|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/smp.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/homecache.h> | 
|  |  | 
|  | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  |  | 
|  | /* | 
|  | * The normal show_free_areas() is too verbose on Tile, with dozens | 
|  | * of processors and often four NUMA zones each with high and lowmem. | 
|  | */ | 
|  | void show_mem(void) | 
|  | { | 
|  | struct zone *zone; | 
|  |  | 
|  | pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu" | 
|  | " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu" | 
|  | " pagecache:%lu swap:%lu\n", | 
|  | (global_page_state(NR_ACTIVE_ANON) + | 
|  | global_page_state(NR_ACTIVE_FILE)), | 
|  | (global_page_state(NR_INACTIVE_ANON) + | 
|  | global_page_state(NR_INACTIVE_FILE)), | 
|  | global_page_state(NR_FILE_DIRTY), | 
|  | global_page_state(NR_WRITEBACK), | 
|  | global_page_state(NR_UNSTABLE_NFS), | 
|  | global_page_state(NR_FREE_PAGES), | 
|  | (global_page_state(NR_SLAB_RECLAIMABLE) + | 
|  | global_page_state(NR_SLAB_UNRECLAIMABLE)), | 
|  | global_page_state(NR_FILE_MAPPED), | 
|  | global_page_state(NR_PAGETABLE), | 
|  | global_page_state(NR_BOUNCE), | 
|  | global_page_state(NR_FILE_PAGES), | 
|  | nr_swap_pages); | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | unsigned long flags, order, total = 0, largest_order = -1; | 
|  |  | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&zone->lock, flags); | 
|  | for (order = 0; order < MAX_ORDER; order++) { | 
|  | int nr = zone->free_area[order].nr_free; | 
|  | total += nr << order; | 
|  | if (nr) | 
|  | largest_order = order; | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lock, flags); | 
|  | pr_err("Node %d %7s: %lukB (largest %luKb)\n", | 
|  | zone_to_nid(zone), zone->name, | 
|  | K(total), largest_order ? K(1UL) << largest_order : 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Associate a virtual page frame with a given physical page frame | 
|  | * and protection flags for that frame. | 
|  | */ | 
|  | static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pgd = swapper_pg_dir + pgd_index(vaddr); | 
|  | if (pgd_none(*pgd)) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | pud = pud_offset(pgd, vaddr); | 
|  | if (pud_none(*pud)) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | pmd = pmd_offset(pud, vaddr); | 
|  | if (pmd_none(*pmd)) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | pte = pte_offset_kernel(pmd, vaddr); | 
|  | /* <pfn,flags> stored as-is, to permit clearing entries */ | 
|  | set_pte(pte, pfn_pte(pfn, flags)); | 
|  |  | 
|  | /* | 
|  | * It's enough to flush this one mapping. | 
|  | * This appears conservative since it is only called | 
|  | * from __set_fixmap. | 
|  | */ | 
|  | local_flush_tlb_page(NULL, vaddr, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags) | 
|  | { | 
|  | unsigned long address = __fix_to_virt(idx); | 
|  |  | 
|  | if (idx >= __end_of_fixed_addresses) { | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | set_pte_pfn(address, phys >> PAGE_SHIFT, flags); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HIGHPTE) | 
|  | pte_t *_pte_offset_map(pmd_t *dir, unsigned long address, enum km_type type) | 
|  | { | 
|  | pte_t *pte = kmap_atomic(pmd_page(*dir), type) + | 
|  | (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK; | 
|  | return &pte[pte_index(address)]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * List of all pgd's needed so it can invalidate entries in both cached | 
|  | * and uncached pgd's. This is essentially codepath-based locking | 
|  | * against pageattr.c; it is the unique case in which a valid change | 
|  | * of kernel pagetables can't be lazily synchronized by vmalloc faults. | 
|  | * vmalloc faults work because attached pagetables are never freed. | 
|  | * The locking scheme was chosen on the basis of manfred's | 
|  | * recommendations and having no core impact whatsoever. | 
|  | * -- wli | 
|  | */ | 
|  | DEFINE_SPINLOCK(pgd_lock); | 
|  | LIST_HEAD(pgd_list); | 
|  |  | 
|  | static inline void pgd_list_add(pgd_t *pgd) | 
|  | { | 
|  | list_add(pgd_to_list(pgd), &pgd_list); | 
|  | } | 
|  |  | 
|  | static inline void pgd_list_del(pgd_t *pgd) | 
|  | { | 
|  | list_del(pgd_to_list(pgd)); | 
|  | } | 
|  |  | 
|  | #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) | 
|  | #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) | 
|  |  | 
|  | static void pgd_ctor(pgd_t *pgd) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  | /* | 
|  | * Check that the user interrupt vector has no L2. | 
|  | * It never should for the swapper, and new page tables | 
|  | * should always start with an empty user interrupt vector. | 
|  | */ | 
|  | BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); | 
|  | #endif | 
|  |  | 
|  | clone_pgd_range(pgd + KERNEL_PGD_INDEX_START, | 
|  | swapper_pg_dir + KERNEL_PGD_INDEX_START, | 
|  | KERNEL_PGD_PTRS); | 
|  |  | 
|  | pgd_list_add(pgd); | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | } | 
|  |  | 
|  | static void pgd_dtor(pgd_t *pgd) | 
|  | { | 
|  | unsigned long flags; /* can be called from interrupt context */ | 
|  |  | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  | pgd_list_del(pgd); | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | } | 
|  |  | 
|  | pgd_t *pgd_alloc(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); | 
|  | if (pgd) | 
|  | pgd_ctor(pgd); | 
|  | return pgd; | 
|  | } | 
|  |  | 
|  | void pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | pgd_dtor(pgd); | 
|  | kmem_cache_free(pgd_cache, pgd); | 
|  | } | 
|  |  | 
|  |  | 
|  | #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) | 
|  |  | 
|  | struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO|__GFP_COMP; | 
|  | struct page *p; | 
|  |  | 
|  | #ifdef CONFIG_HIGHPTE | 
|  | flags |= __GFP_HIGHMEM; | 
|  | #endif | 
|  |  | 
|  | p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); | 
|  | if (p == NULL) | 
|  | return NULL; | 
|  |  | 
|  | pgtable_page_ctor(p); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free page immediately (used in __pte_alloc if we raced with another | 
|  | * process).  We have to correct whatever pte_alloc_one() did before | 
|  | * returning the pages to the allocator. | 
|  | */ | 
|  | void pte_free(struct mm_struct *mm, struct page *p) | 
|  | { | 
|  | pgtable_page_dtor(p); | 
|  | __free_pages(p, L2_USER_PGTABLE_ORDER); | 
|  | } | 
|  |  | 
|  | void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, | 
|  | unsigned long address) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pgtable_page_dtor(pte); | 
|  | tlb->need_flush = 1; | 
|  | if (tlb_fast_mode(tlb)) { | 
|  | struct page *pte_pages[L2_USER_PGTABLE_PAGES]; | 
|  | for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) | 
|  | pte_pages[i] = pte + i; | 
|  | free_pages_and_swap_cache(pte_pages, L2_USER_PGTABLE_PAGES); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < L2_USER_PGTABLE_PAGES; ++i) { | 
|  | tlb->pages[tlb->nr++] = pte + i; | 
|  | if (tlb->nr >= FREE_PTE_NR) | 
|  | tlb_flush_mmu(tlb, 0, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  |  | 
|  | /* | 
|  | * FIXME: needs to be atomic vs hypervisor writes.  For now we make the | 
|  | * window of vulnerability a bit smaller by doing an unlocked 8-bit update. | 
|  | */ | 
|  | int ptep_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 | 
|  | # error Code assumes HV_PTE "accessed" bit in second byte | 
|  | #endif | 
|  | u8 *tmp = (u8 *)ptep; | 
|  | u8 second_byte = tmp[1]; | 
|  | if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) | 
|  | return 0; | 
|  | tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This implementation is atomic vs hypervisor writes, since the hypervisor | 
|  | * always writes the low word (where "accessed" and "dirty" are) and this | 
|  | * routine only writes the high word. | 
|  | */ | 
|  | void ptep_set_wrprotect(struct mm_struct *mm, | 
|  | unsigned long addr, pte_t *ptep) | 
|  | { | 
|  | #if HV_PTE_INDEX_WRITABLE < 32 | 
|  | # error Code assumes HV_PTE "writable" bit in high word | 
|  | #endif | 
|  | u32 *tmp = (u32 *)ptep; | 
|  | tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (pgd_addr_invalid(addr)) | 
|  | return NULL; | 
|  |  | 
|  | pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (!pud_present(*pud)) | 
|  | return NULL; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_huge_page(*pmd)) | 
|  | return (pte_t *)pmd; | 
|  | if (!pmd_present(*pmd)) | 
|  | return NULL; | 
|  | return pte_offset_kernel(pmd, addr); | 
|  | } | 
|  |  | 
|  | pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) | 
|  | { | 
|  | unsigned int width = smp_width; | 
|  | int x = cpu % width; | 
|  | int y = cpu / width; | 
|  | BUG_ON(y >= smp_height); | 
|  | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); | 
|  | BUG_ON(cpu < 0 || cpu >= NR_CPUS); | 
|  | BUG_ON(!cpu_is_valid_lotar(cpu)); | 
|  | return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); | 
|  | } | 
|  |  | 
|  | int get_remote_cache_cpu(pgprot_t prot) | 
|  | { | 
|  | HV_LOTAR lotar = hv_pte_get_lotar(prot); | 
|  | int x = HV_LOTAR_X(lotar); | 
|  | int y = HV_LOTAR_Y(lotar); | 
|  | BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); | 
|  | return x + y * smp_width; | 
|  | } | 
|  |  | 
|  | void set_pte_order(pte_t *ptep, pte_t pte, int order) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | /* Update the home of a PTE if necessary */ | 
|  | pte = pte_set_home(pte, page_home(page)); | 
|  |  | 
|  | #ifdef __tilegx__ | 
|  | *ptep = pte; | 
|  | #else | 
|  | /* | 
|  | * When setting a PTE, write the high bits first, then write | 
|  | * the low bits.  This sets the "present" bit only after the | 
|  | * other bits are in place.  If a particular PTE update | 
|  | * involves transitioning from one valid PTE to another, it | 
|  | * may be necessary to call set_pte_order() more than once, | 
|  | * transitioning via a suitable intermediate state. | 
|  | * Note that this sequence also means that if we are transitioning | 
|  | * from any migrating PTE to a non-migrating one, we will not | 
|  | * see a half-updated PTE with the migrating bit off. | 
|  | */ | 
|  | #if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 | 
|  | # error Must write the present and migrating bits last | 
|  | #endif | 
|  | ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); | 
|  | barrier(); | 
|  | ((u32 *)ptep)[0] = (u32)(pte_val(pte)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Can this mm load a PTE with cached_priority set? */ | 
|  | static inline int mm_is_priority_cached(struct mm_struct *mm) | 
|  | { | 
|  | return mm->context.priority_cached; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a priority mapping to an mm_context and | 
|  | * notify the hypervisor if this is the first one. | 
|  | */ | 
|  | void start_mm_caching(struct mm_struct *mm) | 
|  | { | 
|  | if (!mm_is_priority_cached(mm)) { | 
|  | mm->context.priority_cached = -1U; | 
|  | hv_set_caching(-1U); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate and return the priority_cached flag.  We know if it's zero | 
|  | * that we don't need to scan, since we immediately set it non-zero | 
|  | * when we first consider a MAP_CACHE_PRIORITY mapping. | 
|  | * | 
|  | * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, | 
|  | * since we're in an interrupt context (servicing switch_mm) we don't | 
|  | * worry about it and don't unset the "priority_cached" field. | 
|  | * Presumably we'll come back later and have more luck and clear | 
|  | * the value then; for now we'll just keep the cache marked for priority. | 
|  | */ | 
|  | static unsigned int update_priority_cached(struct mm_struct *mm) | 
|  | { | 
|  | if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { | 
|  | struct vm_area_struct *vm; | 
|  | for (vm = mm->mmap; vm; vm = vm->vm_next) { | 
|  | if (hv_pte_get_cached_priority(vm->vm_page_prot)) | 
|  | break; | 
|  | } | 
|  | if (vm == NULL) | 
|  | mm->context.priority_cached = 0; | 
|  | up_write(&mm->mmap_sem); | 
|  | } | 
|  | return mm->context.priority_cached; | 
|  | } | 
|  |  | 
|  | /* Set caching correctly for an mm that we are switching to. */ | 
|  | void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) | 
|  | { | 
|  | if (!mm_is_priority_cached(next)) { | 
|  | /* | 
|  | * If the new mm doesn't use priority caching, just see if we | 
|  | * need the hv_set_caching(), or can assume it's already zero. | 
|  | */ | 
|  | if (mm_is_priority_cached(prev)) | 
|  | hv_set_caching(0); | 
|  | } else { | 
|  | hv_set_caching(update_priority_cached(next)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CHIP_HAS_MMIO() | 
|  |  | 
|  | /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ | 
|  | void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, | 
|  | pgprot_t home) | 
|  | { | 
|  | void *addr; | 
|  | struct vm_struct *area; | 
|  | unsigned long offset, last_addr; | 
|  | pgprot_t pgprot; | 
|  |  | 
|  | /* Don't allow wraparound or zero size */ | 
|  | last_addr = phys_addr + size - 1; | 
|  | if (!size || last_addr < phys_addr) | 
|  | return NULL; | 
|  |  | 
|  | /* Create a read/write, MMIO VA mapping homed at the requested shim. */ | 
|  | pgprot = PAGE_KERNEL; | 
|  | pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); | 
|  | pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); | 
|  |  | 
|  | /* | 
|  | * Mappings have to be page-aligned | 
|  | */ | 
|  | offset = phys_addr & ~PAGE_MASK; | 
|  | phys_addr &= PAGE_MASK; | 
|  | size = PAGE_ALIGN(last_addr+1) - phys_addr; | 
|  |  | 
|  | /* | 
|  | * Ok, go for it.. | 
|  | */ | 
|  | area = get_vm_area(size, VM_IOREMAP /* | other flags? */); | 
|  | if (!area) | 
|  | return NULL; | 
|  | area->phys_addr = phys_addr; | 
|  | addr = area->addr; | 
|  | if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, | 
|  | phys_addr, pgprot)) { | 
|  | remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr)); | 
|  | return NULL; | 
|  | } | 
|  | return (__force void __iomem *) (offset + (char *)addr); | 
|  | } | 
|  | EXPORT_SYMBOL(ioremap_prot); | 
|  |  | 
|  | /* Map a PCI MMIO bus address into VA space. */ | 
|  | void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) | 
|  | { | 
|  | panic("ioremap for PCI MMIO is not supported"); | 
|  | } | 
|  | EXPORT_SYMBOL(ioremap); | 
|  |  | 
|  | /* Unmap an MMIO VA mapping. */ | 
|  | void iounmap(volatile void __iomem *addr_in) | 
|  | { | 
|  | volatile void __iomem *addr = (volatile void __iomem *) | 
|  | (PAGE_MASK & (unsigned long __force)addr_in); | 
|  | #if 1 | 
|  | vunmap((void * __force)addr); | 
|  | #else | 
|  | /* x86 uses this complicated flow instead of vunmap().  Is | 
|  | * there any particular reason we should do the same? */ | 
|  | struct vm_struct *p, *o; | 
|  |  | 
|  | /* Use the vm area unlocked, assuming the caller | 
|  | ensures there isn't another iounmap for the same address | 
|  | in parallel. Reuse of the virtual address is prevented by | 
|  | leaving it in the global lists until we're done with it. | 
|  | cpa takes care of the direct mappings. */ | 
|  | read_lock(&vmlist_lock); | 
|  | for (p = vmlist; p; p = p->next) { | 
|  | if (p->addr == addr) | 
|  | break; | 
|  | } | 
|  | read_unlock(&vmlist_lock); | 
|  |  | 
|  | if (!p) { | 
|  | pr_err("iounmap: bad address %p\n", addr); | 
|  | dump_stack(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Finally remove it */ | 
|  | o = remove_vm_area((void *)addr); | 
|  | BUG_ON(p != o || o == NULL); | 
|  | kfree(p); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(iounmap); | 
|  |  | 
|  | #endif /* CHIP_HAS_MMIO() */ |