|  | /** | 
|  | * kmemcheck - a heavyweight memory checker for the linux kernel | 
|  | * Copyright (C) 2007, 2008  Vegard Nossum <vegardno@ifi.uio.no> | 
|  | * (With a lot of help from Ingo Molnar and Pekka Enberg.) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License (version 2) as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/kmemcheck.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "error.h" | 
|  | #include "opcode.h" | 
|  | #include "pte.h" | 
|  | #include "selftest.h" | 
|  | #include "shadow.h" | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT | 
|  | #  define KMEMCHECK_ENABLED 0 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT | 
|  | #  define KMEMCHECK_ENABLED 1 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT | 
|  | #  define KMEMCHECK_ENABLED 2 | 
|  | #endif | 
|  |  | 
|  | int kmemcheck_enabled = KMEMCHECK_ENABLED; | 
|  |  | 
|  | int __init kmemcheck_init(void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Limit SMP to use a single CPU. We rely on the fact that this code | 
|  | * runs before SMP is set up. | 
|  | */ | 
|  | if (setup_max_cpus > 1) { | 
|  | printk(KERN_INFO | 
|  | "kmemcheck: Limiting number of CPUs to 1.\n"); | 
|  | setup_max_cpus = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!kmemcheck_selftest()) { | 
|  | printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n"); | 
|  | kmemcheck_enabled = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "kmemcheck: Initialized\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | early_initcall(kmemcheck_init); | 
|  |  | 
|  | /* | 
|  | * We need to parse the kmemcheck= option before any memory is allocated. | 
|  | */ | 
|  | static int __init param_kmemcheck(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | sscanf(str, "%d", &kmemcheck_enabled); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | early_param("kmemcheck", param_kmemcheck); | 
|  |  | 
|  | int kmemcheck_show_addr(unsigned long address) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = kmemcheck_pte_lookup(address); | 
|  | if (!pte) | 
|  | return 0; | 
|  |  | 
|  | set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); | 
|  | __flush_tlb_one(address); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kmemcheck_hide_addr(unsigned long address) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = kmemcheck_pte_lookup(address); | 
|  | if (!pte) | 
|  | return 0; | 
|  |  | 
|  | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); | 
|  | __flush_tlb_one(address); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct kmemcheck_context { | 
|  | bool busy; | 
|  | int balance; | 
|  |  | 
|  | /* | 
|  | * There can be at most two memory operands to an instruction, but | 
|  | * each address can cross a page boundary -- so we may need up to | 
|  | * four addresses that must be hidden/revealed for each fault. | 
|  | */ | 
|  | unsigned long addr[4]; | 
|  | unsigned long n_addrs; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Data size of the instruction that caused a fault. */ | 
|  | unsigned int size; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context); | 
|  |  | 
|  | bool kmemcheck_active(struct pt_regs *regs) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  |  | 
|  | return data->balance > 0; | 
|  | } | 
|  |  | 
|  | /* Save an address that needs to be shown/hidden */ | 
|  | static void kmemcheck_save_addr(unsigned long addr) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  |  | 
|  | BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr)); | 
|  | data->addr[data->n_addrs++] = addr; | 
|  | } | 
|  |  | 
|  | static unsigned int kmemcheck_show_all(void) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | unsigned int i; | 
|  | unsigned int n; | 
|  |  | 
|  | n = 0; | 
|  | for (i = 0; i < data->n_addrs; ++i) | 
|  | n += kmemcheck_show_addr(data->addr[i]); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static unsigned int kmemcheck_hide_all(void) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | unsigned int i; | 
|  | unsigned int n; | 
|  |  | 
|  | n = 0; | 
|  | for (i = 0; i < data->n_addrs; ++i) | 
|  | n += kmemcheck_hide_addr(data->addr[i]); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the #PF handler. | 
|  | */ | 
|  | void kmemcheck_show(struct pt_regs *regs) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (unlikely(data->balance != 0)) { | 
|  | kmemcheck_show_all(); | 
|  | kmemcheck_error_save_bug(regs); | 
|  | data->balance = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * None of the addresses actually belonged to kmemcheck. Note that | 
|  | * this is not an error. | 
|  | */ | 
|  | if (kmemcheck_show_all() == 0) | 
|  | return; | 
|  |  | 
|  | ++data->balance; | 
|  |  | 
|  | /* | 
|  | * The IF needs to be cleared as well, so that the faulting | 
|  | * instruction can run "uninterrupted". Otherwise, we might take | 
|  | * an interrupt and start executing that before we've had a chance | 
|  | * to hide the page again. | 
|  | * | 
|  | * NOTE: In the rare case of multiple faults, we must not override | 
|  | * the original flags: | 
|  | */ | 
|  | if (!(regs->flags & X86_EFLAGS_TF)) | 
|  | data->flags = regs->flags; | 
|  |  | 
|  | regs->flags |= X86_EFLAGS_TF; | 
|  | regs->flags &= ~X86_EFLAGS_IF; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the #DB handler. | 
|  | */ | 
|  | void kmemcheck_hide(struct pt_regs *regs) | 
|  | { | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | int n; | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (unlikely(data->balance != 1)) { | 
|  | kmemcheck_show_all(); | 
|  | kmemcheck_error_save_bug(regs); | 
|  | data->n_addrs = 0; | 
|  | data->balance = 0; | 
|  |  | 
|  | if (!(data->flags & X86_EFLAGS_TF)) | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | if (data->flags & X86_EFLAGS_IF) | 
|  | regs->flags |= X86_EFLAGS_IF; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (kmemcheck_enabled) | 
|  | n = kmemcheck_hide_all(); | 
|  | else | 
|  | n = kmemcheck_show_all(); | 
|  |  | 
|  | if (n == 0) | 
|  | return; | 
|  |  | 
|  | --data->balance; | 
|  |  | 
|  | data->n_addrs = 0; | 
|  |  | 
|  | if (!(data->flags & X86_EFLAGS_TF)) | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | if (data->flags & X86_EFLAGS_IF) | 
|  | regs->flags |= X86_EFLAGS_IF; | 
|  | } | 
|  |  | 
|  | void kmemcheck_show_pages(struct page *p, unsigned int n) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < n; ++i) { | 
|  | unsigned long address; | 
|  | pte_t *pte; | 
|  | unsigned int level; | 
|  |  | 
|  | address = (unsigned long) page_address(&p[i]); | 
|  | pte = lookup_address(address, &level); | 
|  | BUG_ON(!pte); | 
|  | BUG_ON(level != PG_LEVEL_4K); | 
|  |  | 
|  | set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); | 
|  | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN)); | 
|  | __flush_tlb_one(address); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kmemcheck_page_is_tracked(struct page *p) | 
|  | { | 
|  | /* This will also check the "hidden" flag of the PTE. */ | 
|  | return kmemcheck_pte_lookup((unsigned long) page_address(p)); | 
|  | } | 
|  |  | 
|  | void kmemcheck_hide_pages(struct page *p, unsigned int n) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < n; ++i) { | 
|  | unsigned long address; | 
|  | pte_t *pte; | 
|  | unsigned int level; | 
|  |  | 
|  | address = (unsigned long) page_address(&p[i]); | 
|  | pte = lookup_address(address, &level); | 
|  | BUG_ON(!pte); | 
|  | BUG_ON(level != PG_LEVEL_4K); | 
|  |  | 
|  | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); | 
|  | set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN)); | 
|  | __flush_tlb_one(address); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Access may NOT cross page boundary */ | 
|  | static void kmemcheck_read_strict(struct pt_regs *regs, | 
|  | unsigned long addr, unsigned int size) | 
|  | { | 
|  | void *shadow; | 
|  | enum kmemcheck_shadow status; | 
|  |  | 
|  | shadow = kmemcheck_shadow_lookup(addr); | 
|  | if (!shadow) | 
|  | return; | 
|  |  | 
|  | kmemcheck_save_addr(addr); | 
|  | status = kmemcheck_shadow_test(shadow, size); | 
|  | if (status == KMEMCHECK_SHADOW_INITIALIZED) | 
|  | return; | 
|  |  | 
|  | if (kmemcheck_enabled) | 
|  | kmemcheck_error_save(status, addr, size, regs); | 
|  |  | 
|  | if (kmemcheck_enabled == 2) | 
|  | kmemcheck_enabled = 0; | 
|  |  | 
|  | /* Don't warn about it again. */ | 
|  | kmemcheck_shadow_set(shadow, size); | 
|  | } | 
|  |  | 
|  | bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size) | 
|  | { | 
|  | enum kmemcheck_shadow status; | 
|  | void *shadow; | 
|  |  | 
|  | shadow = kmemcheck_shadow_lookup(addr); | 
|  | if (!shadow) | 
|  | return true; | 
|  |  | 
|  | status = kmemcheck_shadow_test_all(shadow, size); | 
|  |  | 
|  | return status == KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  |  | 
|  | /* Access may cross page boundary */ | 
|  | static void kmemcheck_read(struct pt_regs *regs, | 
|  | unsigned long addr, unsigned int size) | 
|  | { | 
|  | unsigned long page = addr & PAGE_MASK; | 
|  | unsigned long next_addr = addr + size - 1; | 
|  | unsigned long next_page = next_addr & PAGE_MASK; | 
|  |  | 
|  | if (likely(page == next_page)) { | 
|  | kmemcheck_read_strict(regs, addr, size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * What we do is basically to split the access across the | 
|  | * two pages and handle each part separately. Yes, this means | 
|  | * that we may now see reads that are 3 + 5 bytes, for | 
|  | * example (and if both are uninitialized, there will be two | 
|  | * reports), but it makes the code a lot simpler. | 
|  | */ | 
|  | kmemcheck_read_strict(regs, addr, next_page - addr); | 
|  | kmemcheck_read_strict(regs, next_page, next_addr - next_page); | 
|  | } | 
|  |  | 
|  | static void kmemcheck_write_strict(struct pt_regs *regs, | 
|  | unsigned long addr, unsigned int size) | 
|  | { | 
|  | void *shadow; | 
|  |  | 
|  | shadow = kmemcheck_shadow_lookup(addr); | 
|  | if (!shadow) | 
|  | return; | 
|  |  | 
|  | kmemcheck_save_addr(addr); | 
|  | kmemcheck_shadow_set(shadow, size); | 
|  | } | 
|  |  | 
|  | static void kmemcheck_write(struct pt_regs *regs, | 
|  | unsigned long addr, unsigned int size) | 
|  | { | 
|  | unsigned long page = addr & PAGE_MASK; | 
|  | unsigned long next_addr = addr + size - 1; | 
|  | unsigned long next_page = next_addr & PAGE_MASK; | 
|  |  | 
|  | if (likely(page == next_page)) { | 
|  | kmemcheck_write_strict(regs, addr, size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* See comment in kmemcheck_read(). */ | 
|  | kmemcheck_write_strict(regs, addr, next_page - addr); | 
|  | kmemcheck_write_strict(regs, next_page, next_addr - next_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copying is hard. We have two addresses, each of which may be split across | 
|  | * a page (and each page will have different shadow addresses). | 
|  | */ | 
|  | static void kmemcheck_copy(struct pt_regs *regs, | 
|  | unsigned long src_addr, unsigned long dst_addr, unsigned int size) | 
|  | { | 
|  | uint8_t shadow[8]; | 
|  | enum kmemcheck_shadow status; | 
|  |  | 
|  | unsigned long page; | 
|  | unsigned long next_addr; | 
|  | unsigned long next_page; | 
|  |  | 
|  | uint8_t *x; | 
|  | unsigned int i; | 
|  | unsigned int n; | 
|  |  | 
|  | BUG_ON(size > sizeof(shadow)); | 
|  |  | 
|  | page = src_addr & PAGE_MASK; | 
|  | next_addr = src_addr + size - 1; | 
|  | next_page = next_addr & PAGE_MASK; | 
|  |  | 
|  | if (likely(page == next_page)) { | 
|  | /* Same page */ | 
|  | x = kmemcheck_shadow_lookup(src_addr); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(src_addr); | 
|  | for (i = 0; i < size; ++i) | 
|  | shadow[i] = x[i]; | 
|  | } else { | 
|  | for (i = 0; i < size; ++i) | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  | } else { | 
|  | n = next_page - src_addr; | 
|  | BUG_ON(n > sizeof(shadow)); | 
|  |  | 
|  | /* First page */ | 
|  | x = kmemcheck_shadow_lookup(src_addr); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(src_addr); | 
|  | for (i = 0; i < n; ++i) | 
|  | shadow[i] = x[i]; | 
|  | } else { | 
|  | /* Not tracked */ | 
|  | for (i = 0; i < n; ++i) | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  |  | 
|  | /* Second page */ | 
|  | x = kmemcheck_shadow_lookup(next_page); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(next_page); | 
|  | for (i = n; i < size; ++i) | 
|  | shadow[i] = x[i - n]; | 
|  | } else { | 
|  | /* Not tracked */ | 
|  | for (i = n; i < size; ++i) | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  | } | 
|  |  | 
|  | page = dst_addr & PAGE_MASK; | 
|  | next_addr = dst_addr + size - 1; | 
|  | next_page = next_addr & PAGE_MASK; | 
|  |  | 
|  | if (likely(page == next_page)) { | 
|  | /* Same page */ | 
|  | x = kmemcheck_shadow_lookup(dst_addr); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(dst_addr); | 
|  | for (i = 0; i < size; ++i) { | 
|  | x[i] = shadow[i]; | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | n = next_page - dst_addr; | 
|  | BUG_ON(n > sizeof(shadow)); | 
|  |  | 
|  | /* First page */ | 
|  | x = kmemcheck_shadow_lookup(dst_addr); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(dst_addr); | 
|  | for (i = 0; i < n; ++i) { | 
|  | x[i] = shadow[i]; | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Second page */ | 
|  | x = kmemcheck_shadow_lookup(next_page); | 
|  | if (x) { | 
|  | kmemcheck_save_addr(next_page); | 
|  | for (i = n; i < size; ++i) { | 
|  | x[i - n] = shadow[i]; | 
|  | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | status = kmemcheck_shadow_test(shadow, size); | 
|  | if (status == KMEMCHECK_SHADOW_INITIALIZED) | 
|  | return; | 
|  |  | 
|  | if (kmemcheck_enabled) | 
|  | kmemcheck_error_save(status, src_addr, size, regs); | 
|  |  | 
|  | if (kmemcheck_enabled == 2) | 
|  | kmemcheck_enabled = 0; | 
|  | } | 
|  |  | 
|  | enum kmemcheck_method { | 
|  | KMEMCHECK_READ, | 
|  | KMEMCHECK_WRITE, | 
|  | }; | 
|  |  | 
|  | static void kmemcheck_access(struct pt_regs *regs, | 
|  | unsigned long fallback_address, enum kmemcheck_method fallback_method) | 
|  | { | 
|  | const uint8_t *insn; | 
|  | const uint8_t *insn_primary; | 
|  | unsigned int size; | 
|  |  | 
|  | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  |  | 
|  | /* Recursive fault -- ouch. */ | 
|  | if (data->busy) { | 
|  | kmemcheck_show_addr(fallback_address); | 
|  | kmemcheck_error_save_bug(regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | data->busy = true; | 
|  |  | 
|  | insn = (const uint8_t *) regs->ip; | 
|  | insn_primary = kmemcheck_opcode_get_primary(insn); | 
|  |  | 
|  | kmemcheck_opcode_decode(insn, &size); | 
|  |  | 
|  | switch (insn_primary[0]) { | 
|  | #ifdef CONFIG_KMEMCHECK_BITOPS_OK | 
|  | /* AND, OR, XOR */ | 
|  | /* | 
|  | * Unfortunately, these instructions have to be excluded from | 
|  | * our regular checking since they access only some (and not | 
|  | * all) bits. This clears out "bogus" bitfield-access warnings. | 
|  | */ | 
|  | case 0x80: | 
|  | case 0x81: | 
|  | case 0x82: | 
|  | case 0x83: | 
|  | switch ((insn_primary[1] >> 3) & 7) { | 
|  | /* OR */ | 
|  | case 1: | 
|  | /* AND */ | 
|  | case 4: | 
|  | /* XOR */ | 
|  | case 6: | 
|  | kmemcheck_write(regs, fallback_address, size); | 
|  | goto out; | 
|  |  | 
|  | /* ADD */ | 
|  | case 0: | 
|  | /* ADC */ | 
|  | case 2: | 
|  | /* SBB */ | 
|  | case 3: | 
|  | /* SUB */ | 
|  | case 5: | 
|  | /* CMP */ | 
|  | case 7: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | /* MOVS, MOVSB, MOVSW, MOVSD */ | 
|  | case 0xa4: | 
|  | case 0xa5: | 
|  | /* | 
|  | * These instructions are special because they take two | 
|  | * addresses, but we only get one page fault. | 
|  | */ | 
|  | kmemcheck_copy(regs, regs->si, regs->di, size); | 
|  | goto out; | 
|  |  | 
|  | /* CMPS, CMPSB, CMPSW, CMPSD */ | 
|  | case 0xa6: | 
|  | case 0xa7: | 
|  | kmemcheck_read(regs, regs->si, size); | 
|  | kmemcheck_read(regs, regs->di, size); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the opcode isn't special in any way, we use the data from the | 
|  | * page fault handler to determine the address and type of memory | 
|  | * access. | 
|  | */ | 
|  | switch (fallback_method) { | 
|  | case KMEMCHECK_READ: | 
|  | kmemcheck_read(regs, fallback_address, size); | 
|  | goto out; | 
|  | case KMEMCHECK_WRITE: | 
|  | kmemcheck_write(regs, fallback_address, size); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | data->busy = false; | 
|  | } | 
|  |  | 
|  | bool kmemcheck_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | /* | 
|  | * XXX: Is it safe to assume that memory accesses from virtual 86 | 
|  | * mode or non-kernel code segments will _never_ access kernel | 
|  | * memory (e.g. tracked pages)? For now, we need this to avoid | 
|  | * invoking kmemcheck for PnP BIOS calls. | 
|  | */ | 
|  | if (regs->flags & X86_VM_MASK) | 
|  | return false; | 
|  | if (regs->cs != __KERNEL_CS) | 
|  | return false; | 
|  |  | 
|  | pte = kmemcheck_pte_lookup(address); | 
|  | if (!pte) | 
|  | return false; | 
|  |  | 
|  | WARN_ON_ONCE(in_nmi()); | 
|  |  | 
|  | if (error_code & 2) | 
|  | kmemcheck_access(regs, address, KMEMCHECK_WRITE); | 
|  | else | 
|  | kmemcheck_access(regs, address, KMEMCHECK_READ); | 
|  |  | 
|  | kmemcheck_show(regs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool kmemcheck_trap(struct pt_regs *regs) | 
|  | { | 
|  | if (!kmemcheck_active(regs)) | 
|  | return false; | 
|  |  | 
|  | /* We're done. */ | 
|  | kmemcheck_hide(regs); | 
|  | return true; | 
|  | } |