|  | /* | 
|  | * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc. | 
|  | * | 
|  | * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net) | 
|  | * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) | 
|  | */ | 
|  |  | 
|  | #include <asm/head.h> | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/percpu.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/openprom.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/asi.h> | 
|  | #include <asm/lsu.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | int show_unhandled_signals = 1; | 
|  |  | 
|  | static inline __kprobes int notify_page_fault(struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* kprobe_running() needs smp_processor_id() */ | 
|  | if (kprobes_built_in() && !user_mode(regs)) { | 
|  | preempt_disable(); | 
|  | if (kprobe_running() && kprobe_fault_handler(regs, 0)) | 
|  | ret = 1; | 
|  | preempt_enable(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __kprobes unhandled_fault(unsigned long address, | 
|  | struct task_struct *tsk, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | if ((unsigned long) address < PAGE_SIZE) { | 
|  | printk(KERN_ALERT "Unable to handle kernel NULL " | 
|  | "pointer dereference\n"); | 
|  | } else { | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request " | 
|  | "at virtual address %016lx\n", (unsigned long)address); | 
|  | } | 
|  | printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n", | 
|  | (tsk->mm ? | 
|  | CTX_HWBITS(tsk->mm->context) : | 
|  | CTX_HWBITS(tsk->active_mm->context))); | 
|  | printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n", | 
|  | (tsk->mm ? (unsigned long) tsk->mm->pgd : | 
|  | (unsigned long) tsk->active_mm->pgd)); | 
|  | die_if_kernel("Oops", regs); | 
|  | } | 
|  |  | 
|  | static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr) | 
|  | { | 
|  | printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n", | 
|  | regs->tpc); | 
|  | printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]); | 
|  | printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]); | 
|  | printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr); | 
|  | dump_stack(); | 
|  | unhandled_fault(regs->tpc, current, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We now make sure that mmap_sem is held in all paths that call | 
|  | * this. Additionally, to prevent kswapd from ripping ptes from | 
|  | * under us, raise interrupts around the time that we look at the | 
|  | * pte, kswapd will have to wait to get his smp ipi response from | 
|  | * us. vmtruncate likewise. This saves us having to get pte lock. | 
|  | */ | 
|  | static unsigned int get_user_insn(unsigned long tpc) | 
|  | { | 
|  | pgd_t *pgdp = pgd_offset(current->mm, tpc); | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep, pte; | 
|  | unsigned long pa; | 
|  | u32 insn = 0; | 
|  | unsigned long pstate; | 
|  |  | 
|  | if (pgd_none(*pgdp)) | 
|  | goto outret; | 
|  | pudp = pud_offset(pgdp, tpc); | 
|  | if (pud_none(*pudp)) | 
|  | goto outret; | 
|  | pmdp = pmd_offset(pudp, tpc); | 
|  | if (pmd_none(*pmdp)) | 
|  | goto outret; | 
|  |  | 
|  | /* This disables preemption for us as well. */ | 
|  | __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); | 
|  | __asm__ __volatile__("wrpr %0, %1, %%pstate" | 
|  | : : "r" (pstate), "i" (PSTATE_IE)); | 
|  | ptep = pte_offset_map(pmdp, tpc); | 
|  | pte = *ptep; | 
|  | if (!pte_present(pte)) | 
|  | goto out; | 
|  |  | 
|  | pa  = (pte_pfn(pte) << PAGE_SHIFT); | 
|  | pa += (tpc & ~PAGE_MASK); | 
|  |  | 
|  | /* Use phys bypass so we don't pollute dtlb/dcache. */ | 
|  | __asm__ __volatile__("lduwa [%1] %2, %0" | 
|  | : "=r" (insn) | 
|  | : "r" (pa), "i" (ASI_PHYS_USE_EC)); | 
|  |  | 
|  | out: | 
|  | pte_unmap(ptep); | 
|  | __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); | 
|  | outret: | 
|  | return insn; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | show_signal_msg(struct pt_regs *regs, int sig, int code, | 
|  | unsigned long address, struct task_struct *tsk) | 
|  | { | 
|  | if (!unhandled_signal(tsk, sig)) | 
|  | return; | 
|  |  | 
|  | if (!printk_ratelimit()) | 
|  | return; | 
|  |  | 
|  | printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x", | 
|  | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | 
|  | tsk->comm, task_pid_nr(tsk), address, | 
|  | (void *)regs->tpc, (void *)regs->u_regs[UREG_I7], | 
|  | (void *)regs->u_regs[UREG_FP], code); | 
|  |  | 
|  | print_vma_addr(KERN_CONT " in ", regs->tpc); | 
|  |  | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int); | 
|  |  | 
|  | static void do_fault_siginfo(int code, int sig, struct pt_regs *regs, | 
|  | unsigned int insn, int fault_code) | 
|  | { | 
|  | unsigned long addr; | 
|  | siginfo_t info; | 
|  |  | 
|  | info.si_code = code; | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | if (fault_code & FAULT_CODE_ITLB) | 
|  | addr = regs->tpc; | 
|  | else | 
|  | addr = compute_effective_address(regs, insn, 0); | 
|  | info.si_addr = (void __user *) addr; | 
|  | info.si_trapno = 0; | 
|  |  | 
|  | if (unlikely(show_unhandled_signals)) | 
|  | show_signal_msg(regs, sig, code, addr, current); | 
|  |  | 
|  | force_sig_info(sig, &info, current); | 
|  | } | 
|  |  | 
|  | extern int handle_ldf_stq(u32, struct pt_regs *); | 
|  | extern int handle_ld_nf(u32, struct pt_regs *); | 
|  |  | 
|  | static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn) | 
|  | { | 
|  | if (!insn) { | 
|  | if (!regs->tpc || (regs->tpc & 0x3)) | 
|  | return 0; | 
|  | if (regs->tstate & TSTATE_PRIV) { | 
|  | insn = *(unsigned int *) regs->tpc; | 
|  | } else { | 
|  | insn = get_user_insn(regs->tpc); | 
|  | } | 
|  | } | 
|  | return insn; | 
|  | } | 
|  |  | 
|  | static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code, | 
|  | int fault_code, unsigned int insn, | 
|  | unsigned long address) | 
|  | { | 
|  | unsigned char asi = ASI_P; | 
|  |  | 
|  | if ((!insn) && (regs->tstate & TSTATE_PRIV)) | 
|  | goto cannot_handle; | 
|  |  | 
|  | /* If user insn could be read (thus insn is zero), that | 
|  | * is fine.  We will just gun down the process with a signal | 
|  | * in that case. | 
|  | */ | 
|  |  | 
|  | if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) && | 
|  | (insn & 0xc0800000) == 0xc0800000) { | 
|  | if (insn & 0x2000) | 
|  | asi = (regs->tstate >> 24); | 
|  | else | 
|  | asi = (insn >> 5); | 
|  | if ((asi & 0xf2) == 0x82) { | 
|  | if (insn & 0x1000000) { | 
|  | handle_ldf_stq(insn, regs); | 
|  | } else { | 
|  | /* This was a non-faulting load. Just clear the | 
|  | * destination register(s) and continue with the next | 
|  | * instruction. -jj | 
|  | */ | 
|  | handle_ld_nf(insn, regs); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Is this in ex_table? */ | 
|  | if (regs->tstate & TSTATE_PRIV) { | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | entry = search_exception_tables(regs->tpc); | 
|  | if (entry) { | 
|  | regs->tpc = entry->fixup; | 
|  | regs->tnpc = regs->tpc + 4; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* The si_code was set to make clear whether | 
|  | * this was a SEGV_MAPERR or SEGV_ACCERR fault. | 
|  | */ | 
|  | do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cannot_handle: | 
|  | unhandled_fault (address, current, regs); | 
|  | } | 
|  |  | 
|  | static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs) | 
|  | { | 
|  | static int times; | 
|  |  | 
|  | if (times++ < 10) | 
|  | printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports " | 
|  | "64-bit TPC [%lx]\n", | 
|  | current->comm, current->pid, | 
|  | regs->tpc); | 
|  | show_regs(regs); | 
|  | } | 
|  |  | 
|  | static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs, | 
|  | unsigned long addr) | 
|  | { | 
|  | static int times; | 
|  |  | 
|  | if (times++ < 10) | 
|  | printk(KERN_ERR "FAULT[%s:%d]: 32-bit process " | 
|  | "reports 64-bit fault address [%lx]\n", | 
|  | current->comm, current->pid, addr); | 
|  | show_regs(regs); | 
|  | } | 
|  |  | 
|  | asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned int insn = 0; | 
|  | int si_code, fault_code, fault; | 
|  | unsigned long address, mm_rss; | 
|  |  | 
|  | fault_code = get_thread_fault_code(); | 
|  |  | 
|  | if (notify_page_fault(regs)) | 
|  | return; | 
|  |  | 
|  | si_code = SEGV_MAPERR; | 
|  | address = current_thread_info()->fault_address; | 
|  |  | 
|  | if ((fault_code & FAULT_CODE_ITLB) && | 
|  | (fault_code & FAULT_CODE_DTLB)) | 
|  | BUG(); | 
|  |  | 
|  | if (test_thread_flag(TIF_32BIT)) { | 
|  | if (!(regs->tstate & TSTATE_PRIV)) { | 
|  | if (unlikely((regs->tpc >> 32) != 0)) { | 
|  | bogus_32bit_fault_tpc(regs); | 
|  | goto intr_or_no_mm; | 
|  | } | 
|  | } | 
|  | if (unlikely((address >> 32) != 0)) { | 
|  | bogus_32bit_fault_address(regs, address); | 
|  | goto intr_or_no_mm; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (regs->tstate & TSTATE_PRIV) { | 
|  | unsigned long tpc = regs->tpc; | 
|  |  | 
|  | /* Sanity check the PC. */ | 
|  | if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) || | 
|  | (tpc >= MODULES_VADDR && tpc < MODULES_END)) { | 
|  | /* Valid, no problems... */ | 
|  | } else { | 
|  | bad_kernel_pc(regs, address); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt or have no user | 
|  | * context, we must not take the fault.. | 
|  | */ | 
|  | if (in_atomic() || !mm) | 
|  | goto intr_or_no_mm; | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); | 
|  |  | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if ((regs->tstate & TSTATE_PRIV) && | 
|  | !search_exception_tables(regs->tpc)) { | 
|  | insn = get_fault_insn(regs, insn); | 
|  | goto handle_kernel_fault; | 
|  | } | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area; | 
|  |  | 
|  | /* Pure DTLB misses do not tell us whether the fault causing | 
|  | * load/store/atomic was a write or not, it only says that there | 
|  | * was no match.  So in such a case we (carefully) read the | 
|  | * instruction to try and figure this out.  It's an optimization | 
|  | * so it's ok if we can't do this. | 
|  | * | 
|  | * Special hack, window spill/fill knows the exact fault type. | 
|  | */ | 
|  | if (((fault_code & | 
|  | (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) && | 
|  | (vma->vm_flags & VM_WRITE) != 0) { | 
|  | insn = get_fault_insn(regs, 0); | 
|  | if (!insn) | 
|  | goto continue_fault; | 
|  | /* All loads, stores and atomics have bits 30 and 31 both set | 
|  | * in the instruction.  Bit 21 is set in all stores, but we | 
|  | * have to avoid prefetches which also have bit 21 set. | 
|  | */ | 
|  | if ((insn & 0xc0200000) == 0xc0200000 && | 
|  | (insn & 0x01780000) != 0x01680000) { | 
|  | /* Don't bother updating thread struct value, | 
|  | * because update_mmu_cache only cares which tlb | 
|  | * the access came from. | 
|  | */ | 
|  | fault_code |= FAULT_CODE_WRITE; | 
|  | } | 
|  | } | 
|  | continue_fault: | 
|  |  | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto bad_area; | 
|  | if (!(fault_code & FAULT_CODE_WRITE)) { | 
|  | /* Non-faulting loads shouldn't expand stack. */ | 
|  | insn = get_fault_insn(regs, insn); | 
|  | if ((insn & 0xc0800000) == 0xc0800000) { | 
|  | unsigned char asi; | 
|  |  | 
|  | if (insn & 0x2000) | 
|  | asi = (regs->tstate >> 24); | 
|  | else | 
|  | asi = (insn >> 5); | 
|  | if ((asi & 0xf2) == 0x82) | 
|  | goto bad_area; | 
|  | } | 
|  | } | 
|  | if (expand_stack(vma, address)) | 
|  | goto bad_area; | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access, so | 
|  | * we can handle it.. | 
|  | */ | 
|  | good_area: | 
|  | si_code = SEGV_ACCERR; | 
|  |  | 
|  | /* If we took a ITLB miss on a non-executable page, catch | 
|  | * that here. | 
|  | */ | 
|  | if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) { | 
|  | BUG_ON(address != regs->tpc); | 
|  | BUG_ON(regs->tstate & TSTATE_PRIV); | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | if (fault_code & FAULT_CODE_WRITE) { | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* Spitfire has an icache which does not snoop | 
|  | * processor stores.  Later processors do... | 
|  | */ | 
|  | if (tlb_type == spitfire && | 
|  | (vma->vm_flags & VM_EXEC) != 0 && | 
|  | vma->vm_file != NULL) | 
|  | set_thread_fault_code(fault_code | | 
|  | FAULT_CODE_BLKCOMMIT); | 
|  | } else { | 
|  | /* Allow reads even for write-only mappings */ | 
|  | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0); | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) { | 
|  | if (fault & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (fault & VM_FAULT_SIGBUS) | 
|  | goto do_sigbus; | 
|  | BUG(); | 
|  | } | 
|  | if (fault & VM_FAULT_MAJOR) { | 
|  | current->maj_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); | 
|  | } else { | 
|  | current->min_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | mm_rss = get_mm_rss(mm); | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE)); | 
|  | #endif | 
|  | if (unlikely(mm_rss > | 
|  | mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit)) | 
|  | tsb_grow(mm, MM_TSB_BASE, mm_rss); | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | mm_rss = mm->context.huge_pte_count; | 
|  | if (unlikely(mm_rss > | 
|  | mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) | 
|  | tsb_grow(mm, MM_TSB_HUGE, mm_rss); | 
|  | #endif | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | bad_area: | 
|  | insn = get_fault_insn(regs, insn); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | handle_kernel_fault: | 
|  | do_kernel_fault(regs, si_code, fault_code, insn, address); | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | insn = get_fault_insn(regs, insn); | 
|  | up_read(&mm->mmap_sem); | 
|  | if (!(regs->tstate & TSTATE_PRIV)) { | 
|  | pagefault_out_of_memory(); | 
|  | return; | 
|  | } | 
|  | goto handle_kernel_fault; | 
|  |  | 
|  | intr_or_no_mm: | 
|  | insn = get_fault_insn(regs, 0); | 
|  | goto handle_kernel_fault; | 
|  |  | 
|  | do_sigbus: | 
|  | insn = get_fault_insn(regs, insn); | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Send a sigbus, regardless of whether we were in kernel | 
|  | * or user mode. | 
|  | */ | 
|  | do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code); | 
|  |  | 
|  | /* Kernel mode? Handle exceptions or die */ | 
|  | if (regs->tstate & TSTATE_PRIV) | 
|  | goto handle_kernel_fault; | 
|  | } |