|  | /* | 
|  | * Blackfin On-Chip Real Time Clock Driver | 
|  | *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x | 
|  | * | 
|  | * Copyright 2004-2009 Analog Devices Inc. | 
|  | * | 
|  | * Enter bugs at http://blackfin.uclinux.org/ | 
|  | * | 
|  | * Licensed under the GPL-2 or later. | 
|  | */ | 
|  |  | 
|  | /* The biggest issue we deal with in this driver is that register writes are | 
|  | * synced to the RTC frequency of 1Hz.  So if you write to a register and | 
|  | * attempt to write again before the first write has completed, the new write | 
|  | * is simply discarded.  This can easily be troublesome if userspace disables | 
|  | * one event (say periodic) and then right after enables an event (say alarm). | 
|  | * Since all events are maintained in the same interrupt mask register, if | 
|  | * we wrote to it to disable the first event and then wrote to it again to | 
|  | * enable the second event, that second event would not be enabled as the | 
|  | * write would be discarded and things quickly fall apart. | 
|  | * | 
|  | * To keep this delay from significantly degrading performance (we, in theory, | 
|  | * would have to sleep for up to 1 second everytime we wanted to write a | 
|  | * register), we only check the write pending status before we start to issue | 
|  | * a new write.  We bank on the idea that it doesnt matter when the sync | 
|  | * happens so long as we don't attempt another write before it does.  The only | 
|  | * time userspace would take this penalty is when they try and do multiple | 
|  | * operations right after another ... but in this case, they need to take the | 
|  | * sync penalty, so we should be OK. | 
|  | * | 
|  | * Also note that the RTC_ISTAT register does not suffer this penalty; its | 
|  | * writes to clear status registers complete immediately. | 
|  | */ | 
|  |  | 
|  | /* It may seem odd that there is no SWCNT code in here (which would be exposed | 
|  | * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral | 
|  | * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ | 
|  | * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs. | 
|  | * The same exact behavior can be accomplished by using the update interrupt | 
|  | * event (UIE).  Maybe down the line the RTC peripheral will suck less in which | 
|  | * case we can re-introduce PIE support. | 
|  | */ | 
|  |  | 
|  | #include <linux/bcd.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/blackfin.h> | 
|  |  | 
|  | #define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__) | 
|  |  | 
|  | struct bfin_rtc { | 
|  | struct rtc_device *rtc_dev; | 
|  | struct rtc_time rtc_alarm; | 
|  | u16 rtc_wrote_regs; | 
|  | }; | 
|  |  | 
|  | /* Bit values for the ISTAT / ICTL registers */ | 
|  | #define RTC_ISTAT_WRITE_COMPLETE  0x8000 | 
|  | #define RTC_ISTAT_WRITE_PENDING   0x4000 | 
|  | #define RTC_ISTAT_ALARM_DAY       0x0040 | 
|  | #define RTC_ISTAT_24HR            0x0020 | 
|  | #define RTC_ISTAT_HOUR            0x0010 | 
|  | #define RTC_ISTAT_MIN             0x0008 | 
|  | #define RTC_ISTAT_SEC             0x0004 | 
|  | #define RTC_ISTAT_ALARM           0x0002 | 
|  | #define RTC_ISTAT_STOPWATCH       0x0001 | 
|  |  | 
|  | /* Shift values for RTC_STAT register */ | 
|  | #define DAY_BITS_OFF    17 | 
|  | #define HOUR_BITS_OFF   12 | 
|  | #define MIN_BITS_OFF    6 | 
|  | #define SEC_BITS_OFF    0 | 
|  |  | 
|  | /* Some helper functions to convert between the common RTC notion of time | 
|  | * and the internal Blackfin notion that is encoded in 32bits. | 
|  | */ | 
|  | static inline u32 rtc_time_to_bfin(unsigned long now) | 
|  | { | 
|  | u32 sec  = (now % 60); | 
|  | u32 min  = (now % (60 * 60)) / 60; | 
|  | u32 hour = (now % (60 * 60 * 24)) / (60 * 60); | 
|  | u32 days = (now / (60 * 60 * 24)); | 
|  | return (sec  << SEC_BITS_OFF) + | 
|  | (min  << MIN_BITS_OFF) + | 
|  | (hour << HOUR_BITS_OFF) + | 
|  | (days << DAY_BITS_OFF); | 
|  | } | 
|  | static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin) | 
|  | { | 
|  | return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) + | 
|  | (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) + | 
|  | (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) + | 
|  | (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24); | 
|  | } | 
|  | static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm) | 
|  | { | 
|  | rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bfin_rtc_sync_pending - make sure pending writes have complete | 
|  | * | 
|  | * Wait for the previous write to a RTC register to complete. | 
|  | * Unfortunately, we can't sleep here as that introduces a race condition when | 
|  | * turning on interrupt events.  Consider this: | 
|  | *  - process sets alarm | 
|  | *  - process enables alarm | 
|  | *  - process sleeps while waiting for rtc write to sync | 
|  | *  - interrupt fires while process is sleeping | 
|  | *  - interrupt acks the event by writing to ISTAT | 
|  | *  - interrupt sets the WRITE PENDING bit | 
|  | *  - interrupt handler finishes | 
|  | *  - process wakes up, sees WRITE PENDING bit set, goes to sleep | 
|  | *  - interrupt fires while process is sleeping | 
|  | * If anyone can point out the obvious solution here, i'm listening :).  This | 
|  | * shouldn't be an issue on an SMP or preempt system as this function should | 
|  | * only be called with the rtc lock held. | 
|  | * | 
|  | * Other options: | 
|  | *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the | 
|  | *    inc rate for all RTC registers from 1HZ to 32.768kHZ ... | 
|  | *  - use the write complete IRQ | 
|  | */ | 
|  | /* | 
|  | static void bfin_rtc_sync_pending_polled(void) | 
|  | { | 
|  | while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) | 
|  | if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)) | 
|  | break; | 
|  | bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE); | 
|  | } | 
|  | */ | 
|  | static DECLARE_COMPLETION(bfin_write_complete); | 
|  | static void bfin_rtc_sync_pending(struct device *dev) | 
|  | { | 
|  | dev_dbg_stamp(dev); | 
|  | while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) | 
|  | wait_for_completion_timeout(&bfin_write_complete, HZ * 5); | 
|  | dev_dbg_stamp(dev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bfin_rtc_reset - set RTC to sane/known state | 
|  | * | 
|  | * Initialize the RTC.  Enable pre-scaler to scale RTC clock | 
|  | * to 1Hz and clear interrupt/status registers. | 
|  | */ | 
|  | static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | dev_dbg_stamp(dev); | 
|  | bfin_rtc_sync_pending(dev); | 
|  | bfin_write_RTC_PREN(0x1); | 
|  | bfin_write_RTC_ICTL(rtc_ictl); | 
|  | bfin_write_RTC_ALARM(0); | 
|  | bfin_write_RTC_ISTAT(0xFFFF); | 
|  | rtc->rtc_wrote_regs = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bfin_rtc_interrupt - handle interrupt from RTC | 
|  | * | 
|  | * Since we handle all RTC events here, we have to make sure the requested | 
|  | * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT) | 
|  | * always gets updated regardless of the interrupt being enabled.  So when one | 
|  | * even we care about (e.g. stopwatch) goes off, we don't want to turn around | 
|  | * and say that other events have happened as well (e.g. second).  We do not | 
|  | * have to worry about pending writes to the RTC_ICTL register as interrupts | 
|  | * only fire if they are enabled in the RTC_ICTL register. | 
|  | */ | 
|  | static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct device *dev = dev_id; | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | unsigned long events = 0; | 
|  | bool write_complete = false; | 
|  | u16 rtc_istat, rtc_ictl; | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | rtc_istat = bfin_read_RTC_ISTAT(); | 
|  | rtc_ictl = bfin_read_RTC_ICTL(); | 
|  |  | 
|  | if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) { | 
|  | bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE); | 
|  | write_complete = true; | 
|  | complete(&bfin_write_complete); | 
|  | } | 
|  |  | 
|  | if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) { | 
|  | if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) { | 
|  | bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY); | 
|  | events |= RTC_AF | RTC_IRQF; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rtc_ictl & RTC_ISTAT_SEC) { | 
|  | if (rtc_istat & RTC_ISTAT_SEC) { | 
|  | bfin_write_RTC_ISTAT(RTC_ISTAT_SEC); | 
|  | events |= RTC_UF | RTC_IRQF; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (events) | 
|  | rtc_update_irq(rtc->rtc_dev, 1, events); | 
|  |  | 
|  | if (write_complete || events) | 
|  | return IRQ_HANDLED; | 
|  | else | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static void bfin_rtc_int_set(u16 rtc_int) | 
|  | { | 
|  | bfin_write_RTC_ISTAT(rtc_int); | 
|  | bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int); | 
|  | } | 
|  | static void bfin_rtc_int_clear(u16 rtc_int) | 
|  | { | 
|  | bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int); | 
|  | } | 
|  | static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc) | 
|  | { | 
|  | /* Blackfin has different bits for whether the alarm is | 
|  | * more than 24 hours away. | 
|  | */ | 
|  | bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY); | 
|  | } | 
|  | static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | int ret = 0; | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | bfin_rtc_sync_pending(dev); | 
|  |  | 
|  | switch (cmd) { | 
|  | case RTC_UIE_ON: | 
|  | dev_dbg_stamp(dev); | 
|  | bfin_rtc_int_set(RTC_ISTAT_SEC); | 
|  | break; | 
|  | case RTC_UIE_OFF: | 
|  | dev_dbg_stamp(dev); | 
|  | bfin_rtc_int_clear(~RTC_ISTAT_SEC); | 
|  | break; | 
|  |  | 
|  | case RTC_AIE_ON: | 
|  | dev_dbg_stamp(dev); | 
|  | bfin_rtc_int_set_alarm(rtc); | 
|  | break; | 
|  | case RTC_AIE_OFF: | 
|  | dev_dbg_stamp(dev); | 
|  | bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_dbg_stamp(dev); | 
|  | ret = -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | if (rtc->rtc_wrote_regs & 0x1) | 
|  | bfin_rtc_sync_pending(dev); | 
|  |  | 
|  | rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | int ret; | 
|  | unsigned long now; | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | ret = rtc_tm_to_time(tm, &now); | 
|  | if (ret == 0) { | 
|  | if (rtc->rtc_wrote_regs & 0x1) | 
|  | bfin_rtc_sync_pending(dev); | 
|  | bfin_write_RTC_STAT(rtc_time_to_bfin(now)); | 
|  | rtc->rtc_wrote_regs = 0x1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | dev_dbg_stamp(dev); | 
|  | alrm->time = rtc->rtc_alarm; | 
|  | bfin_rtc_sync_pending(dev); | 
|  | alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) | 
|  | { | 
|  | struct bfin_rtc *rtc = dev_get_drvdata(dev); | 
|  | unsigned long rtc_alarm; | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | if (rtc_tm_to_time(&alrm->time, &rtc_alarm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rtc->rtc_alarm = alrm->time; | 
|  |  | 
|  | bfin_rtc_sync_pending(dev); | 
|  | bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm)); | 
|  | if (alrm->enabled) | 
|  | bfin_rtc_int_set_alarm(rtc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_proc(struct device *dev, struct seq_file *seq) | 
|  | { | 
|  | #define yesno(x) ((x) ? "yes" : "no") | 
|  | u16 ictl = bfin_read_RTC_ICTL(); | 
|  | dev_dbg_stamp(dev); | 
|  | seq_printf(seq, | 
|  | "alarm_IRQ\t: %s\n" | 
|  | "wkalarm_IRQ\t: %s\n" | 
|  | "seconds_IRQ\t: %s\n", | 
|  | yesno(ictl & RTC_ISTAT_ALARM), | 
|  | yesno(ictl & RTC_ISTAT_ALARM_DAY), | 
|  | yesno(ictl & RTC_ISTAT_SEC)); | 
|  | return 0; | 
|  | #undef yesno | 
|  | } | 
|  |  | 
|  | static struct rtc_class_ops bfin_rtc_ops = { | 
|  | .ioctl         = bfin_rtc_ioctl, | 
|  | .read_time     = bfin_rtc_read_time, | 
|  | .set_time      = bfin_rtc_set_time, | 
|  | .read_alarm    = bfin_rtc_read_alarm, | 
|  | .set_alarm     = bfin_rtc_set_alarm, | 
|  | .proc          = bfin_rtc_proc, | 
|  | }; | 
|  |  | 
|  | static int __devinit bfin_rtc_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct bfin_rtc *rtc; | 
|  | struct device *dev = &pdev->dev; | 
|  | int ret = 0; | 
|  | unsigned long timeout = jiffies + HZ; | 
|  |  | 
|  | dev_dbg_stamp(dev); | 
|  |  | 
|  | /* Allocate memory for our RTC struct */ | 
|  | rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); | 
|  | if (unlikely(!rtc)) | 
|  | return -ENOMEM; | 
|  | platform_set_drvdata(pdev, rtc); | 
|  | device_init_wakeup(dev, 1); | 
|  |  | 
|  | /* Register our RTC with the RTC framework */ | 
|  | rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops, | 
|  | THIS_MODULE); | 
|  | if (unlikely(IS_ERR(rtc->rtc_dev))) { | 
|  | ret = PTR_ERR(rtc->rtc_dev); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Grab the IRQ and init the hardware */ | 
|  | ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev); | 
|  | if (unlikely(ret)) | 
|  | goto err_reg; | 
|  | /* sometimes the bootloader touched things, but the write complete was not | 
|  | * enabled, so let's just do a quick timeout here since the IRQ will not fire ... | 
|  | */ | 
|  | while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING) | 
|  | if (time_after(jiffies, timeout)) | 
|  | break; | 
|  | bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE); | 
|  | bfin_write_RTC_SWCNT(0); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_reg: | 
|  | rtc_device_unregister(rtc->rtc_dev); | 
|  | err: | 
|  | kfree(rtc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devexit bfin_rtc_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct bfin_rtc *rtc = platform_get_drvdata(pdev); | 
|  | struct device *dev = &pdev->dev; | 
|  |  | 
|  | bfin_rtc_reset(dev, 0); | 
|  | free_irq(IRQ_RTC, dev); | 
|  | rtc_device_unregister(rtc->rtc_dev); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | kfree(rtc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state) | 
|  | { | 
|  | if (device_may_wakeup(&pdev->dev)) { | 
|  | enable_irq_wake(IRQ_RTC); | 
|  | bfin_rtc_sync_pending(&pdev->dev); | 
|  | } else | 
|  | bfin_rtc_int_clear(0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bfin_rtc_resume(struct platform_device *pdev) | 
|  | { | 
|  | if (device_may_wakeup(&pdev->dev)) | 
|  | disable_irq_wake(IRQ_RTC); | 
|  |  | 
|  | /* | 
|  | * Since only some of the RTC bits are maintained externally in the | 
|  | * Vbat domain, we need to wait for the RTC MMRs to be synced into | 
|  | * the core after waking up.  This happens every RTC 1HZ.  Once that | 
|  | * has happened, we can go ahead and re-enable the important write | 
|  | * complete interrupt event. | 
|  | */ | 
|  | while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC)) | 
|  | continue; | 
|  | bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | # define bfin_rtc_suspend NULL | 
|  | # define bfin_rtc_resume  NULL | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver bfin_rtc_driver = { | 
|  | .driver		= { | 
|  | .name	= "rtc-bfin", | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .probe		= bfin_rtc_probe, | 
|  | .remove		= __devexit_p(bfin_rtc_remove), | 
|  | .suspend	= bfin_rtc_suspend, | 
|  | .resume		= bfin_rtc_resume, | 
|  | }; | 
|  |  | 
|  | static int __init bfin_rtc_init(void) | 
|  | { | 
|  | return platform_driver_register(&bfin_rtc_driver); | 
|  | } | 
|  |  | 
|  | static void __exit bfin_rtc_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&bfin_rtc_driver); | 
|  | } | 
|  |  | 
|  | module_init(bfin_rtc_init); | 
|  | module_exit(bfin_rtc_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver"); | 
|  | MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:rtc-bfin"); |