	 */ | 
 | 	if (event->attr.exclusive && cpuctx->active_oncpu) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Otherwise, try to add it if all previous groups were able | 
 | 	 * to go on. | 
 | 	 */ | 
 | 	return can_add_hw; | 
 | } | 
 |  | 
 | static void add_event_to_ctx(struct perf_event *event, | 
 | 			       struct perf_event_context *ctx) | 
 | { | 
 | 	list_add_event(event, ctx); | 
 | 	event->tstamp_enabled = ctx->time; | 
 | 	event->tstamp_running = ctx->time; | 
 | 	event->tstamp_stopped = ctx->time; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to install and enable a performance event | 
 |  * | 
 |  * Must be called with ctx->mutex held | 
 |  */ | 
 | static void __perf_install_in_context(void *info) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *leader = event->group_leader; | 
 | 	int cpu = smp_processor_id(); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If this is a task context, we need to check whether it is | 
 | 	 * the current task context of this cpu. If not it has been | 
 | 	 * scheduled out before the smp call arrived. | 
 | 	 * Or possibly this is the right context but it isn't | 
 | 	 * on this cpu because it had no events. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) { | 
 | 		if (cpuctx->task_ctx || ctx->task != current) | 
 | 			return; | 
 | 		cpuctx->task_ctx = ctx; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	ctx->is_active = 1; | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	/* | 
 | 	 * Protect the list operation against NMI by disabling the | 
 | 	 * events on a global level. NOP for non NMI based events. | 
 | 	 */ | 
 | 	perf_disable(); | 
 |  | 
 | 	add_event_to_ctx(event, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Don't put the event on if it is disabled or if | 
 | 	 * it is in a group and the group isn't on. | 
 | 	 */ | 
 | 	if (event->state != PERF_EVENT_STATE_INACTIVE || | 
 | 	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * An exclusive event can't go on if there are already active | 
 | 	 * hardware events, and no hardware event can go on if there | 
 | 	 * is already an exclusive event on. | 
 | 	 */ | 
 | 	if (!group_can_go_on(event, cpuctx, 1)) | 
 | 		err = -EEXIST; | 
 | 	else | 
 | 		err = event_sched_in(event, cpuctx, ctx, cpu); | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * This event couldn't go on.  If it is in a group | 
 | 		 * then we have to pull the whole group off. | 
 | 		 * If the event group is pinned then put it in error state. | 
 | 		 */ | 
 | 		if (leader != event) | 
 | 			group_sched_out(leader, cpuctx, ctx); | 
 | 		if (leader->attr.pinned) { | 
 | 			update_group_times(leader); | 
 | 			leader->state = PERF_EVENT_STATE_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!err && !ctx->task && cpuctx->max_pertask) | 
 | 		cpuctx->max_pertask--; | 
 |  | 
 |  unlock: | 
 | 	perf_enable(); | 
 |  | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Attach a performance event to a context | 
 |  * | 
 |  * First we add the event to the list with the hardware enable bit | 
 |  * in event->hw_config cleared. | 
 |  * | 
 |  * If the event is attached to a task which is on a CPU we use a smp | 
 |  * call to enable it in the task context. The task might have been | 
 |  * scheduled away, but we check this in the smp call again. | 
 |  * | 
 |  * Must be called with ctx->mutex held. | 
 |  */ | 
 | static void | 
 | perf_install_in_context(struct perf_event_context *ctx, | 
 | 			struct perf_event *event, | 
 | 			int cpu) | 
 | { | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Per cpu events are installed via an smp call and | 
 | 		 * the install is always sucessful. | 
 | 		 */ | 
 | 		smp_call_function_single(cpu, __perf_install_in_context, | 
 | 					 event, 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	task_oncpu_function_call(task, __perf_install_in_context, | 
 | 				 event); | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * we need to retry the smp call. | 
 | 	 */ | 
 | 	if (ctx->is_active && list_empty(&event->group_entry)) { | 
 | 		spin_unlock_irq(&ctx->lock); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The lock prevents that this context is scheduled in so we | 
 | 	 * can add the event safely, if it the call above did not | 
 | 	 * succeed. | 
 | 	 */ | 
 | 	if (list_empty(&event->group_entry)) | 
 | 		add_event_to_ctx(event, ctx); | 
 | 	spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Put a event into inactive state and update time fields. | 
 |  * Enabling the leader of a group effectively enables all | 
 |  * the group members that aren't explicitly disabled, so we | 
 |  * have to update their ->tstamp_enabled also. | 
 |  * Note: this works for group members as well as group leaders | 
 |  * since the non-leader members' sibling_lists will be empty. | 
 |  */ | 
 | static void __perf_event_mark_enabled(struct perf_event *event, | 
 | 					struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *sub; | 
 |  | 
 | 	event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	event->tstamp_enabled = ctx->time - event->total_time_enabled; | 
 | 	list_for_each_entry(sub, &event->sibling_list, group_entry) | 
 | 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 			sub->tstamp_enabled = | 
 | 				ctx->time - sub->total_time_enabled; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to enable a performance event | 
 |  */ | 
 | static void __perf_event_enable(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *leader = event->group_leader; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If this is a per-task event, need to check whether this | 
 | 	 * event's task is the current task on this cpu. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) { | 
 | 		if (cpuctx->task_ctx || ctx->task != current) | 
 | 			return; | 
 | 		cpuctx->task_ctx = ctx; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	ctx->is_active = 1; | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		goto unlock; | 
 | 	__perf_event_mark_enabled(event, ctx); | 
 |  | 
 | 	/* | 
 | 	 * If the event is in a group and isn't the group leader, | 
 | 	 * then don't put it on unless the group is on. | 
 | 	 */ | 
 | 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!group_can_go_on(event, cpuctx, 1)) { | 
 | 		err = -EEXIST; | 
 | 	} else { | 
 | 		perf_disable(); | 
 | 		if (event == leader) | 
 | 			err = group_sched_in(event, cpuctx, ctx, | 
 | 					     smp_processor_id()); | 
 | 		else | 
 | 			err = event_sched_in(event, cpuctx, ctx, | 
 | 					       smp_processor_id()); | 
 | 		perf_enable(); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * If this event can't go on and it's part of a | 
 | 		 * group, then the whole group has to come off. | 
 | 		 */ | 
 | 		if (leader != event) | 
 | 			group_sched_out(leader, cpuctx, ctx); | 
 | 		if (leader->attr.pinned) { | 
 | 			update_group_times(leader); | 
 | 			leader->state = PERF_EVENT_STATE_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 |  unlock: | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Enable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisfied when called through | 
 |  * perf_event_for_each_child or perf_event_for_each as described | 
 |  * for perf_event_disable. | 
 |  */ | 
 | static void perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = ctx->task; | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Enable the event on the cpu that it's on | 
 | 		 */ | 
 | 		smp_call_function_single(event->cpu, __perf_event_enable, | 
 | 					 event, 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the event is in error state, clear that first. | 
 | 	 * That way, if we see the event in error state below, we | 
 | 	 * know that it has gone back into error state, as distinct | 
 | 	 * from the task having been scheduled away before the | 
 | 	 * cross-call arrived. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 |  retry: | 
 | 	spin_unlock_irq(&ctx->lock); | 
 | 	task_oncpu_function_call(task, __perf_event_enable, event); | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * If the context is active and the event is still off, | 
 | 	 * we need to retry the cross-call. | 
 | 	 */ | 
 | 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | 
 | 		goto retry; | 
 |  | 
 | 	/* | 
 | 	 * Since we have the lock this context can't be scheduled | 
 | 	 * in, so we can change the state safely. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_OFF) | 
 | 		__perf_event_mark_enabled(event, ctx); | 
 |  | 
 |  out: | 
 | 	spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | static int perf_event_refresh(struct perf_event *event, int refresh) | 
 | { | 
 | 	/* | 
 | 	 * not supported on inherited events | 
 | 	 */ | 
 | 	if (event->attr.inherit) | 
 | 		return -EINVAL; | 
 |  | 
 | 	atomic_add(refresh, &event->event_limit); | 
 | 	perf_event_enable(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __perf_event_sched_out(struct perf_event_context *ctx, | 
 | 			      struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	ctx->is_active = 0; | 
 | 	if (likely(!ctx->nr_events)) | 
 | 		goto out; | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	perf_disable(); | 
 | 	if (ctx->nr_active) | 
 | 		list_for_each_entry(event, &ctx->group_list, group_entry) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	perf_enable(); | 
 |  out: | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether two contexts are equivalent, i.e. whether they | 
 |  * have both been cloned from the same version of the same context | 
 |  * and they both have the same number of enabled events. | 
 |  * If the number of enabled events is the same, then the set | 
 |  * of enabled events should be the same, because these are both | 
 |  * inherited contexts, therefore we can't access individual events | 
 |  * in them directly with an fd; we can only enable/disable all | 
 |  * events via prctl, or enable/disable all events in a family | 
 |  * via ioctl, which will have the same effect on both contexts. | 
 |  */ | 
 | static int context_equiv(struct perf_event_context *ctx1, | 
 | 			 struct perf_event_context *ctx2) | 
 | { | 
 | 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | 
 | 		&& ctx1->parent_gen == ctx2->parent_gen | 
 | 		&& !ctx1->pin_count && !ctx2->pin_count; | 
 | } | 
 |  | 
 | static void __perf_event_read(void *event); | 
 |  | 
 | static void __perf_event_sync_stat(struct perf_event *event, | 
 | 				     struct perf_event *next_event) | 
 | { | 
 | 	u64 value; | 
 |  | 
 | 	if (!event->attr.inherit_stat) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Update the event value, we cannot use perf_event_read() | 
 | 	 * because we're in the middle of a context switch and have IRQs | 
 | 	 * disabled, which upsets smp_call_function_single(), however | 
 | 	 * we know the event must be on the current CPU, therefore we | 
 | 	 * don't need to use it. | 
 | 	 */ | 
 | 	switch (event->state) { | 
 | 	case PERF_EVENT_STATE_ACTIVE: | 
 | 		__perf_event_read(event); | 
 | 		break; | 
 |  | 
 | 	case PERF_EVENT_STATE_INACTIVE: | 
 | 		update_event_times(event); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In order to keep per-task stats reliable we need to flip the event | 
 | 	 * values when we flip the contexts. | 
 | 	 */ | 
 | 	value = atomic64_read(&next_event->count); | 
 | 	value = atomic64_xchg(&event->count, value); | 
 | 	atomic64_set(&next_event->count, value); | 
 |  | 
 | 	swap(event->total_time_enabled, next_event->total_time_enabled); | 
 | 	swap(event->total_time_running, next_event->total_time_running); | 
 |  | 
 | 	/* | 
 | 	 * Since we swizzled the values, update the user visible data too. | 
 | 	 */ | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_event_update_userpage(next_event); | 
 | } | 
 |  | 
 | #define list_next_entry(pos, member) \ | 
 | 	list_entry(pos->member.next, typeof(*pos), member) | 
 |  | 
 | static void perf_event_sync_stat(struct perf_event_context *ctx, | 
 | 				   struct perf_event_context *next_ctx) | 
 | { | 
 | 	struct perf_event *event, *next_event; | 
 |  | 
 | 	if (!ctx->nr_stat) | 
 | 		return; | 
 |  | 
 | 	event = list_first_entry(&ctx->event_list, | 
 | 				   struct perf_event, event_entry); | 
 |  | 
 | 	next_event = list_first_entry(&next_ctx->event_list, | 
 | 					struct perf_event, event_entry); | 
 |  | 
 | 	while (&event->event_entry != &ctx->event_list && | 
 | 	       &next_event->event_entry != &next_ctx->event_list) { | 
 |  | 
 | 		__perf_event_sync_stat(event, next_event); | 
 |  | 
 | 		event = list_next_entry(event, event_entry); | 
 | 		next_event = list_next_entry(next_event, event_entry); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called from scheduler to remove the events of the current task, | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We stop each event and update the event value in event->count. | 
 |  * | 
 |  * This does not protect us against NMI, but disable() | 
 |  * sets the disabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * not restart the event. | 
 |  */ | 
 | void perf_event_task_sched_out(struct task_struct *task, | 
 | 				 struct task_struct *next, int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 	struct perf_event_context *ctx = task->perf_event_ctxp; | 
 | 	struct perf_event_context *next_ctx; | 
 | 	struct perf_event_context *parent; | 
 | 	struct pt_regs *regs; | 
 | 	int do_switch = 1; | 
 |  | 
 | 	regs = task_pt_regs(task); | 
 | 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | 
 |  | 
 | 	if (likely(!ctx || !cpuctx->task_ctx)) | 
 | 		return; | 
 |  | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	parent = rcu_dereference(ctx->parent_ctx); | 
 | 	next_ctx = next->perf_event_ctxp; | 
 | 	if (parent && next_ctx && | 
 | 	    rcu_dereference(next_ctx->parent_ctx) == parent) { | 
 | 		/* | 
 | 		 * Looks like the two contexts are clones, so we might be | 
 | 		 * able to optimize the context switch.  We lock both | 
 | 		 * contexts and check that they are clones under the | 
 | 		 * lock (including re-checking that neither has been | 
 | 		 * uncloned in the meantime).  It doesn't matter which | 
 | 		 * order we take the locks because no other cpu could | 
 | 		 * be trying to lock both of these tasks. | 
 | 		 */ | 
 | 		spin_lock(&ctx->lock); | 
 | 		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | 
 | 		if (context_equiv(ctx, next_ctx)) { | 
 | 			/* | 
 | 			 * XXX do we need a memory barrier of sorts | 
 | 			 * wrt to rcu_dereference() of perf_event_ctxp | 
 | 			 */ | 
 | 			task->perf_event_ctxp = next_ctx; | 
 | 			next->perf_event_ctxp = ctx; | 
 | 			ctx->task = next; | 
 | 			next_ctx->task = task; | 
 | 			do_switch = 0; | 
 |  | 
 | 			perf_event_sync_stat(ctx, next_ctx); | 
 | 		} | 
 | 		spin_unlock(&next_ctx->lock); | 
 | 		spin_unlock(&ctx->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (do_switch) { | 
 | 		__perf_event_sched_out(ctx, cpuctx); | 
 | 		cpuctx->task_ctx = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called with IRQs disabled | 
 |  */ | 
 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 |  | 
 | 	if (!cpuctx->task_ctx) | 
 | 		return; | 
 |  | 
 | 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 
 | 		return; | 
 |  | 
 | 	__perf_event_sched_out(ctx, cpuctx); | 
 | 	cpuctx->task_ctx = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Called with IRQs disabled | 
 |  */ | 
 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	__perf_event_sched_out(&cpuctx->ctx, cpuctx); | 
 | } | 
 |  | 
 | static void | 
 | __perf_event_sched_in(struct perf_event_context *ctx, | 
 | 			struct perf_cpu_context *cpuctx, int cpu) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	int can_add_hw = 1; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	ctx->is_active = 1; | 
 | 	if (likely(!ctx->nr_events)) | 
 | 		goto out; | 
 |  | 
 | 	ctx->timestamp = perf_clock(); | 
 |  | 
 | 	perf_disable(); | 
 |  | 
 | 	/* | 
 | 	 * First go through the list and put on any pinned groups | 
 | 	 * in order to give them the best chance of going on. | 
 | 	 */ | 
 | 	list_for_each_entry(event, &ctx->group_list, group_entry) { | 
 | 		if (event->state <= PERF_EVENT_STATE_OFF || | 
 | 		    !event->attr.pinned) | 
 | 			continue; | 
 | 		if (event->cpu != -1 && event->cpu != cpu) | 
 | 			continue; | 
 |  | 
 | 		if (group_can_go_on(event, cpuctx, 1)) | 
 | 			group_sched_in(event, cpuctx, ctx, cpu); | 
 |  | 
 | 		/* | 
 | 		 * If this pinned group hasn't been scheduled, | 
 | 		 * put it in error state. | 
 | 		 */ | 
 | 		if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 			update_group_times(event); | 
 | 			event->state = PERF_EVENT_STATE_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(event, &ctx->group_list, group_entry) { | 
 | 		/* | 
 | 		 * Ignore events in OFF or ERROR state, and | 
 | 		 * ignore pinned events since we did them already. | 
 | 		 */ | 
 | 		if (event->state <= PERF_EVENT_STATE_OFF || | 
 | 		    event->attr.pinned) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Listen to the 'cpu' scheduling filter constraint | 
 | 		 * of events: | 
 | 		 */ | 
 | 		if (event->cpu != -1 && event->cpu != cpu) | 
 | 			continue; | 
 |  | 
 | 		if (group_can_go_on(event, cpuctx, can_add_hw)) | 
 | 			if (group_sched_in(event, cpuctx, ctx, cpu)) | 
 | 				can_add_hw = 0; | 
 | 	} | 
 | 	perf_enable(); | 
 |  out: | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from scheduler to add the events of the current task | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We restore the event value and then enable it. | 
 |  * | 
 |  * This does not protect us against NMI, but enable() | 
 |  * sets the enabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * keep the event running. | 
 |  */ | 
 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 	struct perf_event_context *ctx = task->perf_event_ctxp; | 
 |  | 
 | 	if (likely(!ctx)) | 
 | 		return; | 
 | 	if (cpuctx->task_ctx == ctx) | 
 | 		return; | 
 | 	__perf_event_sched_in(ctx, cpuctx, cpu); | 
 | 	cpuctx->task_ctx = ctx; | 
 | } | 
 |  | 
 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | 
 | { | 
 | 	struct perf_event_context *ctx = &cpuctx->ctx; | 
 |  | 
 | 	__perf_event_sched_in(ctx, cpuctx, cpu); | 
 | } | 
 |  | 
 | #define MAX_INTERRUPTS (~0ULL) | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable); | 
 |  | 
 | static void perf_adjust_period(struct perf_event *event, u64 events) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 period, sample_period; | 
 | 	s64 delta; | 
 |  | 
 | 	events *= hwc->sample_period; | 
 | 	period = div64_u64(events, event->attr.sample_freq); | 
 |  | 
 | 	delta = (s64)(period - hwc->sample_period); | 
 | 	delta = (delta + 7) / 8; /* low pass filter */ | 
 |  | 
 | 	sample_period = hwc->sample_period + delta; | 
 |  | 
 | 	if (!sample_period) | 
 | 		sample_period = 1; | 
 |  | 
 | 	hwc->sample_period = sample_period; | 
 | } | 
 |  | 
 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	u64 interrupts, freq; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 			continue; | 
 |  | 
 | 		hwc = &event->hw; | 
 |  | 
 | 		interrupts = hwc->interrupts; | 
 | 		hwc->interrupts = 0; | 
 |  | 
 | 		/* | 
 | 		 * unthrottle events on the tick | 
 | 		 */ | 
 | 		if (interrupts == MAX_INTERRUPTS) { | 
 | 			perf_log_throttle(event, 1); | 
 | 			event->pmu->unthrottle(event); | 
 | 			interrupts = 2*sysctl_perf_event_sample_rate/HZ; | 
 | 		} | 
 |  | 
 | 		if (!event->attr.freq || !event->attr.sample_freq) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * if the specified freq < HZ then we need to skip ticks | 
 | 		 */ | 
 | 		if (event->attr.sample_freq < HZ) { | 
 | 			freq = event->attr.sample_freq; | 
 |  | 
 | 			hwc->freq_count += freq; | 
 | 			hwc->freq_interrupts += interrupts; | 
 |  | 
 | 			if (hwc->freq_count < HZ) | 
 | 				continue; | 
 |  | 
 | 			interrupts = hwc->freq_interrupts; | 
 | 			hwc->freq_interrupts = 0; | 
 | 			hwc->freq_count -= HZ; | 
 | 		} else | 
 | 			freq = HZ; | 
 |  | 
 | 		perf_adjust_period(event, freq * interrupts); | 
 |  | 
 | 		/* | 
 | 		 * In order to avoid being stalled by an (accidental) huge | 
 | 		 * sample period, force reset the sample period if we didn't | 
 | 		 * get any events in this freq period. | 
 | 		 */ | 
 | 		if (!interrupts) { | 
 | 			perf_disable(); | 
 | 			event->pmu->disable(event); | 
 | 			atomic64_set(&hwc->period_left, 0); | 
 | 			event->pmu->enable(event); | 
 | 			perf_enable(); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Round-robin a context's events: | 
 |  */ | 
 | static void rotate_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (!ctx->nr_events) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 | 	/* | 
 | 	 * Rotate the first entry last (works just fine for group events too): | 
 | 	 */ | 
 | 	perf_disable(); | 
 | 	list_for_each_entry(event, &ctx->group_list, group_entry) { | 
 | 		list_move_tail(&event->group_entry, &ctx->group_list); | 
 | 		break; | 
 | 	} | 
 | 	perf_enable(); | 
 |  | 
 | 	spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | void perf_event_task_tick(struct task_struct *curr, int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	if (!atomic_read(&nr_events)) | 
 | 		return; | 
 |  | 
 | 	cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 	ctx = curr->perf_event_ctxp; | 
 |  | 
 | 	perf_ctx_adjust_freq(&cpuctx->ctx); | 
 | 	if (ctx) | 
 | 		perf_ctx_adjust_freq(ctx); | 
 |  | 
 | 	perf_event_cpu_sched_out(cpuctx); | 
 | 	if (ctx) | 
 | 		__perf_event_task_sched_out(ctx); | 
 |  | 
 | 	rotate_ctx(&cpuctx->ctx); | 
 | 	if (ctx) | 
 | 		rotate_ctx(ctx); | 
 |  | 
 | 	perf_event_cpu_sched_in(cpuctx, cpu); | 
 | 	if (ctx) | 
 | 		perf_event_task_sched_in(curr, cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Enable all of a task's events that have been marked enable-on-exec. | 
 |  * This expects task == current. | 
 |  */ | 
 | static void perf_event_enable_on_exec(struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event; | 
 | 	unsigned long flags; | 
 | 	int enabled = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	ctx = task->perf_event_ctxp; | 
 | 	if (!ctx || !ctx->nr_events) | 
 | 		goto out; | 
 |  | 
 | 	__perf_event_task_sched_out(ctx); | 
 |  | 
 | 	spin_lock(&ctx->lock); | 
 |  | 
 | 	list_for_each_entry(event, &ctx->group_list, group_entry) { | 
 | 		if (!event->attr.enable_on_exec) | 
 | 			continue; | 
 | 		event->attr.enable_on_exec = 0; | 
 | 		if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 			continue; | 
 | 		__perf_event_mark_enabled(event, ctx); | 
 | 		enabled = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unclone this context if we enabled any event. | 
 | 	 */ | 
 | 	if (enabled) | 
 | 		unclone_ctx(ctx); | 
 |  | 
 | 	spin_unlock(&ctx->lock); | 
 |  | 
 | 	perf_event_task_sched_in(task, smp_processor_id()); | 
 |  out: | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to read the hardware event | 
 |  */ | 
 | static void __perf_event_read(void *info) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * If this is a task context, we need to check whether it is | 
 | 	 * the current task context of this cpu.  If not it has been | 
 | 	 * scheduled out before the smp call arrived.  In that case | 
 | 	 * event->count would have been updated to a recent sample | 
 | 	 * when the event was scheduled out. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	if (ctx->is_active) | 
 | 		update_context_time(ctx); | 
 | 	event->pmu->read(event); | 
 | 	update_event_times(event); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static u64 perf_event_read(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * If event is enabled and currently active on a CPU, update the | 
 | 	 * value in the event structure: | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 		smp_call_function_single(event->oncpu, | 
 | 					 __perf_event_read, event, 1); | 
 | 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) { | 
 | 		update_event_times(event); | 
 | 	} | 
 |  | 
 | 	return atomic64_read(&event->count); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in a task_struct: | 
 |  */ | 
 | static void | 
 | __perf_event_init_context(struct perf_event_context *ctx, | 
 | 			    struct task_struct *task) | 
 | { | 
 | 	memset(ctx, 0, sizeof(*ctx)); | 
 | 	spin_lock_init(&ctx->lock); | 
 | 	mutex_init(&ctx->mutex); | 
 | 	INIT_LIST_HEAD(&ctx->group_list); | 
 | 	INIT_LIST_HEAD(&ctx->event_list); | 
 | 	atomic_set(&ctx->refcount, 1); | 
 | 	ctx->task = task; | 
 | } | 
 |  | 
 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct task_struct *task; | 
 | 	unsigned long flags; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * If cpu is not a wildcard then this is a percpu event: | 
 | 	 */ | 
 | 	if (cpu != -1) { | 
 | 		/* Must be root to operate on a CPU event: */ | 
 | 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 
 | 			return ERR_PTR(-EACCES); | 
 |  | 
 | 		if (cpu < 0 || cpu > num_possible_cpus()) | 
 | 			return ERR_PTR(-EINVAL); | 
 |  | 
 | 		/* | 
 | 		 * We could be clever and allow to attach a event to an | 
 | 		 * offline CPU and activate it when the CPU comes up, but | 
 | 		 * that's for later. | 
 | 		 */ | 
 | 		if (!cpu_isset(cpu, cpu_online_map)) | 
 | 			return ERR_PTR(-ENODEV); | 
 |  | 
 | 		cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 		ctx = &cpuctx->ctx; | 
 | 		get_ctx(ctx); | 
 |  | 
 | 		return ctx; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!pid) | 
 | 		task = current; | 
 | 	else | 
 | 		task = find_task_by_vpid(pid); | 
 | 	if (task) | 
 | 		get_task_struct(task); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!task) | 
 | 		return ERR_PTR(-ESRCH); | 
 |  | 
 | 	/* | 
 | 	 * Can't attach events to a dying task. | 
 | 	 */ | 
 | 	err = -ESRCH; | 
 | 	if (task->flags & PF_EXITING) | 
 | 		goto errout; | 
 |  | 
 | 	/* Reuse ptrace permission checks for now. */ | 
 | 	err = -EACCES; | 
 | 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) | 
 | 		goto errout; | 
 |  | 
 |  retry: | 
 | 	ctx = perf_lock_task_context(task, &flags); | 
 | 	if (ctx) { | 
 | 		unclone_ctx(ctx); | 
 | 		spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 |  | 
 | 	if (!ctx) { | 
 | 		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | 
 | 		err = -ENOMEM; | 
 | 		if (!ctx) | 
 | 			goto errout; | 
 | 		__perf_event_init_context(ctx, task); | 
 | 		get_ctx(ctx); | 
 | 		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | 
 | 			/* | 
 | 			 * We raced with some other task; use | 
 | 			 * the context they set. | 
 | 			 */ | 
 | 			kfree(ctx); | 
 | 			goto retry; | 
 | 		} | 
 | 		get_task_struct(task); | 
 | 	} | 
 |  | 
 | 	put_task_struct(task); | 
 | 	return ctx; | 
 |  | 
 |  errout: | 
 | 	put_task_struct(task); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void free_event_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	event = container_of(head, struct perf_event, rcu_head); | 
 | 	if (event->ns) | 
 | 		put_pid_ns(event->ns); | 
 | 	kfree(event); | 
 | } | 
 |  | 
 | static void perf_pending_sync(struct perf_event *event); | 
 |  | 
 | static void free_event(struct perf_event *event) | 
 | { | 
 | 	perf_pending_sync(event); | 
 |  | 
 | 	if (!event->parent) { | 
 | 		atomic_dec(&nr_events); | 
 | 		if (event->attr.mmap) | 
 | 			atomic_dec(&nr_mmap_events); | 
 | 		if (event->attr.comm) | 
 | 			atomic_dec(&nr_comm_events); | 
 | 		if (event->attr.task) | 
 | 			atomic_dec(&nr_task_events); | 
 | 	} | 
 |  | 
 | 	if (event->output) { | 
 | 		fput(event->output->filp); | 
 | 		event->output = NULL; | 
 | 	} | 
 |  | 
 | 	if (event->destroy) | 
 | 		event->destroy(event); | 
 |  | 
 | 	put_ctx(event->ctx); | 
 | 	call_rcu(&event->rcu_head, free_event_rcu); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the last reference to the file is gone. | 
 |  */ | 
 | static int perf_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	file->private_data = NULL; | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	perf_event_remove_from_context(event); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	mutex_lock(&event->owner->perf_event_mutex); | 
 | 	list_del_init(&event->owner_entry); | 
 | 	mutex_unlock(&event->owner->perf_event_mutex); | 
 | 	put_task_struct(event->owner); | 
 |  | 
 | 	free_event(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_read_size(struct perf_event *event) | 
 | { | 
 | 	int entry = sizeof(u64); /* value */ | 
 | 	int size = 0; | 
 | 	int nr = 1; | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_ID) | 
 | 		entry += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) { | 
 | 		nr += event->group_leader->nr_siblings; | 
 | 		size += sizeof(u64); | 
 | 	} | 
 |  | 
 | 	size += entry * nr; | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static u64 perf_event_read_value(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *child; | 
 | 	u64 total = 0; | 
 |  | 
 | 	total += perf_event_read(event); | 
 | 	list_for_each_entry(child, &event->child_list, child_list) | 
 | 		total += perf_event_read(child); | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | static int perf_event_read_entry(struct perf_event *event, | 
 | 				   u64 read_format, char __user *buf) | 
 | { | 
 | 	int n = 0, count = 0; | 
 | 	u64 values[2]; | 
 |  | 
 | 	values[n++] = perf_event_read_value(event); | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	count = n * sizeof(u64); | 
 |  | 
 | 	if (copy_to_user(buf, values, count)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int perf_event_read_group(struct perf_event *event, | 
 | 				   u64 read_format, char __user *buf) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *sub; | 
 | 	int n = 0, size = 0, err = -EFAULT; | 
 | 	u64 values[3]; | 
 |  | 
 | 	values[n++] = 1 + leader->nr_siblings; | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] = leader->total_time_enabled + | 
 | 			atomic64_read(&leader->child_total_time_enabled); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] = leader->total_time_running + | 
 | 			atomic64_read(&leader->child_total_time_running); | 
 | 	} | 
 |  | 
 | 	size = n * sizeof(u64); | 
 |  | 
 | 	if (copy_to_user(buf, values, size)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	err = perf_event_read_entry(leader, read_format, buf + size); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	size += err; | 
 |  | 
 | 	list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
 | 		err = perf_event_read_entry(sub, read_format, | 
 | 				buf + size); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		size += err; | 
 | 	} | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static int perf_event_read_one(struct perf_event *event, | 
 | 				 u64 read_format, char __user *buf) | 
 | { | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = perf_event_read_value(event); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] = event->total_time_enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] = event->total_time_running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	if (copy_to_user(buf, values, n * sizeof(u64))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return n * sizeof(u64); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the performance event - simple non blocking version for now | 
 |  */ | 
 | static ssize_t | 
 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Return end-of-file for a read on a event that is in | 
 | 	 * error state (i.e. because it was pinned but it couldn't be | 
 | 	 * scheduled on to the CPU at some point). | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		return 0; | 
 |  | 
 | 	if (count < perf_event_read_size(event)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	if (read_format & PERF_FORMAT_GROUP) | 
 | 		ret = perf_event_read_group(event, read_format, buf); | 
 | 	else | 
 | 		ret = perf_event_read_one(event, read_format, buf); | 
 | 	mutex_unlock(&event->child_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t | 
 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 |  | 
 | 	return perf_read_hw(event, buf, count); | 
 | } | 
 |  | 
 | static unsigned int perf_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct perf_mmap_data *data; | 
 | 	unsigned int events = POLL_HUP; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	data = rcu_dereference(event->data); | 
 | 	if (data) | 
 | 		events = atomic_xchg(&data->poll, 0); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	poll_wait(file, &event->waitq, wait); | 
 |  | 
 | 	return events; | 
 | } | 
 |  | 
 | static void perf_event_reset(struct perf_event *event) | 
 | { | 
 | 	(void)perf_event_read(event); | 
 | 	atomic64_set(&event->count, 0); | 
 | 	perf_event_update_userpage(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Holding the top-level event's child_mutex means that any | 
 |  * descendant process that has inherited this event will block | 
 |  * in sync_child_event if it goes to exit, thus satisfying the | 
 |  * task existence requirements of perf_event_enable/disable. | 
 |  */ | 
 | static void perf_event_for_each_child(struct perf_event *event, | 
 | 					void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event *child; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	func(event); | 
 | 	list_for_each_entry(child, &event->child_list, child_list) | 
 | 		func(child); | 
 | 	mutex_unlock(&event->child_mutex); | 
 | } | 
 |  | 
 | static void perf_event_for_each(struct perf_event *event, | 
 | 				  void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *sibling; | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	event = event->group_leader; | 
 |  | 
 | 	perf_event_for_each_child(event, func); | 
 | 	func(event); | 
 | 	list_for_each_entry(sibling, &event->sibling_list, group_entry) | 
 | 		perf_event_for_each_child(event, func); | 
 | 	mutex_unlock(&ctx->mutex); | 
 | } | 
 |  | 
 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	unsigned long size; | 
 | 	int ret = 0; | 
 | 	u64 value; | 
 |  | 
 | 	if (!event->attr.sample_period) | 
 | 		return -EINVAL; | 
 |  | 
 | 	size = copy_from_user(&value, arg, sizeof(value)); | 
 | 	if (size != sizeof(value)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!value) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(&ctx->lock); | 
 | 	if (event->attr.freq) { | 
 | 		if (value > sysctl_perf_event_sample_rate) { | 
 | 			ret = -EINVAL; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		event->attr.sample_freq = value; | 
 | 	} else { | 
 | 		event->attr.sample_period = value; | 
 | 		event->hw.sample_period = value; | 
 | 	} | 
 | unlock: | 
 | 	spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int perf_event_set_output(struct perf_event *event, int output_fd); | 
 |  | 
 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	void (*func)(struct perf_event *); | 
 | 	u32 flags = arg; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case PERF_EVENT_IOC_ENABLE: | 
 | 		func = perf_event_enable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_DISABLE: | 
 | 		func = perf_event_disable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_RESET: | 
 | 		func = perf_event_reset; | 
 | 		break; | 
 |  | 
 | 	case PERF_EVENT_IOC_REFRESH: | 
 | 		return perf_event_refresh(event, arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_PERIOD: | 
 | 		return perf_event_period(event, (u64 __user *)arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_OUTPUT: | 
 | 		return perf_event_set_output(event, arg); | 
 |  | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 |  | 
 | 	if (flags & PERF_IOC_FLAG_GROUP) | 
 | 		perf_event_for_each(event, func); | 
 | 	else | 
 | 		perf_event_for_each_child(event, func); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_task_enable(void) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
 | 		perf_event_for_each_child(event, perf_event_enable); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_task_disable(void) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | 
 | 		perf_event_for_each_child(event, perf_event_disable); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifndef PERF_EVENT_INDEX_OFFSET | 
 | # define PERF_EVENT_INDEX_OFFSET 0 | 
 | #endif | 
 |  | 
 | static int perf_event_index(struct perf_event *event) | 
 | { | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | 
 | } | 
 |  | 
 | /* | 
 |  * Callers need to ensure there can be no nesting of this function, otherwise | 
 |  * the seqlock logic goes bad. We can not serialize this because the arch | 
 |  * code calls this from NMI context. | 
 |  */ | 
 | void perf_event_update_userpage(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_mmap_page *userpg; | 
 | 	struct perf_mmap_data *data; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	data = rcu_dereference(event->data); | 
 | 	if (!data) | 
 | 		goto unlock; | 
 |  | 
 | 	userpg = data->user_page; | 
 |  | 
 | 	/* | 
 | 	 * Disable preemption so as to not let the corresponding user-space | 
 | 	 * spin too long if we get preempted. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	++userpg->lock; | 
 | 	barrier(); | 
 | 	userpg->index = perf_event_index(event); | 
 | 	userpg->offset = atomic64_read(&event->count); | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) | 
 | 		userpg->offset -= atomic64_read(&event->hw.prev_count); | 
 |  | 
 | 	userpg->time_enabled = event->total_time_enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 |  | 
 | 	userpg->time_running = event->total_time_running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 |  | 
 | 	barrier(); | 
 | 	++userpg->lock; | 
 | 	preempt_enable(); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static unsigned long perf_data_size(struct perf_mmap_data *data) | 
 | { | 
 | 	return data->nr_pages << (PAGE_SHIFT + data->data_order); | 
 | } | 
 |  | 
 | #ifndef CONFIG_PERF_USE_VMALLOC | 
 |  | 
 | /* | 
 |  * Back perf_mmap() with regular GFP_KERNEL-0 pages. | 
 |  */ | 
 |  | 
 | static struct page * | 
 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | 
 | { | 
 | 	if (pgoff > data->nr_pages) | 
 | 		return NULL; | 
 |  | 
 | 	if (pgoff == 0) | 
 | 		return virt_to_page(data->user_page); | 
 |  | 
 | 	return virt_to_page(data->data_pages[pgoff - 1]); | 
 | } | 
 |  | 
 | static struct perf_mmap_data * | 
 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | 
 | { | 
 | 	struct perf_mmap_data *data; | 
 | 	unsigned long size; | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(atomic_read(&event->mmap_count)); | 
 |  | 
 | 	size = sizeof(struct perf_mmap_data); | 
 | 	size += nr_pages * sizeof(void *); | 
 |  | 
 | 	data = kzalloc(size, GFP_KERNEL); | 
 | 	if (!data) | 
 | 		goto fail; | 
 |  | 
 | 	data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | 
 | 	if (!data->user_page) | 
 | 		goto fail_user_page; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!data->data_pages[i]) | 
 | 			goto fail_data_pages; | 
 | 	} | 
 |  | 
 | 	data->data_order = 0; | 
 | 	data->nr_pages = nr_pages; | 
 |  | 
 | 	return data; | 
 |  | 
 | fail_data_pages: | 
 | 	for (i--; i >= 0; i--) | 
 | 		free_page((unsigned long)data->data_pages[i]); | 
 |  | 
 | 	free_page((unsigned long)data->user_page); | 
 |  | 
 | fail_user_page: | 
 | 	kfree(data); | 
 |  | 
 | fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void perf_mmap_free_page(unsigned long addr) | 
 | { | 
 | 	struct page *page = virt_to_page((void *)addr); | 
 |  | 
 | 	page->mapping = NULL; | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | static void perf_mmap_data_free(struct perf_mmap_data *data) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	perf_mmap_free_page((unsigned long)data->user_page); | 
 | 	for (i = 0; i < data->nr_pages; i++) | 
 | 		perf_mmap_free_page((unsigned long)data->data_pages[i]); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * Back perf_mmap() with vmalloc memory. | 
 |  * | 
 |  * Required for architectures that have d-cache aliasing issues. | 
 |  */ | 
 |  | 
 | static struct page * | 
 | perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) | 
 | { | 
 | 	if (pgoff > (1UL << data->data_order)) | 
 | 		return NULL; | 
 |  | 
 | 	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); | 
 | } | 
 |  | 
 | static void perf_mmap_unmark_page(void *addr) | 
 | { | 
 | 	struct page *page = vmalloc_to_page(addr); | 
 |  | 
 | 	page->mapping = NULL; | 
 | } | 
 |  | 
 | static void perf_mmap_data_free_work(struct work_struct *work) | 
 | { | 
 | 	struct perf_mmap_data *data; | 
 | 	void *base; | 
 | 	int i, nr; | 
 |  | 
 | 	data = container_of(work, struct perf_mmap_data, work); | 
 | 	nr = 1 << data->data_order; | 
 |  | 
 | 	base = data->user_page; | 
 | 	for (i = 0; i < nr + 1; i++) | 
 | 		perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | 
 |  | 
 | 	vfree(base); | 
 | } | 
 |  | 
 | static void perf_mmap_data_free(struct perf_mmap_data *data) | 
 | { | 
 | 	schedule_work(&data->work); | 
 | } | 
 |  | 
 | static struct perf_mmap_data * | 
 | perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | 
 | { | 
 | 	struct perf_mmap_data *data; | 
 | 	unsigned long size; | 
 | 	void *all_buf; | 
 |  | 
 | 	WARN_ON(atomic_read(&event->mmap_count)); | 
 |  | 
 | 	size = sizeof(struct perf_mmap_data); | 
 | 	size += sizeof(void *); | 
 |  | 
 | 	data = kzalloc(size, GFP_KERNEL); | 
 | 	if (!data) | 
 | 		goto fail; | 
 |  | 
 | 	INIT_WORK(&data->work, perf_mmap_data_free_work); | 
 |  | 
 | 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | 
 | 	if (!all_buf) | 
 | 		goto fail_all_buf; | 
 |  | 
 | 	data->user_page = all_buf; | 
 | 	data->data_pages[0] = all_buf + PAGE_SIZE; | 
 | 	data->data_order = ilog2(nr_pages); | 
 | 	data->nr_pages = 1; | 
 |  | 
 | 	return data; | 
 |  | 
 | fail_all_buf: | 
 | 	kfree(data); | 
 |  | 
 | fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 | 	struct perf_mmap_data *data; | 
 | 	int ret = VM_FAULT_SIGBUS; | 
 |  | 
 | 	if (vmf->flags & FAULT_FLAG_MKWRITE) { | 
 | 		if (vmf->pgoff == 0) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	data = rcu_dereference(event->data); | 
 | 	if (!data) | 
 | 		goto unlock; | 
 |  | 
 | 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | 
 | 		goto unlock; | 
 |  | 
 | 	vmf->page = perf_mmap_to_page(data, vmf->pgoff); | 
 | 	if (!vmf->page) | 
 | 		goto unlock; | 
 |  | 
 | 	get_page(vmf->page); | 
 | 	vmf->page->mapping = vma->vm_file->f_mapping; | 
 | 	vmf->page->index   = vmf->pgoff; | 
 |  | 
 | 	ret = 0; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) | 
 | { | 
 | 	long max_size = perf_data_size(data); | 
 |  | 
 | 	atomic_set(&data->lock, -1); | 
 |  | 
 | 	if (event->attr.watermark) { | 
 | 		data->watermark = min_t(long, max_size, | 
 | 					event->attr.wakeup_watermark); | 
 | 	} | 
 |  | 
 | 	if (!data->watermark) | 
 | 		data->watermark = max_t(long, PAGE_SIZE, max_size / 2); | 
 |  | 
 |  | 
 | 	rcu_assign_pointer(event->data, data); | 
 | } | 
 |  | 
 | static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) | 
 | { | 
 | 	struct perf_mmap_data *data; | 
 |  | 
 | 	data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | 
 | 	perf_mmap_data_free(data); | 
 | 	kfree(data); | 
 | } | 
 |  | 
 | static void perf_mmap_data_release(struct perf_event *event) | 
 | { | 
 | 	struct perf_mmap_data *data = event->data; | 
 |  | 
 | 	WARN_ON(atomic_read(&event->mmap_count)); | 
 |  | 
 | 	rcu_assign_pointer(event->data, NULL); | 
 | 	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); | 
 | } | 
 |  | 
 | static void perf_mmap_open(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	atomic_inc(&event->mmap_count); | 
 | } | 
 |  | 
 | static void perf_mmap_close(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | 
 | 		unsigned long size = perf_data_size(event->data); | 
 | 		struct user_struct *user = current_user(); | 
 |  | 
 | 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); | 
 | 		vma->vm_mm->locked_vm -= event->data->nr_locked; | 
 | 		perf_mmap_data_release(event); | 
 | 		mutex_unlock(&event->mmap_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct vm_operations_struct perf_mmap_vmops = { | 
 | 	.open		= perf_mmap_open, | 
 | 	.close		= perf_mmap_close, | 
 | 	.fault		= perf_mmap_fault, | 
 | 	.page_mkwrite	= perf_mmap_fault, | 
 | }; | 
 |  | 
 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	unsigned long user_locked, user_lock_limit; | 
 | 	struct user_struct *user = current_user(); | 
 | 	unsigned long locked, lock_limit; | 
 | 	struct perf_mmap_data *data; | 
 | 	unsigned long vma_size; | 
 | 	unsigned long nr_pages; | 
 | 	long user_extra, extra; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_SHARED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vma_size = vma->vm_end - vma->vm_start; | 
 | 	nr_pages = (vma_size / PAGE_SIZE) - 1; | 
 |  | 
 | 	/* | 
 | 	 * If we have data pages ensure they're a power-of-two number, so we | 
 | 	 * can do bitmasks instead of modulo. | 
 | 	 */ | 
 | 	if (nr_pages != 0 && !is_power_of_2(nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vma_size != PAGE_SIZE * (1 + nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vma->vm_pgoff != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	if (event->output) { | 
 | 		ret = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	if (atomic_inc_not_zero(&event->mmap_count)) { | 
 | 		if (nr_pages != event->data->nr_pages) | 
 | 			ret = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	user_extra = nr_pages + 1; | 
 | 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | 
 |  | 
 | 	/* | 
 | 	 * Increase the limit linearly with more CPUs: | 
 | 	 */ | 
 | 	user_lock_limit *= num_online_cpus(); | 
 |  | 
 | 	user_locked = atomic_long_read(&user->locked_vm) + user_extra; | 
 |  | 
 | 	extra = 0; | 
 | 	if (user_locked > user_lock_limit) | 
 | 		extra = user_locked - user_lock_limit; | 
 |  | 
 | 	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | 
 | 	lock_limit >>= PAGE_SHIFT; | 
 | 	locked = vma->vm_mm->locked_vm + extra; | 
 |  | 
 | 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | 
 | 		!capable(CAP_IPC_LOCK)) { | 
 | 		ret = -EPERM; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	WARN_ON(event->data); | 
 |  | 
 | 	data = perf_mmap_data_alloc(event, nr_pages); | 
 | 	ret = -ENOMEM; | 
 | 	if (!data) | 
 | 		goto unlock; | 
 |  | 
 | 	ret = 0; | 
 | 	perf_mmap_data_init(event, data); | 
 |  | 
 | 	atomic_set(&event->mmap_count, 1); | 
 | 	atomic_long_add(user_extra, &user->locked_vm); | 
 | 	vma->vm_mm->locked_vm += extra; | 
 | 	event->data->nr_locked = extra; | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		event->data->writable = 1; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	vma->vm_flags |= VM_RESERVED; | 
 | 	vma->vm_ops = &perf_mmap_vmops; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_fasync(int fd, struct file *filp, int on) | 
 | { | 
 | 	struct inode *inode = filp->f_path.dentry->d_inode; | 
 | 	struct perf_event *event = filp->private_data; | 
 | 	int retval; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	retval = fasync_helper(fd, filp, on, &event->fasync); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations perf_fops = { | 
 | 	.release		= perf_release, | 
 | 	.read			= perf_read, | 
 | 	.poll			= perf_poll, | 
 | 	.unlocked_ioctl		= perf_ioctl, | 
 | 	.compat_ioctl		= perf_ioctl, | 
 | 	.mmap			= perf_mmap, | 
 | 	.fasync			= perf_fasync, | 
 | }; | 
 |  | 
 | /* | 
 |  * Perf event wakeup | 
 |  * | 
 |  * If there's data, ensure we set the poll() state and publish everything | 
 |  * to user-space before waking everybody up. | 
 |  */ | 
 |  | 
 | void perf_event_wakeup(struct perf_event *event) | 
 | { | 
 | 	wake_up_all(&event->waitq); | 
 |  | 
 | 	if (event->pending_kill) { | 
 | 		kill_fasync(&event->fasync, SIGIO, event->pending_kill); | 
 | 		event->pending_kill = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Pending wakeups | 
 |  * | 
 |  * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | 
 |  * | 
 |  * The NMI bit means we cannot possibly take locks. Therefore, maintain a | 
 |  * single linked list and use cmpxchg() to add entries lockless. | 
 |  */ | 
 |  | 
 | static void perf_pending_event(struct perf_pending_entry *entry) | 
 | { | 
 | 	struct perf_event *event = container_of(entry, | 
 | 			struct perf_event, pending); | 
 |  | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		__perf_event_disable(event); | 
 | 	} | 
 |  | 
 | 	if (event->pending_wakeup) { | 
 | 		event->pending_wakeup = 0; | 
 | 		perf_event_wakeup(event); | 
 | 	} | 
 | } | 
 |  | 
 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | 
 |  | 
 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | 
 | 	PENDING_TAIL, | 
 | }; | 
 |  | 
 | static void perf_pending_queue(struct perf_pending_entry *entry, | 
 | 			       void (*func)(struct perf_pending_entry *)) | 
 | { | 
 | 	struct perf_pending_entry **head; | 
 |  | 
 | 	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | 
 | 		return; | 
 |  | 
 | 	entry->func = func; | 
 |  | 
 | 	head = &get_cpu_var(perf_pending_head); | 
 |  | 
 | 	do { | 
 | 		entry->next = *head; | 
 | 	} while (cmpxchg(head, entry->next, entry) != entry->next); | 
 |  | 
 | 	set_perf_event_pending(); | 
 |  | 
 | 	put_cpu_var(perf_pending_head); | 
 | } | 
 |  | 
 | static int __perf_pending_run(void) | 
 | { | 
 | 	struct perf_pending_entry *list; | 
 | 	int nr = 0; | 
 |  | 
 | 	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | 
 | 	while (list != PENDING_TAIL) { | 
 | 		void (*func)(struct perf_pending_entry *); | 
 | 		struct perf_pending_entry *entry = list; | 
 |  | 
 | 		list = list->next; | 
 |  | 
 | 		func = entry->func; | 
 | 		entry->next = NULL; | 
 | 		/* | 
 | 		 * Ensure we observe the unqueue before we issue the wakeup, | 
 | 		 * so that we won't be waiting forever. | 
 | 		 * -- see perf_not_pending(). | 
 | 		 */ | 
 | 		smp_wmb(); | 
 |  | 
 | 		func(entry); | 
 | 		nr++; | 
 | 	} | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static inline int perf_not_pending(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * If we flush on whatever cpu we run, there is a chance we don't | 
 | 	 * need to wait. | 
 | 	 */ | 
 | 	get_cpu(); | 
 | 	__perf_pending_run(); | 
 | 	put_cpu(); | 
 |  | 
 | 	/* | 
 | 	 * Ensure we see the proper queue state before going to sleep | 
 | 	 * so that we do not miss the wakeup. -- see perf_pending_handle() | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	return event->pending.next == NULL; | 
 | } | 
 |  | 
 | static void perf_pending_sync(struct perf_event *event) | 
 | { | 
 | 	wait_event(event->waitq, perf_not_pending(event)); | 
 | } | 
 |  | 
 | void perf_event_do_pending(void) | 
 | { | 
 | 	__perf_pending_run(); | 
 | } | 
 |  | 
 | /* | 
 |  * Callchain support -- arch specific | 
 |  */ | 
 |  | 
 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Output | 
 |  */ | 
 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | 
 | 			      unsigned long offset, unsigned long head) | 
 | { | 
 | 	unsigned long mask; | 
 |  | 
 | 	if (!data->writable) | 
 | 		return true; | 
 |  | 
 | 	mask = perf_data_size(data) - 1; | 
 |  | 
 | 	offset = (offset - tail) & mask; | 
 | 	head   = (head   - tail) & mask; | 
 |  | 
 | 	if ((int)(head - offset) < 0) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void perf_output_wakeup(struct perf_output_handle *handle) | 
 | { | 
 | 	atomic_set(&handle->data->poll, POLL_IN); | 
 |  | 
 | 	if (handle->nmi) { | 
 | 		handle->event->pending_wakeup = 1; | 
 | 		perf_pending_queue(&handle->event->pending, | 
 | 				   perf_pending_event); | 
 | 	} else | 
 | 		perf_event_wakeup(handle->event); | 
 | } | 
 |  | 
 | /* | 
 |  * Curious locking construct. | 
 |  * | 
 |  * We need to ensure a later event_id doesn't publish a head when a former | 
 |  * event_id isn't done writing. However since we need to deal with NMIs we | 
 |  * cannot fully serialize things. | 
 |  * | 
 |  * What we do is serialize between CPUs so we only have to deal with NMI | 
 |  * nesting on a single CPU. | 
 |  * | 
 |  * We only publish the head (and generate a wakeup) when the outer-most | 
 |  * event_id completes. | 
 |  */ | 
 | static void perf_output_lock(struct perf_output_handle *handle) | 
 | { | 
 | 	struct perf_mmap_data *data = handle->data; | 
 | 	int cpu; | 
 |  | 
 | 	handle->locked = 0; | 
 |  | 
 | 	local_irq_save(handle->flags); | 
 | 	cpu = smp_processor_id(); | 
 |  | 
 | 	if (in_nmi() && atomic_read(&data->lock) == cpu) | 
 | 		return; | 
 |  | 
 | 	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | 
 | 		cpu_relax(); | 
 |  | 
 | 	handle->locked = 1; | 
 | } | 
 |  | 
 | static void perf_output_unlock(struct perf_output_handle *handle) | 
 | { | 
 | 	struct perf_mmap_data *data = handle->data; | 
 | 	unsigned long head; | 
 | 	int cpu; | 
 |  | 
 | 	data->done_head = data->head; | 
 |  | 
 | 	if (!handle->locked) | 
 | 		goto out; | 
 |  | 
 | again: | 
 | 	/* | 
 | 	 * The xchg implies a full barrier that ensures all writes are done | 
 | 	 * before we publish the new head, matched by a rmb() in userspace when | 
 | 	 * reading this position. | 
 | 	 */ | 
 | 	while ((head = atomic_long_xchg(&data->done_head, 0))) | 
 | 		data->user_page->data_head = head; | 
 |  | 
 | 	/* | 
 | 	 * NMI can happen here, which means we can miss a done_head update. | 
 | 	 */ | 
 |  | 
 | 	cpu = atomic_xchg(&data->lock, -1); | 
 | 	WARN_ON_ONCE(cpu != smp_processor_id()); | 
 |  | 
 | 	/* | 
 | 	 * Therefore we have to validate we did not indeed do so. | 
 | 	 */ | 
 | 	if (unlikely(atomic_long_read(&data->done_head))) { | 
 | 		/* | 
 | 		 * Since we had it locked, we can lock it again. | 
 | 		 */ | 
 | 		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | 
 | 			cpu_relax(); | 
 |  | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (atomic_xchg(&data->wakeup, 0)) | 
 | 		perf_output_wakeup(handle); | 
 | out: | 
 | 	local_irq_restore(handle->flags); | 
 | } | 
 |  | 
 | void perf_output_copy(struct perf_output_handle *handle, | 
 | 		      const void *buf, unsigned int len) | 
 | { | 
 | 	unsigned int pages_mask; | 
 | 	unsigned long offset; | 
 | 	unsigned int size; | 
 | 	void **pages; | 
 |  | 
 | 	offset		= handle->offset; | 
 | 	pages_mask	= handle->data->nr_pages - 1; | 
 | 	pages		= handle->data->data_pages; | 
 |  | 
 | 	do { | 
 | 		unsigned long page_offset; | 
 | 		unsigned long page_size; | 
 | 		int nr; | 
 |  | 
 | 		nr	    = (offset >> PAGE_SHIFT) & pages_mask; | 
 | 		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT); | 
 | 		page_offset = offset & (page_size - 1); | 
 | 		size	    = min_t(unsigned int, page_size - page_offset, len); | 
 |  | 
 | 		memcpy(pages[nr] + page_offset, buf, size); | 
 |  | 
 | 		len	    -= size; | 
 | 		buf	    += size; | 
 | 		offset	    += size; | 
 | 	} while (len); | 
 |  | 
 | 	handle->offset = offset; | 
 |  | 
 | 	/* | 
 | 	 * Check we didn't copy past our reservation window, taking the | 
 | 	 * possible unsigned int wrap into account. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | 
 | } | 
 |  | 
 | int perf_output_begin(struct perf_output_handle *handle, | 
 | 		      struct perf_event *event, unsigned int size, | 
 | 		      int nmi, int sample) | 
 | { | 
 | 	struct perf_event *output_event; | 
 | 	struct perf_mmap_data *data; | 
 | 	unsigned long tail, offset, head; | 
 | 	int have_lost; | 
 | 	struct { | 
 | 		struct perf_event_header header; | 
 | 		u64			 id; | 
 | 		u64			 lost; | 
 | 	} lost_event; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * For inherited events we send all the output towards the parent. | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	output_event = rcu_dereference(event->output); | 
 | 	if (output_event) | 
 | 		event = output_event; | 
 |  | 
 | 	data = rcu_dereference(event->data); | 
 | 	if (!data) | 
 | 		goto out; | 
 |  | 
 | 	handle->data	= data; | 
 | 	handle->event	= event; | 
 | 	handle->nmi	= nmi; | 
 | 	handle->sample	= sample; | 
 |  | 
 | 	if (!data->nr_pages) | 
 | 		goto fail; | 
 |  | 
 | 	have_lost = atomic_read(&data->lost); | 
 | 	if (have_lost) | 
 | 		size += sizeof(lost_event); | 
 |  | 
 | 	perf_output_lock(handle); | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * Userspace could choose to issue a mb() before updating the | 
 | 		 * tail pointer. So that all reads will be completed before the | 
 | 		 * write is issued. | 
 | 		 */ | 
 | 		tail = ACCESS_ONCE(data->user_page->data_tail); | 
 | 		smp_rmb(); | 
 | 		offset = head = atomic_long_read(&data->head); | 
 | 		head += size; | 
 | 		if (unlikely(!perf_output_space(data, tail, offset, head))) | 
 | 			goto fail; | 
 | 	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | 
 |  | 
 | 	handle->offset	= offset; | 
 | 	handle->head	= head; | 
 |  | 
 | 	if (head - tail > data->watermark) | 
 | 		atomic_set(&data->wakeup, 1); | 
 |  | 
 | 	if (have_lost) { | 
 | 		lost_event.header.type = PERF_RECORD_LOST; | 
 | 		lost_event.header.misc = 0; | 
 | 		lost_event.header.size = sizeof(lost_event); | 
 | 		lost_event.id          = event->id; | 
 | 		lost_event.lost        = atomic_xchg(&data->lost, 0); | 
 |  | 
 | 		perf_output_put(handle, lost_event); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	atomic_inc(&data->lost); | 
 | 	perf_output_unlock(handle); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | void perf_output_end(struct perf_output_handle *handle) | 
 | { | 
 | 	struct perf_event *event = handle->event; | 
 | 	struct perf_mmap_data *data = handle->data; | 
 |  | 
 | 	int wakeup_events = event->attr.wakeup_events; | 
 |  | 
 | 	if (handle->sample && wakeup_events) { | 
 | 		int events = atomic_inc_return(&data->events); | 
 | 		if (events >= wakeup_events) { | 
 | 			atomic_sub(wakeup_events, &data->events); | 
 | 			atomic_set(&data->wakeup, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	perf_output_unlock(handle); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * only top level events have the pid namespace they were created in | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	return task_tgid_nr_ns(p, event->ns); | 
 | } | 
 |  | 
 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * only top level events have the pid namespace they were created in | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	return task_pid_nr_ns(p, event->ns); | 
 | } | 
 |  | 
 | static void perf_output_read_one(struct perf_output_handle *handle, | 
 | 				 struct perf_event *event) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = atomic64_read(&event->count); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] = event->total_time_enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] = event->total_time_running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	perf_output_copy(handle, values, n * sizeof(u64)); | 
 | } | 
 |  | 
 | /* | 
 |  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | 
 |  */ | 
 | static void perf_output_read_group(struct perf_output_handle *handle, | 
 | 			    struct perf_event *event) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *sub; | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[5]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = 1 + leader->nr_siblings; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = leader->total_time_enabled; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = leader->total_time_running; | 
 |  | 
 | 	if (leader != event) | 
 | 		leader->pmu->read(leader); | 
 |  | 
 | 	values[n++] = atomic64_read(&leader->count); | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(leader); | 
 |  | 
 | 	perf_output_copy(handle, values, n * sizeof(u64)); | 
 |  | 
 | 	list_for_each_entry(sub, &leader->sibling_list, group_entry) { | 
 | 		n = 0; | 
 |  | 
 | 		if (sub != event) | 
 | 			sub->pmu->read(sub); | 
 |  | 
 | 		values[n++] = atomic64_read(&sub->count); | 
 | 		if (read_format & PERF_FORMAT_ID) | 
 | 			values[n++] = primary_event_id(sub); | 
 |  | 
 | 		perf_output_copy(handle, values, n * sizeof(u64)); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_output_read(struct perf_output_handle *handle, | 
 | 			     struct perf_event *event) | 
 | { | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) | 
 | 		perf_output_read_group(handle, event); | 
 | 	else | 
 | 		perf_output_read_one(handle, event); | 
 | } | 
 |  | 
 | void perf_output_sample(struct perf_output_handle *handle, | 
 | 			struct perf_event_header *header, | 
 | 			struct perf_sample_data *data, | 
 | 			struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = data->type; | 
 |  | 
 | 	perf_output_put(handle, *header); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		perf_output_put(handle, data->ip); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		perf_output_put(handle, data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		perf_output_put(handle, data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		perf_output_put(handle, data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		perf_output_put(handle, data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		perf_output_put(handle, data->cpu_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		perf_output_put(handle, data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		perf_output_read(handle, event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		if (data->callchain) { | 
 | 			int size = 1; | 
 |  | 
 | 			if (data->callchain) | 
 | 				size += data->callchain->nr; | 
 |  | 
 | 			size *= sizeof(u64); | 
 |  | 
 | 			perf_output_copy(handle, data->callchain, size); | 
 | 		} else { | 
 | 			u64 nr = 0; | 
 | 			perf_output_put(handle, nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		if (data->raw) { | 
 | 			perf_output_put(handle, data->raw->size); | 
 | 			perf_output_copy(handle, data->raw->data, | 
 | 					 data->raw->size); | 
 | 		} else { | 
 | 			struct { | 
 | 				u32	size; | 
 | 				u32	data; | 
 | 			} raw = { | 
 | 				.size = sizeof(u32), | 
 | 				.data = 0, | 
 | 			}; | 
 | 			perf_output_put(handle, raw); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void perf_prepare_sample(struct perf_event_header *header, | 
 | 			 struct perf_sample_data *data, | 
 | 			 struct perf_event *event, | 
 | 			 struct pt_regs *regs) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	data->type = sample_type; | 
 |  | 
 | 	header->type = PERF_RECORD_SAMPLE; | 
 | 	header->size = sizeof(*header); | 
 |  | 
 | 	header->misc = 0; | 
 | 	header->misc |= perf_misc_flags(regs); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) { | 
 | 		data->ip = perf_instruction_pointer(regs); | 
 |  | 
 | 		header->size += sizeof(data->ip); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) { | 
 | 		/* namespace issues */ | 
 | 		data->tid_entry.pid = perf_event_pid(event, current); | 
 | 		data->tid_entry.tid = perf_event_tid(event, current); | 
 |  | 
 | 		header->size += sizeof(data->tid_entry); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) { | 
 | 		data->time = perf_clock(); | 
 |  | 
 | 		header->size += sizeof(data->time); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		header->size += sizeof(data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) { | 
 | 		data->id = primary_event_id(event); | 
 |  | 
 | 		header->size += sizeof(data->id); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) { | 
 | 		data->stream_id = event->id; | 
 |  | 
 | 		header->size += sizeof(data->stream_id); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) { | 
 | 		data->cpu_entry.cpu		= raw_smp_processor_id(); | 
 | 		data->cpu_entry.reserved	= 0; | 
 |  | 
 | 		header->size += sizeof(data->cpu_entry); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		header->size += sizeof(data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		header->size += perf_event_read_size(event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		int size = 1; | 
 |  | 
 | 		data->callchain = perf_callchain(regs); | 
 |  | 
 | 		if (data->callchain) | 
 | 			size += data->callchain->nr; | 
 |  | 
 | 		header->size += size * sizeof(u64); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		int size = sizeof(u32); | 
 |  | 
 | 		if (data->raw) | 
 | 			size += data->raw->size; | 
 | 		else | 
 | 			size += sizeof(u32); | 
 |  | 
 | 		WARN_ON_ONCE(size & (sizeof(u64)-1)); | 
 | 		header->size += size; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_output(struct perf_event *event, int nmi, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_event_header header; | 
 |  | 
 | 	perf_prepare_sample(&header, data, event, regs); | 
 |  | 
 | 	if (perf_output_begin(&handle, event, header.size, nmi, 1)) | 
 | 		return; | 
 |  | 
 | 	perf_output_sample(&handle, &header, data, event); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * read event_id | 
 |  */ | 
 |  | 
 | struct perf_read_event { | 
 | 	struct perf_event_header	header; | 
 |  | 
 | 	u32				pid; | 
 | 	u32				tid; | 
 | }; | 
 |  | 
 | static void | 
 | perf_event_read_event(struct perf_event *event, | 
 | 			struct task_struct *task) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_read_event read_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_READ, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(read_event) + perf_event_read_size(event), | 
 | 		}, | 
 | 		.pid = perf_event_pid(event, task), | 
 | 		.tid = perf_event_tid(event, task), | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, read_event); | 
 | 	perf_output_read(&handle, event); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * task tracking -- fork/exit | 
 |  * | 
 |  * enabled by: attr.comm | attr.mmap | attr.task | 
 |  */ | 
 |  | 
 | struct perf_task_event { | 
 | 	struct task_struct		*task; | 
 | 	struct perf_event_context	*task_ctx; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				ppid; | 
 | 		u32				tid; | 
 | 		u32				ptid; | 
 | 		u64				time; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_task_output(struct perf_event *event, | 
 | 				     struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	int size; | 
 | 	struct task_struct *task = task_event->task; | 
 | 	int ret; | 
 |  | 
 | 	size  = task_event->event_id.header.size; | 
 | 	ret = perf_output_begin(&handle, event, size, 0, 0); | 
 |  | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	task_event->event_id.pid = perf_event_pid(event, task); | 
 | 	task_event->event_id.ppid = perf_event_pid(event, current); | 
 |  | 
 | 	task_event->event_id.tid = perf_event_tid(event, task); | 
 | 	task_event->event_id.ptid = perf_event_tid(event, current); | 
 |  | 
 | 	task_event->event_id.time = perf_clock(); | 
 |  | 
 | 	perf_output_put(&handle, task_event->event_id); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | static int perf_event_task_match(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.comm || event->attr.mmap || event->attr.task) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_task_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_task_match(event)) | 
 | 			perf_event_task_output(event, task_event); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void perf_event_task_event(struct perf_task_event *task_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx = task_event->task_ctx; | 
 |  | 
 | 	cpuctx = &get_cpu_var(perf_cpu_context); | 
 | 	perf_event_task_ctx(&cpuctx->ctx, task_event); | 
 | 	put_cpu_var(perf_cpu_context); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!ctx) | 
 | 		ctx = rcu_dereference(task_event->task->perf_event_ctxp); | 
 | 	if (ctx) | 
 | 		perf_event_task_ctx(ctx, task_event); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void perf_event_task(struct task_struct *task, | 
 | 			      struct perf_event_context *task_ctx, | 
 | 			      int new) | 
 | { | 
 | 	struct perf_task_event task_event; | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events) && | 
 | 	    !atomic_read(&nr_mmap_events) && | 
 | 	    !atomic_read(&nr_task_events)) | 
 | 		return; | 
 |  | 
 | 	task_event = (struct perf_task_event){ | 
 | 		.task	  = task, | 
 | 		.task_ctx = task_ctx, | 
 | 		.event_id    = { | 
 | 			.header = { | 
 | 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | 
 | 				.misc = 0, | 
 | 				.size = sizeof(task_event.event_id), | 
 | 			}, | 
 | 			/* .pid  */ | 
 | 			/* .ppid */ | 
 | 			/* .tid  */ | 
 | 			/* .ptid */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_task_event(&task_event); | 
 | } | 
 |  | 
 | void perf_event_fork(struct task_struct *task) | 
 | { | 
 | 	perf_event_task(task, NULL, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * comm tracking | 
 |  */ | 
 |  | 
 | struct perf_comm_event { | 
 | 	struct task_struct	*task; | 
 | 	char			*comm; | 
 | 	int			comm_size; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_comm_output(struct perf_event *event, | 
 | 				     struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	int size = comm_event->event_id.header.size; | 
 | 	int ret = perf_output_begin(&handle, event, size, 0, 0); | 
 |  | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | 
 | 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | 
 |  | 
 | 	perf_output_put(&handle, comm_event->event_id); | 
 | 	perf_output_copy(&handle, comm_event->comm, | 
 | 				   comm_event->comm_size); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | static int perf_event_comm_match(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.comm) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_comm_match(event)) | 
 | 			perf_event_comm_output(event, comm_event); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	unsigned int size; | 
 | 	char comm[TASK_COMM_LEN]; | 
 |  | 
 | 	memset(comm, 0, sizeof(comm)); | 
 | 	strncpy(comm, comm_event->task->comm, sizeof(comm)); | 
 | 	size = ALIGN(strlen(comm)+1, sizeof(u64)); | 
 |  | 
 | 	comm_event->comm = comm; | 
 | 	comm_event->comm_size = size; | 
 |  | 
 | 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | 
 |  | 
 | 	cpuctx = &get_cpu_var(perf_cpu_context); | 
 | 	perf_event_comm_ctx(&cpuctx->ctx, comm_event); | 
 | 	put_cpu_var(perf_cpu_context); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * doesn't really matter which of the child contexts the | 
 | 	 * events ends up in. | 
 | 	 */ | 
 | 	ctx = rcu_dereference(current->perf_event_ctxp); | 
 | 	if (ctx) | 
 | 		perf_event_comm_ctx(ctx, comm_event); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void perf_event_comm(struct task_struct *task) | 
 | { | 
 | 	struct perf_comm_event comm_event; | 
 |  | 
 | 	if (task->perf_event_ctxp) | 
 | 		perf_event_enable_on_exec(task); | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events)) | 
 | 		return; | 
 |  | 
 | 	comm_event = (struct perf_comm_event){ | 
 | 		.task	= task, | 
 | 		/* .comm      */ | 
 | 		/* .comm_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_COMM, | 
 | 				.misc = 0, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_comm_event(&comm_event); | 
 | } | 
 |  | 
 | /* | 
 |  * mmap tracking | 
 |  */ | 
 |  | 
 | struct perf_mmap_event { | 
 | 	struct vm_area_struct	*vma; | 
 |  | 
 | 	const char		*file_name; | 
 | 	int			file_size; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 		u64				start; | 
 | 		u64				len; | 
 | 		u64				pgoff; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static void perf_event_mmap_output(struct perf_event *event, | 
 | 				     struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	int size = mmap_event->event_id.header.size; | 
 | 	int ret = perf_output_begin(&handle, event, size, 0, 0); | 
 |  | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	mmap_event->event_id.pid = perf_event_pid(event, current); | 
 | 	mmap_event->event_id.tid = perf_event_tid(event, current); | 
 |  | 
 | 	perf_output_put(&handle, mmap_event->event_id); | 
 | 	perf_output_copy(&handle, mmap_event->file_name, | 
 | 				   mmap_event->file_size); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | static int perf_event_mmap_match(struct perf_event *event, | 
 | 				   struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	if (event->attr.mmap) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | 
 | 				  struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_event_mmap_match(event, mmap_event)) | 
 | 			perf_event_mmap_output(event, mmap_event); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct vm_area_struct *vma = mmap_event->vma; | 
 | 	struct file *file = vma->vm_file; | 
 | 	unsigned int size; | 
 | 	char tmp[16]; | 
 | 	char *buf = NULL; | 
 | 	const char *name; | 
 |  | 
 | 	memset(tmp, 0, sizeof(tmp)); | 
 |  | 
 | 	if (file) { | 
 | 		/* | 
 | 		 * d_path works from the end of the buffer backwards, so we | 
 | 		 * need to add enough zero bytes after the string to handle | 
 | 		 * the 64bit alignment we do later. | 
 | 		 */ | 
 | 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | 
 | 		if (!buf) { | 
 | 			name = strncpy(tmp, "//enomem", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 | 		name = d_path(&file->f_path, buf, PATH_MAX); | 
 | 		if (IS_ERR(name)) { | 
 | 			name = strncpy(tmp, "//toolong", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 | 	} else { | 
 | 		if (arch_vma_name(mmap_event->vma)) { | 
 | 			name = strncpy(tmp, arch_vma_name(mmap_event->vma), | 
 | 				       sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 |  | 
 | 		if (!vma->vm_mm) { | 
 | 			name = strncpy(tmp, "[vdso]", sizeof(tmp)); | 
 | 			goto got_name; | 
 | 		} | 
 |  | 
 | 		name = strncpy(tmp, "//anon", sizeof(tmp)); | 
 | 		goto got_name; | 
 | 	} | 
 |  | 
 | got_name: | 
 | 	size = ALIGN(strlen(name)+1, sizeof(u64)); | 
 |  | 
 | 	mmap_event->file_name = name; | 
 | 	mmap_event->file_size = size; | 
 |  | 
 | 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | 
 |  | 
 | 	cpuctx = &get_cpu_var(perf_cpu_context); | 
 | 	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | 
 | 	put_cpu_var(perf_cpu_context); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * doesn't really matter which of the child contexts the | 
 | 	 * events ends up in. | 
 | 	 */ | 
 | 	ctx = rcu_dereference(current->perf_event_ctxp); | 
 | 	if (ctx) | 
 | 		perf_event_mmap_ctx(ctx, mmap_event); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | void __perf_event_mmap(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_mmap_event mmap_event; | 
 |  | 
 | 	if (!atomic_read(&nr_mmap_events)) | 
 | 		return; | 
 |  | 
 | 	mmap_event = (struct perf_mmap_event){ | 
 | 		.vma	= vma, | 
 | 		/* .file_name */ | 
 | 		/* .file_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_MMAP, | 
 | 				.misc = 0, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 			.start  = vma->vm_start, | 
 | 			.len    = vma->vm_end - vma->vm_start, | 
 | 			.pgoff  = vma->vm_pgoff, | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_mmap_event(&mmap_event); | 
 | } | 
 |  | 
 | /* | 
 |  * IRQ throttle logging | 
 |  */ | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	int ret; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 | 		u64				time; | 
 | 		u64				id; | 
 | 		u64				stream_id; | 
 | 	} throttle_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_THROTTLE, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(throttle_event), | 
 | 		}, | 
 | 		.time		= perf_clock(), | 
 | 		.id		= primary_event_id(event), | 
 | 		.stream_id	= event->id, | 
 | 	}; | 
 |  | 
 | 	if (enable) | 
 | 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, throttle_event); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic event overflow handling, sampling. | 
 |  */ | 
 |  | 
 | static int __perf_event_overflow(struct perf_event *event, int nmi, | 
 | 				   int throttle, struct perf_sample_data *data, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	int events = atomic_read(&event->event_limit); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int ret = 0; | 
 |  | 
 | 	throttle = (throttle && event->pmu->unthrottle != NULL); | 
 |  | 
 | 	if (!throttle) { | 
 | 		hwc->interrupts++; | 
 | 	} else { | 
 | 		if (hwc->interrupts != MAX_INTERRUPTS) { | 
 | 			hwc->interrupts++; | 
 | 			if (HZ * hwc->interrupts > | 
 | 					(u64)sysctl_perf_event_sample_rate) { | 
 | 				hwc->interrupts = MAX_INTERRUPTS; | 
 | 				perf_log_throttle(event, 0); | 
 | 				ret = 1; | 
 | 			} | 
 | 		} else { | 
 | 			/* | 
 | 			 * Keep re-disabling events even though on the previous | 
 | 			 * pass we disabled it - just in case we raced with a | 
 | 			 * sched-in and the event got enabled again: | 
 | 			 */ | 
 | 			ret = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (event->attr.freq) { | 
 | 		u64 now = perf_clock(); | 
 | 		s64 delta = now - hwc->freq_stamp; | 
 |  | 
 | 		hwc->freq_stamp = now; | 
 |  | 
 | 		if (delta > 0 && delta < TICK_NSEC) | 
 | 			perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * XXX event_limit might not quite work as expected on inherited | 
 | 	 * events | 
 | 	 */ | 
 |  | 
 | 	event->pending_kill = POLL_IN; | 
 | 	if (events && atomic_dec_and_test(&event->event_limit)) { | 
 | 		ret = 1; | 
 | 		event->pending_kill = POLL_HUP; | 
 | 		if (nmi) { | 
 | 			event->pending_disable = 1; | 
 | 			perf_pending_queue(&event->pending, | 
 | 					   perf_pending_event); | 
 | 		} else | 
 | 			perf_event_disable(event); | 
 | 	} | 
 |  | 
 | 	perf_event_output(event, nmi, data, regs); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int perf_event_overflow(struct perf_event *event, int nmi, | 
 | 			  struct perf_sample_data *data, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	return __perf_event_overflow(event, nmi, 1, data, regs); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic software event infrastructure | 
 |  */ | 
 |  | 
 | /* | 
 |  * We directly increment event->count and keep a second value in | 
 |  * event->hw.period_left to count intervals. This period event | 
 |  * is kept in the range [-sample_period, 0] so that we can use the | 
 |  * sign as trigger. | 
 |  */ | 
 |  | 
 | static u64 perf_swevent_set_period(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 period = hwc->last_period; | 
 | 	u64 nr, offset; | 
 | 	s64 old, val; | 
 |  | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | again: | 
 | 	old = val = atomic64_read(&hwc->period_left); | 
 | 	if (val < 0) | 
 | 		return 0; | 
 |  | 
 | 	nr = div64_u64(period + val, period); | 
 | 	offset = nr * period; | 
 | 	val -= offset; | 
 | 	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | 
 | 		goto again; | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static void perf_swevent_overflow(struct perf_event *event, | 
 | 				    int nmi, struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int throttle = 0; | 
 | 	u64 overflow; | 
 |  | 
 | 	data->period = event->hw.last_period; | 
 | 	overflow = perf_swevent_set_period(event); | 
 |  | 
 | 	if (hwc->interrupts == MAX_INTERRUPTS) | 
 | 		return; | 
 |  | 
 | 	for (; overflow; overflow--) { | 
 | 		if (__perf_event_overflow(event, nmi, throttle, | 
 | 					    data, regs)) { | 
 | 			/* | 
 | 			 * We inhibit the overflow from happening when | 
 | 			 * hwc->interrupts == MAX_INTERRUPTS. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		throttle = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_unthrottle(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * Nothing to do, we already reset hwc->interrupts. | 
 | 	 */ | 
 | } | 
 |  | 
 | static void perf_swevent_add(struct perf_event *event, u64 nr, | 
 | 			       int nmi, struct perf_sample_data *data, | 
 | 			       struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	atomic64_add(nr, &event->count); | 
 |  | 
 | 	if (!hwc->sample_period) | 
 | 		return; | 
 |  | 
 | 	if (!regs) | 
 | 		return; | 
 |  | 
 | 	if (!atomic64_add_negative(nr, &hwc->period_left)) | 
 | 		perf_swevent_overflow(event, nmi, data, regs); | 
 | } | 
 |  | 
 | static int perf_swevent_is_counting(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * The event is active, we're good! | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * The event is off/error, not counting. | 
 | 	 */ | 
 | 	if (event->state != PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The event is inactive, if the context is active | 
 | 	 * we're part of a group that didn't make it on the 'pmu', | 
 | 	 * not counting. | 
 | 	 */ | 
 | 	if (event->ctx->is_active) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We're inactive and the context is too, this means the | 
 | 	 * task is scheduled out, we're counting events that happen | 
 | 	 * to us, like migration events. | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int perf_swevent_match(struct perf_event *event, | 
 | 				enum perf_type_id type, | 
 | 				u32 event_id, struct pt_regs *regs) | 
 | { | 
 | 	if (!perf_swevent_is_counting(event)) | 
 | 		return 0; | 
 |  | 
 | 	if (event->attr.type != type) | 
 | 		return 0; | 
 | 	if (event->attr.config != event_id) | 
 | 		return 0; | 
 |  | 
 | 	if (regs) { | 
 | 		if (event->attr.exclude_user && user_mode(regs)) | 
 | 			return 0; | 
 |  | 
 | 		if (event->attr.exclude_kernel && !user_mode(regs)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | 
 | 				     enum perf_type_id type, | 
 | 				     u32 event_id, u64 nr, int nmi, | 
 | 				     struct perf_sample_data *data, | 
 | 				     struct pt_regs *regs) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (perf_swevent_match(event, type, event_id, regs)) | 
 | 			perf_swevent_add(event, nr, nmi, data, regs); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	if (in_nmi()) | 
 | 		return &cpuctx->recursion[3]; | 
 |  | 
 | 	if (in_irq()) | 
 | 		return &cpuctx->recursion[2]; | 
 |  | 
 | 	if (in_softirq()) | 
 | 		return &cpuctx->recursion[1]; | 
 |  | 
 | 	return &cpuctx->recursion[0]; | 
 | } | 
 |  | 
 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | 
 | 				    u64 nr, int nmi, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | 
 | 	int *recursion = perf_swevent_recursion_context(cpuctx); | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	if (*recursion) | 
 | 		goto out; | 
 |  | 
 | 	(*recursion)++; | 
 | 	barrier(); | 
 |  | 
 | 	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | 
 | 				 nr, nmi, data, regs); | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * doesn't really matter which of the child contexts the | 
 | 	 * events ends up in. | 
 | 	 */ | 
 | 	ctx = rcu_dereference(current->perf_event_ctxp); | 
 | 	if (ctx) | 
 | 		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	barrier(); | 
 | 	(*recursion)--; | 
 |  | 
 | out: | 
 | 	put_cpu_var(perf_cpu_context); | 
 | } | 
 |  | 
 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | 
 | 			    struct pt_regs *regs, u64 addr) | 
 | { | 
 | 	struct perf_sample_data data = { | 
 | 		.addr = addr, | 
 | 	}; | 
 |  | 
 | 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | 
 | 				&data, regs); | 
 | } | 
 |  | 
 | static void perf_swevent_read(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static int perf_swevent_enable(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (hwc->sample_period) { | 
 | 		hwc->last_period = hwc->sample_period; | 
 | 		perf_swevent_set_period(event); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_swevent_disable(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static const struct pmu perf_ops_generic = { | 
 | 	.enable		= perf_swevent_enable, | 
 | 	.disable	= perf_swevent_disable, | 
 | 	.read		= perf_swevent_read, | 
 | 	.unthrottle	= perf_swevent_unthrottle, | 
 | }; | 
 |  | 
 | /* | 
 |  * hrtimer based swevent callback | 
 |  */ | 
 |  | 
 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | 
 | { | 
 | 	enum hrtimer_restart ret = HRTIMER_RESTART; | 
 | 	struct perf_sample_data data; | 
 | 	struct pt_regs *regs; | 
 | 	struct perf_event *event; | 
 | 	u64 period; | 
 |  | 
 | 	event	= container_of(hrtimer, struct perf_event, hw.hrtimer); | 
 | 	event->pmu->read(event); | 
 |  | 
 | 	data.addr = 0; | 
 | 	regs = get_irq_regs(); | 
 | 	/* | 
 | 	 * In case we exclude kernel IPs or are somehow not in interrupt | 
 | 	 * context, provide the next best thing, the user IP. | 
 | 	 */ | 
 | 	if ((event->attr.exclude_kernel || !regs) && | 
 | 			!event->attr.exclude_user) | 
 | 		regs = task_pt_regs(current); | 
 |  | 
 | 	if (regs) { | 
 | 		if (!(event->attr.exclude_idle && current->pid == 0)) | 
 | 			if (perf_event_overflow(event, 0, &data, regs)) | 
 | 				ret = HRTIMER_NORESTART; | 
 | 	} | 
 |  | 
 | 	period = max_t(u64, 10000, event->hw.sample_period); | 
 | 	hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void perf_swevent_start_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	hwc->hrtimer.function = perf_swevent_hrtimer; | 
 | 	if (hwc->sample_period) { | 
 | 		u64 period; | 
 |  | 
 | 		if (hwc->remaining) { | 
 | 			if (hwc->remaining < 0) | 
 | 				period = 10000; | 
 | 			else | 
 | 				period = hwc->remaining; | 
 | 			hwc->remaining = 0; | 
 | 		} else { | 
 | 			period = max_t(u64, 10000, hwc->sample_period); | 
 | 		} | 
 | 		__hrtimer_start_range_ns(&hwc->hrtimer, | 
 | 				ns_to_ktime(period), 0, | 
 | 				HRTIMER_MODE_REL, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (hwc->sample_period) { | 
 | 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | 
 | 		hwc->remaining = ktime_to_ns(remaining); | 
 |  | 
 | 		hrtimer_cancel(&hwc->hrtimer); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Software event: cpu wall time clock | 
 |  */ | 
 |  | 
 | static void cpu_clock_perf_event_update(struct perf_event *event) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 | 	s64 prev; | 
 | 	u64 now; | 
 |  | 
 | 	now = cpu_clock(cpu); | 
 | 	prev = atomic64_read(&event->hw.prev_count); | 
 | 	atomic64_set(&event->hw.prev_count, now); | 
 | 	atomic64_add(now - prev, &event->count); | 
 | } | 
 |  | 
 | static int cpu_clock_perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | 
 | 	perf_swevent_start_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpu_clock_perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	cpu_clock_perf_event_update(event); | 
 | } | 
 |  | 
 | static void cpu_clock_perf_event_read(struct perf_event *event) | 
 | { | 
 | 	cpu_clock_perf_event_update(event); | 
 | } | 
 |  | 
 | static const struct pmu perf_ops_cpu_clock = { | 
 | 	.enable		= cpu_clock_perf_event_enable, | 
 | 	.disable	= cpu_clock_perf_event_disable, | 
 | 	.read		= cpu_clock_perf_event_read, | 
 | }; | 
 |  | 
 | /* | 
 |  * Software event: task time clock | 
 |  */ | 
 |  | 
 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | 
 | { | 
 | 	u64 prev; | 
 | 	s64 delta; | 
 |  | 
 | 	prev = atomic64_xchg(&event->hw.prev_count, now); | 
 | 	delta = now - prev; | 
 | 	atomic64_add(delta, &event->count); | 
 | } | 
 |  | 
 | static int task_clock_perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 now; | 
 |  | 
 | 	now = event->ctx->time; | 
 |  | 
 | 	atomic64_set(&hwc->prev_count, now); | 
 |  | 
 | 	perf_swevent_start_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void task_clock_perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	task_clock_perf_event_update(event, event->ctx->time); | 
 |  | 
 | } | 
 |  | 
 | static void task_clock_perf_event_read(struct perf_event *event) | 
 | { | 
 | 	u64 time; | 
 |  | 
 | 	if (!in_nmi()) { | 
 | 		update_context_time(event->ctx); | 
 | 		time = event->ctx->time; | 
 | 	} else { | 
 | 		u64 now = perf_clock(); | 
 | 		u64 delta = now - event->ctx->timestamp; | 
 | 		time = event->ctx->time + delta; | 
 | 	} | 
 |  | 
 | 	task_clock_perf_event_update(event, time); | 
 | } | 
 |  | 
 | static const struct pmu perf_ops_task_clock = { | 
 | 	.enable		= task_clock_perf_event_enable, | 
 | 	.disable	= task_clock_perf_event_disable, | 
 | 	.read		= task_clock_perf_event_read, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_EVENT_PROFILE | 
 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | 
 | 			  int entry_size) | 
 | { | 
 | 	struct perf_raw_record raw = { | 
 | 		.size = entry_size, | 
 | 		.data = record, | 
 | 	}; | 
 |  | 
 | 	struct perf_sample_data data = { | 
 | 		.addr = addr, | 
 | 		.raw = &raw, | 
 | 	}; | 
 |  | 
 | 	struct pt_regs *regs = get_irq_regs(); | 
 |  | 
 | 	if (!regs) | 
 | 		regs = task_pt_regs(current); | 
 |  | 
 | 	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | 
 | 				&data, regs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_tp_event); | 
 |  | 
 | extern int ftrace_profile_enable(int); | 
 | extern void ftrace_profile_disable(int); | 
 |  | 
 | static void tp_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	ftrace_profile_disable(event->attr.config); | 
 | } | 
 |  | 
 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * Raw tracepoint data is a severe data leak, only allow root to | 
 | 	 * have these. | 
 | 	 */ | 
 | 	if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | 
 | 			perf_paranoid_tracepoint_raw() && | 
 | 			!capable(CAP_SYS_ADMIN)) | 
 | 		return ERR_PTR(-EPERM); | 
 |  | 
 | 	if (ftrace_profile_enable(event->attr.config)) | 
 | 		return NULL; | 
 |  | 
 | 	event->destroy = tp_perf_event_destroy; | 
 |  | 
 | 	return &perf_ops_generic; | 
 | } | 
 | #else | 
 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | 
 |  | 
 | static void sw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	u64 event_id = event->attr.config; | 
 |  | 
 | 	WARN_ON(event->parent); | 
 |  | 
 | 	atomic_dec(&perf_swevent_enabled[event_id]); | 
 | } | 
 |  | 
 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | 
 | { | 
 | 	const struct pmu *pmu = NULL; | 
 | 	u64 event_id = event->attr.config; | 
 |  | 
 | 	/* | 
 | 	 * Software events (currently) can't in general distinguish | 
 | 	 * between user, kernel and hypervisor events. | 
 | 	 * However, context switches and cpu migrations are considered | 
 | 	 * to be kernel events, and page faults are never hypervisor | 
 | 	 * events. | 
 | 	 */ | 
 | 	switch (event_id) { | 
 | 	case PERF_COUNT_SW_CPU_CLOCK: | 
 | 		pmu = &perf_ops_cpu_clock; | 
 |  | 
 | 		break; | 
 | 	case PERF_COUNT_SW_TASK_CLOCK: | 
 | 		/* | 
 | 		 * If the user instantiates this as a per-cpu event, | 
 | 		 * use the cpu_clock event instead. | 
 | 		 */ | 
 | 		if (event->ctx->task) | 
 | 			pmu = &perf_ops_task_clock; | 
 | 		else | 
 | 			pmu = &perf_ops_cpu_clock; | 
 |  | 
 | 		break; | 
 | 	case PERF_COUNT_SW_PAGE_FAULTS: | 
 | 	case PERF_COUNT_SW_PAGE_FAULTS_MIN: | 
 | 	case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | 
 | 	case PERF_COUNT_SW_CONTEXT_SWITCHES: | 
 | 	case PERF_COUNT_SW_CPU_MIGRATIONS: | 
 | 		if (!event->parent) { | 
 | 			atomic_inc(&perf_swevent_enabled[event_id]); | 
 | 			event->destroy = sw_perf_event_destroy; | 
 | 		} | 
 | 		pmu = &perf_ops_generic; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return pmu; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialize a event structure | 
 |  */ | 
 | static struct perf_event * | 
 | perf_event_alloc(struct perf_event_attr *attr, | 
 | 		   int cpu, | 
 | 		   struct perf_event_context *ctx, | 
 | 		   struct perf_event *group_leader, | 
 | 		   struct perf_event *parent_event, | 
 | 		   gfp_t gfpflags) | 
 | { | 
 | 	const struct pmu *pmu; | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	long err; | 
 |  | 
 | 	event = kzalloc(sizeof(*event), gfpflags); | 
 | 	if (!event) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Single events are their own group leaders, with an | 
 | 	 * empty sibling list: | 
 | 	 */ | 
 | 	if (!group_leader) | 
 | 		group_leader = event; | 
 |  | 
 | 	mutex_init(&event->child_mutex); | 
 | 	INIT_LIST_HEAD(&event->child_list); | 
 |  | 
 | 	INIT_LIST_HEAD(&event->group_entry); | 
 | 	INIT_LIST_HEAD(&event->event_entry); | 
 | 	INIT_LIST_HEAD(&event->sibling_list); | 
 | 	init_waitqueue_head(&event->waitq); | 
 |  | 
 | 	mutex_init(&event->mmap_mutex); | 
 |  | 
 | 	event->cpu		= cpu; | 
 | 	event->attr		= *attr; | 
 | 	event->group_leader	= group_leader; | 
 | 	event->pmu		= NULL; | 
 | 	event->ctx		= ctx; | 
 | 	event->oncpu		= -1; | 
 |  | 
 | 	event->parent		= parent_event; | 
 |  | 
 | 	event->ns		= get_pid_ns(current->nsproxy->pid_ns); | 
 | 	event->id		= atomic64_inc_return(&perf_event_id); | 
 |  | 
 | 	event->state		= PERF_EVENT_STATE_INACTIVE; | 
 |  | 
 | 	if (attr->disabled) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | 	pmu = NULL; | 
 |  | 
 | 	hwc = &event->hw; | 
 | 	hwc->sample_period = attr->sample_period; | 
 | 	if (attr->freq && attr->sample_freq) | 
 | 		hwc->sample_period = 1; | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | 	atomic64_set(&hwc->period_left, hwc->sample_period); | 
 |  | 
 | 	/* | 
 | 	 * we currently do not support PERF_FORMAT_GROUP on inherited events | 
 | 	 */ | 
 | 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | 
 | 		goto done; | 
 |  | 
 | 	switch (attr->type) { | 
 | 	case PERF_TYPE_RAW: | 
 | 	case PERF_TYPE_HARDWARE: | 
 | 	case PERF_TYPE_HW_CACHE: | 
 | 		pmu = hw_perf_event_init(event); | 
 | 		break; | 
 |  | 
 | 	case PERF_TYPE_SOFTWARE: | 
 | 		pmu = sw_perf_event_init(event); | 
 | 		break; | 
 |  | 
 | 	case PERF_TYPE_TRACEPOINT: | 
 | 		pmu = tp_perf_event_init(event); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | done: | 
 | 	err = 0; | 
 | 	if (!pmu) | 
 | 		err = -EINVAL; | 
 | 	else if (IS_ERR(pmu)) | 
 | 		err = PTR_ERR(pmu); | 
 |  | 
 | 	if (err) { | 
 | 		if (event->ns) | 
 | 			put_pid_ns(event->ns); | 
 | 		kfree(event); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	event->pmu = pmu; | 
 |  | 
 | 	if (!event->parent) { | 
 | 		atomic_inc(&nr_events); | 
 | 		if (event->attr.mmap) | 
 | 			atomic_inc(&nr_mmap_events); | 
 | 		if (event->attr.comm) | 
 | 			atomic_inc(&nr_comm_events); | 
 | 		if (event->attr.task) | 
 | 			atomic_inc(&nr_task_events); | 
 | 	} | 
 |  | 
 | 	return event; | 
 | } | 
 |  | 
 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | 
 | 			  struct perf_event_attr *attr) | 
 | { | 
 | 	u32 size; | 
 | 	int ret; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * zero the full structure, so that a short copy will be nice. | 
 | 	 */ | 
 | 	memset(attr, 0, sizeof(*attr)); | 
 |  | 
 | 	ret = get_user(size, &uattr->size); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (size > PAGE_SIZE)	/* silly large */ | 
 | 		goto err_size; | 
 |  | 
 | 	if (!size)		/* abi compat */ | 
 | 		size = PERF_ATTR_SIZE_VER0; | 
 |  | 
 | 	if (size < PERF_ATTR_SIZE_VER0) | 
 | 		goto err_size; | 
 |  | 
 | 	/* | 
 | 	 * If we're handed a bigger struct than we know of, | 
 | 	 * ensure all the unknown bits are 0 - i.e. new | 
 | 	 * user-space does not rely on any kernel feature | 
 | 	 * extensions we dont know about yet. | 
 | 	 */ | 
 | 	if (size > sizeof(*attr)) { | 
 | 		unsigned char __user *addr; | 
 | 		unsigned char __user *end; | 
 | 		unsigned char val; | 
 |  | 
 | 		addr = (void __user *)uattr + sizeof(*attr); | 
 | 		end  = (void __user *)uattr + size; | 
 |  | 
 | 		for (; addr < end; addr++) { | 
 | 			ret = get_user(val, addr); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			if (val) | 
 | 				goto err_size; | 
 | 		} | 
 | 		size = sizeof(*attr); | 
 | 	} | 
 |  | 
 | 	ret = copy_from_user(attr, uattr, size); | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * If the type exists, the corresponding creation will verify | 
 | 	 * the attr->config. | 
 | 	 */ | 
 | 	if (attr->type >= PERF_TYPE_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | err_size: | 
 | 	put_user(sizeof(*attr), &uattr->size); | 
 | 	ret = -E2BIG; | 
 | 	goto out; | 
 | } | 
 |  | 
 | int perf_event_set_output(struct perf_event *event, int output_fd) | 
 | { | 
 | 	struct perf_event *output_event = NULL; | 
 | 	struct file *output_file = NULL; | 
 | 	struct perf_event *old_output; | 
 | 	int fput_needed = 0; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (!output_fd) | 
 | 		goto set; | 
 |  | 
 | 	output_file = fget_light(output_fd, &fput_needed); | 
 | 	if (!output_file) | 
 | 		return -EBADF; | 
 |  | 
 | 	if (output_file->f_op != &perf_fops) | 
 | 		goto out; | 
 |  | 
 | 	output_event = output_file->private_data; | 
 |  | 
 | 	/* Don't chain output fds */ | 
 | 	if (output_event->output) | 
 | 		goto out; | 
 |  | 
 | 	/* Don't set an output fd when we already have an output channel */ | 
 | 	if (event->data) | 
 | 		goto out; | 
 |  | 
 | 	atomic_long_inc(&output_file->f_count); | 
 |  | 
 | set: | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	old_output = event->output; | 
 | 	rcu_assign_pointer(event->output, output_event); | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	if (old_output) { | 
 | 		/* | 
 | 		 * we need to make sure no existing perf_output_*() | 
 | 		 * is still referencing this event. | 
 | 		 */ | 
 | 		synchronize_rcu(); | 
 | 		fput(old_output->filp); | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	fput_light(output_file, fput_needed); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_perf_event_open - open a performance event, associate it to a task/cpu | 
 |  * | 
 |  * @attr_uptr:	event_id type attributes for monitoring/sampling | 
 |  * @pid:		target pid | 
 |  * @cpu:		target cpu | 
 |  * @group_fd:		group leader event fd | 
 |  */ | 
 | SYSCALL_DEFINE5(perf_event_open, | 
 | 		struct perf_event_attr __user *, attr_uptr, | 
 | 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 
 | { | 
 | 	struct perf_event *event, *group_leader; | 
 | 	struct perf_event_attr attr; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct file *event_file = NULL; | 
 | 	struct file *group_file = NULL; | 
 | 	int fput_needed = 0; | 
 | 	int fput_needed2 = 0; | 
 | 	int err; | 
 |  | 
 | 	/* for future expandability... */ | 
 | 	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = perf_copy_attr(attr_uptr, &attr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!attr.exclude_kernel) { | 
 | 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (attr.freq) { | 
 | 		if (attr.sample_freq > sysctl_perf_event_sample_rate) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the target context (task or percpu): | 
 | 	 */ | 
 | 	ctx = find_get_context(pid, cpu); | 
 | 	if (IS_ERR(ctx)) | 
 | 		return PTR_ERR(ctx); | 
 |  | 
 | 	/* | 
 | 	 * Look up the group leader (we will attach this event to it): | 
 | 	 */ | 
 | 	group_leader = NULL; | 
 | 	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | 
 | 		err = -EINVAL; | 
 | 		group_file = fget_light(group_fd, &fput_needed); | 
 | 		if (!group_file) | 
 | 			goto err_put_context; | 
 | 		if (group_file->f_op != &perf_fops) | 
 | 			goto err_put_context; | 
 |  | 
 | 		group_leader = group_file->private_data; | 
 | 		/* | 
 | 		 * Do not allow a recursive hierarchy (this new sibling | 
 | 		 * becoming part of another group-sibling): | 
 | 		 */ | 
 | 		if (group_leader->group_leader != group_leader) | 
 | 			goto err_put_context; | 
 | 		/* | 
 | 		 * Do not allow to attach to a group in a different | 
 | 		 * task or CPU context: | 
 | 		 */ | 
 | 		if (group_leader->ctx != ctx) | 
 | 			goto err_put_context; | 
 | 		/* | 
 | 		 * Only a group leader can be exclusive or pinned | 
 | 		 */ | 
 | 		if (attr.exclusive || attr.pinned) | 
 | 			goto err_put_context; | 
 | 	} | 
 |  | 
 | 	event = perf_event_alloc(&attr, cpu, ctx, group_leader, | 
 | 				     NULL, GFP_KERNEL); | 
 | 	err = PTR_ERR(event); | 
 | 	if (IS_ERR(event)) | 
 | 		goto err_put_context; | 
 |  | 
 | 	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | 
 | 	if (err < 0) | 
 | 		goto err_free_put_context; | 
 |  | 
 | 	event_file = fget_light(err, &fput_needed2); | 
 | 	if (!event_file) | 
 | 		goto err_free_put_context; | 
 |  | 
 | 	if (flags & PERF_FLAG_FD_OUTPUT) { | 
 | 		err = perf_event_set_output(event, group_fd); | 
 | 		if (err) | 
 | 			goto err_fput_free_put_context; | 
 | 	} | 
 |  | 
 | 	event->filp = event_file; | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	perf_install_in_context(ctx, event, cpu); | 
 | 	++ctx->generation; | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	event->owner = current; | 
 | 	get_task_struct(current); | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_add_tail(&event->owner_entry, ¤t->perf_event_list); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | err_fput_free_put_context: | 
 | 	fput_light(event_file, fput_needed2); | 
 |  | 
 | err_free_put_context: | 
 | 	if (err < 0) | 
 | 		kfree(event); | 
 |  | 
 | err_put_context: | 
 | 	if (err < 0) | 
 | 		put_ctx(ctx); | 
 |  | 
 | 	fput_light(group_file, fput_needed); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * inherit a event from parent task to child task: | 
 |  */ | 
 | static struct perf_event * | 
 | inherit_event(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event *group_leader, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	struct perf_event *child_event; | 
 |  | 
 | 	/* | 
 | 	 * Instead of creating recursive hierarchies of events, | 
 | 	 * we link inherited events back to the original parent, | 
 | 	 * which has a filp for sure, which we use as the reference | 
 | 	 * count: | 
 | 	 */ | 
 | 	if (parent_event->parent) | 
 | 		parent_event = parent_event->parent; | 
 |  | 
 | 	child_event = perf_event_alloc(&parent_event->attr, | 
 | 					   parent_event->cpu, child_ctx, | 
 | 					   group_leader, parent_event, | 
 | 					   GFP_KERNEL); | 
 | 	if (IS_ERR(child_event)) | 
 | 		return child_event; | 
 | 	get_ctx(child_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Make the child state follow the state of the parent event, | 
 | 	 * not its attr.disabled bit.  We hold the parent's mutex, | 
 | 	 * so we won't race with perf_event_{en, dis}able_family. | 
 | 	 */ | 
 | 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		child_event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	else | 
 | 		child_event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | 	if (parent_event->attr.freq) | 
 | 		child_event->hw.sample_period = parent_event->hw.sample_period; | 
 |  | 
 | 	/* | 
 | 	 * Link it up in the child's context: | 
 | 	 */ | 
 | 	add_event_to_ctx(child_event, child_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Get a reference to the parent filp - we will fput it | 
 | 	 * when the child event exits. This is safe to do because | 
 | 	 * we are in the parent and we know that the filp still | 
 | 	 * exists and has a nonzero count: | 
 | 	 */ | 
 | 	atomic_long_inc(&parent_event->filp->f_count); | 
 |  | 
 | 	/* | 
 | 	 * Link this into the parent event's child list | 
 | 	 */ | 
 | 	WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	list_add_tail(&child_event->child_list, &parent_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	return child_event; | 
 | } | 
 |  | 
 | static int inherit_group(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	struct perf_event *leader; | 
 | 	struct perf_event *sub; | 
 | 	struct perf_event *child_ctr; | 
 |  | 
 | 	leader = inherit_event(parent_event, parent, parent_ctx, | 
 | 				 child, NULL, child_ctx); | 
 | 	if (IS_ERR(leader)) | 
 | 		return PTR_ERR(leader); | 
 | 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | 
 | 		child_ctr = inherit_event(sub, parent, parent_ctx, | 
 | 					    child, leader, child_ctx); | 
 | 		if (IS_ERR(child_ctr)) | 
 | 			return PTR_ERR(child_ctr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sync_child_event(struct perf_event *child_event, | 
 | 			       struct task_struct *child) | 
 | { | 
 | 	struct perf_event *parent_event = child_event->parent; | 
 | 	u64 child_val; | 
 |  | 
 | 	if (child_event->attr.inherit_stat) | 
 | 		perf_event_read_event(child_event, child); | 
 |  | 
 | 	child_val = atomic64_read(&child_event->count); | 
 |  | 
 | 	/* | 
 | 	 * Add back the child's count to the parent's count: | 
 | 	 */ | 
 | 	atomic64_add(child_val, &parent_event->count); | 
 | 	atomic64_add(child_event->total_time_enabled, | 
 | 		     &parent_event->child_total_time_enabled); | 
 | 	atomic64_add(child_event->total_time_running, | 
 | 		     &parent_event->child_total_time_running); | 
 |  | 
 | 	/* | 
 | 	 * Remove this event from the parent's list | 
 | 	 */ | 
 | 	WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	list_del_init(&child_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Release the parent event, if this was the last | 
 | 	 * reference to it. | 
 | 	 */ | 
 | 	fput(parent_event->filp); | 
 | } | 
 |  | 
 | static void | 
 | __perf_event_exit_task(struct perf_event *child_event, | 
 | 			 struct perf_event_context *child_ctx, | 
 | 			 struct task_struct *child) | 
 | { | 
 | 	struct perf_event *parent_event; | 
 |  | 
 | 	update_event_times(child_event); | 
 | 	perf_event_remove_from_context(child_event); | 
 |  | 
 | 	parent_event = child_event->parent; | 
 | 	/* | 
 | 	 * It can happen that parent exits first, and has events | 
 | 	 * that are still around due to the child reference. These | 
 | 	 * events need to be zapped - but otherwise linger. | 
 | 	 */ | 
 | 	if (parent_event) { | 
 | 		sync_child_event(child_event, child); | 
 | 		free_event(child_event); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When a child task exits, feed back event values to parent events. | 
 |  */ | 
 | void perf_event_exit_task(struct task_struct *child) | 
 | { | 
 | 	struct perf_event *child_event, *tmp; | 
 | 	struct perf_event_context *child_ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (likely(!child->perf_event_ctxp)) { | 
 | 		perf_event_task(child, NULL, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	/* | 
 | 	 * We can't reschedule here because interrupts are disabled, | 
 | 	 * and either child is current or it is a task that can't be | 
 | 	 * scheduled, so we are now safe from rescheduling changing | 
 | 	 * our context. | 
 | 	 */ | 
 | 	child_ctx = child->perf_event_ctxp; | 
 | 	__perf_event_task_sched_out(child_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Take the context lock here so that if find_get_context is | 
 | 	 * reading child->perf_event_ctxp, we wait until it has | 
 | 	 * incremented the context's refcount before we do put_ctx below. | 
 | 	 */ | 
 | 	spin_lock(&child_ctx->lock); | 
 | 	child->perf_event_ctxp = NULL; | 
 | 	/* | 
 | 	 * If this context is a clone; unclone it so it can't get | 
 | 	 * swapped to another process while we're removing all | 
 | 	 * the events from it. | 
 | 	 */ | 
 | 	unclone_ctx(child_ctx); | 
 | 	spin_unlock_irqrestore(&child_ctx->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Report the task dead after unscheduling the events so that we | 
 | 	 * won't get any samples after PERF_RECORD_EXIT. We can however still | 
 | 	 * get a few PERF_RECORD_READ events. | 
 | 	 */ | 
 | 	perf_event_task(child, child_ctx, 0); | 
 |  | 
 | 	/* | 
 | 	 * We can recurse on the same lock type through: | 
 | 	 * | 
 | 	 *   __perf_event_exit_task() | 
 | 	 *     sync_child_event() | 
 | 	 *       fput(parent_event->filp) | 
 | 	 *         perf_release() | 
 | 	 *           mutex_lock(&ctx->mutex) | 
 | 	 * | 
 | 	 * But since its the parent context it won't be the same instance. | 
 | 	 */ | 
 | 	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | 
 |  | 
 | again: | 
 | 	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | 
 | 				 group_entry) | 
 | 		__perf_event_exit_task(child_event, child_ctx, child); | 
 |  | 
 | 	/* | 
 | 	 * If the last event was a group event, it will have appended all | 
 | 	 * its siblings to the list, but we obtained 'tmp' before that which | 
 | 	 * will still point to the list head terminating the iteration. | 
 | 	 */ | 
 | 	if (!list_empty(&child_ctx->group_list)) | 
 | 		goto again; | 
 |  | 
 | 	mutex_unlock(&child_ctx->mutex); | 
 |  | 
 | 	put_ctx(child_ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * free an unexposed, unused context as created by inheritance by | 
 |  * init_task below, used by fork() in case of fail. | 
 |  */ | 
 | void perf_event_free_task(struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx = task->perf_event_ctxp; | 
 | 	struct perf_event *event, *tmp; | 
 |  | 
 | 	if (!ctx) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&ctx->mutex); | 
 | again: | 
 | 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | 
 | 		struct perf_event *parent = event->parent; | 
 |  | 
 | 		if (WARN_ON_ONCE(!parent)) | 
 | 			continue; | 
 |  | 
 | 		mutex_lock(&parent->child_mutex); | 
 | 		list_del_init(&event->child_list); | 
 | 		mutex_unlock(&parent->child_mutex); | 
 |  | 
 | 		fput(parent->filp); | 
 |  | 
 | 		list_del_event(event, ctx); | 
 | 		free_event(event); | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&ctx->group_list)) | 
 | 		goto again; | 
 |  | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	put_ctx(ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in task_struct | 
 |  */ | 
 | int perf_event_init_task(struct task_struct *child) | 
 | { | 
 | 	struct perf_event_context *child_ctx, *parent_ctx; | 
 | 	struct perf_event_context *cloned_ctx; | 
 | 	struct perf_event *event; | 
 | 	struct task_struct *parent = current; | 
 | 	int inherited_all = 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	child->perf_event_ctxp = NULL; | 
 |  | 
 | 	mutex_init(&child->perf_event_mutex); | 
 | 	INIT_LIST_HEAD(&child->perf_event_list); | 
 |  | 
 | 	if (likely(!parent->perf_event_ctxp)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * This is executed from the parent task context, so inherit | 
 | 	 * events that have been marked for cloning. | 
 | 	 * First allocate and initialize a context for the child. | 
 | 	 */ | 
 |  | 
 | 	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | 
 | 	if (!child_ctx) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	__perf_event_init_context(child_ctx, child); | 
 | 	child->perf_event_ctxp = child_ctx; | 
 | 	get_task_struct(child); | 
 |  | 
 | 	/* | 
 | 	 * If the parent's context is a clone, pin it so it won't get | 
 | 	 * swapped under us. | 
 | 	 */ | 
 | 	parent_ctx = perf_pin_task_context(parent); | 
 |  | 
 | 	/* | 
 | 	 * No need to check if parent_ctx != NULL here; since we saw | 
 | 	 * it non-NULL earlier, the only reason for it to become NULL | 
 | 	 * is if we exit, and since we're currently in the middle of | 
 | 	 * a fork we can't be exiting at the same time. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Lock the parent list. No need to lock the child - not PID | 
 | 	 * hashed yet and not running, so nobody can access it. | 
 | 	 */ | 
 | 	mutex_lock(&parent_ctx->mutex); | 
 |  | 
 | 	/* | 
 | 	 * We dont have to disable NMIs - we are only looking at | 
 | 	 * the list, not manipulating it: | 
 | 	 */ | 
 | 	list_for_each_entry(event, &parent_ctx->group_list, group_entry) { | 
 |  | 
 | 		if (!event->attr.inherit) { | 
 | 			inherited_all = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = inherit_group(event, parent, parent_ctx, | 
 | 					     child, child_ctx); | 
 | 		if (ret) { | 
 | 			inherited_all = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (inherited_all) { | 
 | 		/* | 
 | 		 * Mark the child context as a clone of the parent | 
 | 		 * context, or of whatever the parent is a clone of. | 
 | 		 * Note that if the parent is a clone, it could get | 
 | 		 * uncloned at any point, but that doesn't matter | 
 | 		 * because the list of events and the generation | 
 | 		 * count can't have changed since we took the mutex. | 
 | 		 */ | 
 | 		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | 
 | 		if (cloned_ctx) { | 
 | 			child_ctx->parent_ctx = cloned_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->parent_gen; | 
 | 		} else { | 
 | 			child_ctx->parent_ctx = parent_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->generation; | 
 | 		} | 
 | 		get_ctx(child_ctx->parent_ctx); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&parent_ctx->mutex); | 
 |  | 
 | 	perf_unpin_context(parent_ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __cpuinit perf_event_init_cpu(int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 |  | 
 | 	cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 	__perf_event_init_context(&cpuctx->ctx, NULL); | 
 |  | 
 | 	spin_lock(&perf_resource_lock); | 
 | 	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | 
 | 	spin_unlock(&perf_resource_lock); | 
 |  | 
 | 	hw_perf_event_setup(cpu); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static void __perf_event_exit_cpu(void *info) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | 
 | 	struct perf_event_context *ctx = &cpuctx->ctx; | 
 | 	struct perf_event *event, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | 
 | 		__perf_event_remove_from_context(event); | 
 | } | 
 | static void perf_event_exit_cpu(int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 	struct perf_event_context *ctx = &cpuctx->ctx; | 
 |  | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | 
 | 	mutex_unlock(&ctx->mutex); | 
 | } | 
 | #else | 
 | static inline void perf_event_exit_cpu(int cpu) { } | 
 | #endif | 
 |  | 
 | static int __cpuinit | 
 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned int cpu = (long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		perf_event_init_cpu(cpu); | 
 | 		break; | 
 |  | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		hw_perf_event_setup_online(cpu); | 
 | 		break; | 
 |  | 
 | 	case CPU_DOWN_PREPARE: | 
 | 	case CPU_DOWN_PREPARE_FROZEN: | 
 | 		perf_event_exit_cpu(cpu); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * This has to have a higher priority than migration_notifier in sched.c. | 
 |  */ | 
 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | 
 | 	.notifier_call		= perf_cpu_notify, | 
 | 	.priority		= 20, | 
 | }; | 
 |  | 
 | void __init perf_event_init(void) | 
 | { | 
 | 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | 
 | 			(void *)(long)smp_processor_id()); | 
 | 	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | 
 | 			(void *)(long)smp_processor_id()); | 
 | 	register_cpu_notifier(&perf_cpu_nb); | 
 | } | 
 |  | 
 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", perf_reserved_percpu); | 
 | } | 
 |  | 
 | static ssize_t | 
 | perf_set_reserve_percpu(struct sysdev_class *class, | 
 | 			const char *buf, | 
 | 			size_t count) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	unsigned long val; | 
 | 	int err, cpu, mpt; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &val); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (val > perf_max_events) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock(&perf_resource_lock); | 
 | 	perf_reserved_percpu = val; | 
 | 	for_each_online_cpu(cpu) { | 
 | 		cpuctx = &per_cpu(perf_cpu_context, cpu); | 
 | 		spin_lock_irq(&cpuctx->ctx.lock); | 
 | 		mpt = min(perf_max_events - cpuctx->ctx.nr_events, | 
 | 			  perf_max_events - perf_reserved_percpu); | 
 | 		cpuctx->max_pertask = mpt; | 
 | 		spin_unlock_irq(&cpuctx->ctx.lock); | 
 | 	} | 
 | 	spin_unlock(&perf_resource_lock); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", perf_overcommit); | 
 | } | 
 |  | 
 | static ssize_t | 
 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | 
 | { | 
 | 	unsigned long val; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &val); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (val > 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock(&perf_resource_lock); | 
 | 	perf_overcommit = val; | 
 | 	spin_unlock(&perf_resource_lock); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static SYSDEV_CLASS_ATTR( | 
 | 				reserve_percpu, | 
 | 				0644, | 
 | 				perf_show_reserve_percpu, | 
 | 				perf_set_reserve_percpu | 
 | 			); | 
 |  | 
 | static SYSDEV_CLASS_ATTR( | 
 | 				overcommit, | 
 | 				0644, | 
 | 				perf_show_overcommit, | 
 | 				perf_set_overcommit | 
 | 			); | 
 |  | 
 | static struct attribute *perfclass_attrs[] = { | 
 | 	&attr_reserve_percpu.attr, | 
 | 	&attr_overcommit.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group perfclass_attr_group = { | 
 | 	.attrs			= perfclass_attrs, | 
 | 	.name			= "perf_events", | 
 | }; | 
 |  | 
 | static int __init perf_event_sysfs_init(void) | 
 | { | 
 | 	return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | 
 | 				  &perfclass_attr_group); | 
 | } | 
 | device_initcall(perf_event_sysfs_init); |