| /* Common code for 32 and 64-bit NUMA */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/topology.h> | 
 |  | 
 | #include <asm/e820.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/acpi.h> | 
 | #include <asm/amd_nb.h> | 
 |  | 
 | #include "numa_internal.h" | 
 |  | 
 | int __initdata numa_off; | 
 | nodemask_t numa_nodes_parsed __initdata; | 
 |  | 
 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | static struct numa_meminfo numa_meminfo | 
 | #ifndef CONFIG_MEMORY_HOTPLUG | 
 | __initdata | 
 | #endif | 
 | ; | 
 |  | 
 | static int numa_distance_cnt; | 
 | static u8 *numa_distance; | 
 |  | 
 | static __init int numa_setup(char *opt) | 
 | { | 
 | 	if (!opt) | 
 | 		return -EINVAL; | 
 | 	if (!strncmp(opt, "off", 3)) | 
 | 		numa_off = 1; | 
 | #ifdef CONFIG_NUMA_EMU | 
 | 	if (!strncmp(opt, "fake=", 5)) | 
 | 		numa_emu_cmdline(opt + 5); | 
 | #endif | 
 | #ifdef CONFIG_ACPI_NUMA | 
 | 	if (!strncmp(opt, "noacpi", 6)) | 
 | 		acpi_numa = -1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 | early_param("numa", numa_setup); | 
 |  | 
 | /* | 
 |  * apicid, cpu, node mappings | 
 |  */ | 
 | s16 __apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { | 
 | 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | 
 | }; | 
 |  | 
 | int __cpuinit numa_cpu_node(int cpu) | 
 | { | 
 | 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); | 
 |  | 
 | 	if (apicid != BAD_APICID) | 
 | 		return __apicid_to_node[apicid]; | 
 | 	return NUMA_NO_NODE; | 
 | } | 
 |  | 
 | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
 | EXPORT_SYMBOL(node_to_cpumask_map); | 
 |  | 
 | /* | 
 |  * Map cpu index to node index | 
 |  */ | 
 | DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); | 
 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); | 
 |  | 
 | void __cpuinit numa_set_node(int cpu, int node) | 
 | { | 
 | 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); | 
 |  | 
 | 	/* early setting, no percpu area yet */ | 
 | 	if (cpu_to_node_map) { | 
 | 		cpu_to_node_map[cpu] = node; | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | 
 | 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { | 
 | 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	per_cpu(x86_cpu_to_node_map, cpu) = node; | 
 |  | 
 | 	if (node != NUMA_NO_NODE) | 
 | 		set_cpu_numa_node(cpu, node); | 
 | } | 
 |  | 
 | void __cpuinit numa_clear_node(int cpu) | 
 | { | 
 | 	numa_set_node(cpu, NUMA_NO_NODE); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate node_to_cpumask_map based on number of available nodes | 
 |  * Requires node_possible_map to be valid. | 
 |  * | 
 |  * Note: node_to_cpumask() is not valid until after this is done. | 
 |  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) | 
 |  */ | 
 | void __init setup_node_to_cpumask_map(void) | 
 | { | 
 | 	unsigned int node, num = 0; | 
 |  | 
 | 	/* setup nr_node_ids if not done yet */ | 
 | 	if (nr_node_ids == MAX_NUMNODES) { | 
 | 		for_each_node_mask(node, node_possible_map) | 
 | 			num = node; | 
 | 		nr_node_ids = num + 1; | 
 | 	} | 
 |  | 
 | 	/* allocate the map */ | 
 | 	for (node = 0; node < nr_node_ids; node++) | 
 | 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
 |  | 
 | 	/* cpumask_of_node() will now work */ | 
 | 	pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids); | 
 | } | 
 |  | 
 | static int __init numa_add_memblk_to(int nid, u64 start, u64 end, | 
 | 				     struct numa_meminfo *mi) | 
 | { | 
 | 	/* ignore zero length blks */ | 
 | 	if (start == end) | 
 | 		return 0; | 
 |  | 
 | 	/* whine about and ignore invalid blks */ | 
 | 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) { | 
 | 		pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n", | 
 | 			   nid, start, end); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (mi->nr_blks >= NR_NODE_MEMBLKS) { | 
 | 		pr_err("NUMA: too many memblk ranges\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mi->blk[mi->nr_blks].start = start; | 
 | 	mi->blk[mi->nr_blks].end = end; | 
 | 	mi->blk[mi->nr_blks].nid = nid; | 
 | 	mi->nr_blks++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo | 
 |  * @idx: Index of memblk to remove | 
 |  * @mi: numa_meminfo to remove memblk from | 
 |  * | 
 |  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and | 
 |  * decrementing @mi->nr_blks. | 
 |  */ | 
 | void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) | 
 | { | 
 | 	mi->nr_blks--; | 
 | 	memmove(&mi->blk[idx], &mi->blk[idx + 1], | 
 | 		(mi->nr_blks - idx) * sizeof(mi->blk[0])); | 
 | } | 
 |  | 
 | /** | 
 |  * numa_add_memblk - Add one numa_memblk to numa_meminfo | 
 |  * @nid: NUMA node ID of the new memblk | 
 |  * @start: Start address of the new memblk | 
 |  * @end: End address of the new memblk | 
 |  * | 
 |  * Add a new memblk to the default numa_meminfo. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init numa_add_memblk(int nid, u64 start, u64 end) | 
 | { | 
 | 	return numa_add_memblk_to(nid, start, end, &numa_meminfo); | 
 | } | 
 |  | 
 | /* Initialize NODE_DATA for a node on the local memory */ | 
 | static void __init setup_node_data(int nid, u64 start, u64 end) | 
 | { | 
 | 	const u64 nd_low = PFN_PHYS(MAX_DMA_PFN); | 
 | 	const u64 nd_high = PFN_PHYS(max_pfn_mapped); | 
 | 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | 
 | 	bool remapped = false; | 
 | 	u64 nd_pa; | 
 | 	void *nd; | 
 | 	int tnid; | 
 |  | 
 | 	/* | 
 | 	 * Don't confuse VM with a node that doesn't have the | 
 | 	 * minimum amount of memory: | 
 | 	 */ | 
 | 	if (end && (end - start) < NODE_MIN_SIZE) | 
 | 		return; | 
 |  | 
 | 	/* initialize remap allocator before aligning to ZONE_ALIGN */ | 
 | 	init_alloc_remap(nid, start, end); | 
 |  | 
 | 	start = roundup(start, ZONE_ALIGN); | 
 |  | 
 | 	printk(KERN_INFO "Initmem setup node %d %016Lx-%016Lx\n", | 
 | 	       nid, start, end); | 
 |  | 
 | 	/* | 
 | 	 * Allocate node data.  Try remap allocator first, node-local | 
 | 	 * memory and then any node.  Never allocate in DMA zone. | 
 | 	 */ | 
 | 	nd = alloc_remap(nid, nd_size); | 
 | 	if (nd) { | 
 | 		nd_pa = __pa(nd); | 
 | 		remapped = true; | 
 | 	} else { | 
 | 		nd_pa = memblock_x86_find_in_range_node(nid, nd_low, nd_high, | 
 | 						nd_size, SMP_CACHE_BYTES); | 
 | 		if (nd_pa == MEMBLOCK_ERROR) | 
 | 			nd_pa = memblock_find_in_range(nd_low, nd_high, | 
 | 						nd_size, SMP_CACHE_BYTES); | 
 | 		if (nd_pa == MEMBLOCK_ERROR) { | 
 | 			pr_err("Cannot find %zu bytes in node %d\n", | 
 | 			       nd_size, nid); | 
 | 			return; | 
 | 		} | 
 | 		memblock_x86_reserve_range(nd_pa, nd_pa + nd_size, "NODE_DATA"); | 
 | 		nd = __va(nd_pa); | 
 | 	} | 
 |  | 
 | 	/* report and initialize */ | 
 | 	printk(KERN_INFO "  NODE_DATA [%016Lx - %016Lx]%s\n", | 
 | 	       nd_pa, nd_pa + nd_size - 1, remapped ? " (remapped)" : ""); | 
 | 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | 
 | 	if (!remapped && tnid != nid) | 
 | 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid); | 
 |  | 
 | 	node_data[nid] = nd; | 
 | 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | 
 | 	NODE_DATA(nid)->node_id = nid; | 
 | 	NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT; | 
 | 	NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT; | 
 |  | 
 | 	node_set_online(nid); | 
 | } | 
 |  | 
 | /** | 
 |  * numa_cleanup_meminfo - Cleanup a numa_meminfo | 
 |  * @mi: numa_meminfo to clean up | 
 |  * | 
 |  * Sanitize @mi by merging and removing unncessary memblks.  Also check for | 
 |  * conflicts and clear unused memblks. | 
 |  * | 
 |  * RETURNS: | 
 |  * 0 on success, -errno on failure. | 
 |  */ | 
 | int __init numa_cleanup_meminfo(struct numa_meminfo *mi) | 
 | { | 
 | 	const u64 low = 0; | 
 | 	const u64 high = PFN_PHYS(max_pfn); | 
 | 	int i, j, k; | 
 |  | 
 | 	/* first, trim all entries */ | 
 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 		struct numa_memblk *bi = &mi->blk[i]; | 
 |  | 
 | 		/* make sure all blocks are inside the limits */ | 
 | 		bi->start = max(bi->start, low); | 
 | 		bi->end = min(bi->end, high); | 
 |  | 
 | 		/* and there's no empty block */ | 
 | 		if (bi->start >= bi->end) | 
 | 			numa_remove_memblk_from(i--, mi); | 
 | 	} | 
 |  | 
 | 	/* merge neighboring / overlapping entries */ | 
 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 		struct numa_memblk *bi = &mi->blk[i]; | 
 |  | 
 | 		for (j = i + 1; j < mi->nr_blks; j++) { | 
 | 			struct numa_memblk *bj = &mi->blk[j]; | 
 | 			u64 start, end; | 
 |  | 
 | 			/* | 
 | 			 * See whether there are overlapping blocks.  Whine | 
 | 			 * about but allow overlaps of the same nid.  They | 
 | 			 * will be merged below. | 
 | 			 */ | 
 | 			if (bi->end > bj->start && bi->start < bj->end) { | 
 | 				if (bi->nid != bj->nid) { | 
 | 					pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n", | 
 | 					       bi->nid, bi->start, bi->end, | 
 | 					       bj->nid, bj->start, bj->end); | 
 | 					return -EINVAL; | 
 | 				} | 
 | 				pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n", | 
 | 					   bi->nid, bi->start, bi->end, | 
 | 					   bj->start, bj->end); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Join together blocks on the same node, holes | 
 | 			 * between which don't overlap with memory on other | 
 | 			 * nodes. | 
 | 			 */ | 
 | 			if (bi->nid != bj->nid) | 
 | 				continue; | 
 | 			start = min(bi->start, bj->start); | 
 | 			end = max(bi->end, bj->end); | 
 | 			for (k = 0; k < mi->nr_blks; k++) { | 
 | 				struct numa_memblk *bk = &mi->blk[k]; | 
 |  | 
 | 				if (bi->nid == bk->nid) | 
 | 					continue; | 
 | 				if (start < bk->end && end > bk->start) | 
 | 					break; | 
 | 			} | 
 | 			if (k < mi->nr_blks) | 
 | 				continue; | 
 | 			printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%Lx,%Lx)\n", | 
 | 			       bi->nid, bi->start, bi->end, bj->start, bj->end, | 
 | 			       start, end); | 
 | 			bi->start = start; | 
 | 			bi->end = end; | 
 | 			numa_remove_memblk_from(j--, mi); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* clear unused ones */ | 
 | 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { | 
 | 		mi->blk[i].start = mi->blk[i].end = 0; | 
 | 		mi->blk[i].nid = NUMA_NO_NODE; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set nodes, which have memory in @mi, in *@nodemask. | 
 |  */ | 
 | static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, | 
 | 					      const struct numa_meminfo *mi) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++) | 
 | 		if (mi->blk[i].start != mi->blk[i].end && | 
 | 		    mi->blk[i].nid != NUMA_NO_NODE) | 
 | 			node_set(mi->blk[i].nid, *nodemask); | 
 | } | 
 |  | 
 | /** | 
 |  * numa_reset_distance - Reset NUMA distance table | 
 |  * | 
 |  * The current table is freed.  The next numa_set_distance() call will | 
 |  * create a new one. | 
 |  */ | 
 | void __init numa_reset_distance(void) | 
 | { | 
 | 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); | 
 |  | 
 | 	/* numa_distance could be 1LU marking allocation failure, test cnt */ | 
 | 	if (numa_distance_cnt) | 
 | 		memblock_x86_free_range(__pa(numa_distance), | 
 | 					__pa(numa_distance) + size); | 
 | 	numa_distance_cnt = 0; | 
 | 	numa_distance = NULL;	/* enable table creation */ | 
 | } | 
 |  | 
 | static int __init numa_alloc_distance(void) | 
 | { | 
 | 	nodemask_t nodes_parsed; | 
 | 	size_t size; | 
 | 	int i, j, cnt = 0; | 
 | 	u64 phys; | 
 |  | 
 | 	/* size the new table and allocate it */ | 
 | 	nodes_parsed = numa_nodes_parsed; | 
 | 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); | 
 |  | 
 | 	for_each_node_mask(i, nodes_parsed) | 
 | 		cnt = i; | 
 | 	cnt++; | 
 | 	size = cnt * cnt * sizeof(numa_distance[0]); | 
 |  | 
 | 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), | 
 | 				      size, PAGE_SIZE); | 
 | 	if (phys == MEMBLOCK_ERROR) { | 
 | 		pr_warning("NUMA: Warning: can't allocate distance table!\n"); | 
 | 		/* don't retry until explicitly reset */ | 
 | 		numa_distance = (void *)1LU; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memblock_x86_reserve_range(phys, phys + size, "NUMA DIST"); | 
 |  | 
 | 	numa_distance = __va(phys); | 
 | 	numa_distance_cnt = cnt; | 
 |  | 
 | 	/* fill with the default distances */ | 
 | 	for (i = 0; i < cnt; i++) | 
 | 		for (j = 0; j < cnt; j++) | 
 | 			numa_distance[i * cnt + j] = i == j ? | 
 | 				LOCAL_DISTANCE : REMOTE_DISTANCE; | 
 | 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * numa_set_distance - Set NUMA distance from one NUMA to another | 
 |  * @from: the 'from' node to set distance | 
 |  * @to: the 'to'  node to set distance | 
 |  * @distance: NUMA distance | 
 |  * | 
 |  * Set the distance from node @from to @to to @distance.  If distance table | 
 |  * doesn't exist, one which is large enough to accommodate all the currently | 
 |  * known nodes will be created. | 
 |  * | 
 |  * If such table cannot be allocated, a warning is printed and further | 
 |  * calls are ignored until the distance table is reset with | 
 |  * numa_reset_distance(). | 
 |  * | 
 |  * If @from or @to is higher than the highest known node at the time of | 
 |  * table creation or @distance doesn't make sense, the call is ignored. | 
 |  * This is to allow simplification of specific NUMA config implementations. | 
 |  */ | 
 | void __init numa_set_distance(int from, int to, int distance) | 
 | { | 
 | 	if (!numa_distance && numa_alloc_distance() < 0) | 
 | 		return; | 
 |  | 
 | 	if (from >= numa_distance_cnt || to >= numa_distance_cnt) { | 
 | 		printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n", | 
 | 			    from, to, distance); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((u8)distance != distance || | 
 | 	    (from == to && distance != LOCAL_DISTANCE)) { | 
 | 		pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", | 
 | 			     from, to, distance); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	numa_distance[from * numa_distance_cnt + to] = distance; | 
 | } | 
 |  | 
 | int __node_distance(int from, int to) | 
 | { | 
 | 	if (from >= numa_distance_cnt || to >= numa_distance_cnt) | 
 | 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; | 
 | 	return numa_distance[from * numa_distance_cnt + to]; | 
 | } | 
 | EXPORT_SYMBOL(__node_distance); | 
 |  | 
 | /* | 
 |  * Sanity check to catch more bad NUMA configurations (they are amazingly | 
 |  * common).  Make sure the nodes cover all memory. | 
 |  */ | 
 | static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) | 
 | { | 
 | 	u64 numaram, e820ram; | 
 | 	int i; | 
 |  | 
 | 	numaram = 0; | 
 | 	for (i = 0; i < mi->nr_blks; i++) { | 
 | 		u64 s = mi->blk[i].start >> PAGE_SHIFT; | 
 | 		u64 e = mi->blk[i].end >> PAGE_SHIFT; | 
 | 		numaram += e - s; | 
 | 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); | 
 | 		if ((s64)numaram < 0) | 
 | 			numaram = 0; | 
 | 	} | 
 |  | 
 | 	e820ram = max_pfn - (memblock_x86_hole_size(0, | 
 | 					PFN_PHYS(max_pfn)) >> PAGE_SHIFT); | 
 | 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */ | 
 | 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { | 
 | 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", | 
 | 		       (numaram << PAGE_SHIFT) >> 20, | 
 | 		       (e820ram << PAGE_SHIFT) >> 20); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __init numa_register_memblks(struct numa_meminfo *mi) | 
 | { | 
 | 	int i, nid; | 
 |  | 
 | 	/* Account for nodes with cpus and no memory */ | 
 | 	node_possible_map = numa_nodes_parsed; | 
 | 	numa_nodemask_from_meminfo(&node_possible_map, mi); | 
 | 	if (WARN_ON(nodes_empty(node_possible_map))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < mi->nr_blks; i++) | 
 | 		memblock_x86_register_active_regions(mi->blk[i].nid, | 
 | 					mi->blk[i].start >> PAGE_SHIFT, | 
 | 					mi->blk[i].end >> PAGE_SHIFT); | 
 |  | 
 | 	/* for out of order entries */ | 
 | 	sort_node_map(); | 
 | 	if (!numa_meminfo_cover_memory(mi)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Finally register nodes. */ | 
 | 	for_each_node_mask(nid, node_possible_map) { | 
 | 		u64 start = PFN_PHYS(max_pfn); | 
 | 		u64 end = 0; | 
 |  | 
 | 		for (i = 0; i < mi->nr_blks; i++) { | 
 | 			if (nid != mi->blk[i].nid) | 
 | 				continue; | 
 | 			start = min(mi->blk[i].start, start); | 
 | 			end = max(mi->blk[i].end, end); | 
 | 		} | 
 |  | 
 | 		if (start < end) | 
 | 			setup_node_data(nid, start, end); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * There are unfortunately some poorly designed mainboards around that | 
 |  * only connect memory to a single CPU. This breaks the 1:1 cpu->node | 
 |  * mapping. To avoid this fill in the mapping for all possible CPUs, | 
 |  * as the number of CPUs is not known yet. We round robin the existing | 
 |  * nodes. | 
 |  */ | 
 | static void __init numa_init_array(void) | 
 | { | 
 | 	int rr, i; | 
 |  | 
 | 	rr = first_node(node_online_map); | 
 | 	for (i = 0; i < nr_cpu_ids; i++) { | 
 | 		if (early_cpu_to_node(i) != NUMA_NO_NODE) | 
 | 			continue; | 
 | 		numa_set_node(i, rr); | 
 | 		rr = next_node(rr, node_online_map); | 
 | 		if (rr == MAX_NUMNODES) | 
 | 			rr = first_node(node_online_map); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init numa_init(int (*init_func)(void)) | 
 | { | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	for (i = 0; i < MAX_LOCAL_APIC; i++) | 
 | 		set_apicid_to_node(i, NUMA_NO_NODE); | 
 |  | 
 | 	nodes_clear(numa_nodes_parsed); | 
 | 	nodes_clear(node_possible_map); | 
 | 	nodes_clear(node_online_map); | 
 | 	memset(&numa_meminfo, 0, sizeof(numa_meminfo)); | 
 | 	remove_all_active_ranges(); | 
 | 	numa_reset_distance(); | 
 |  | 
 | 	ret = init_func(); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	ret = numa_cleanup_meminfo(&numa_meminfo); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	numa_emulation(&numa_meminfo, numa_distance_cnt); | 
 |  | 
 | 	ret = numa_register_memblks(&numa_meminfo); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < nr_cpu_ids; i++) { | 
 | 		int nid = early_cpu_to_node(i); | 
 |  | 
 | 		if (nid == NUMA_NO_NODE) | 
 | 			continue; | 
 | 		if (!node_online(nid)) | 
 | 			numa_clear_node(i); | 
 | 	} | 
 | 	numa_init_array(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dummy_numa_init - Fallback dummy NUMA init | 
 |  * | 
 |  * Used if there's no underlying NUMA architecture, NUMA initialization | 
 |  * fails, or NUMA is disabled on the command line. | 
 |  * | 
 |  * Must online at least one node and add memory blocks that cover all | 
 |  * allowed memory.  This function must not fail. | 
 |  */ | 
 | static int __init dummy_numa_init(void) | 
 | { | 
 | 	printk(KERN_INFO "%s\n", | 
 | 	       numa_off ? "NUMA turned off" : "No NUMA configuration found"); | 
 | 	printk(KERN_INFO "Faking a node at %016Lx-%016Lx\n", | 
 | 	       0LLU, PFN_PHYS(max_pfn)); | 
 |  | 
 | 	node_set(0, numa_nodes_parsed); | 
 | 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * x86_numa_init - Initialize NUMA | 
 |  * | 
 |  * Try each configured NUMA initialization method until one succeeds.  The | 
 |  * last fallback is dummy single node config encomapssing whole memory and | 
 |  * never fails. | 
 |  */ | 
 | void __init x86_numa_init(void) | 
 | { | 
 | 	if (!numa_off) { | 
 | #ifdef CONFIG_X86_NUMAQ | 
 | 		if (!numa_init(numaq_numa_init)) | 
 | 			return; | 
 | #endif | 
 | #ifdef CONFIG_ACPI_NUMA | 
 | 		if (!numa_init(x86_acpi_numa_init)) | 
 | 			return; | 
 | #endif | 
 | #ifdef CONFIG_AMD_NUMA | 
 | 		if (!numa_init(amd_numa_init)) | 
 | 			return; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	numa_init(dummy_numa_init); | 
 | } | 
 |  | 
 | static __init int find_near_online_node(int node) | 
 | { | 
 | 	int n, val; | 
 | 	int min_val = INT_MAX; | 
 | 	int best_node = -1; | 
 |  | 
 | 	for_each_online_node(n) { | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return best_node; | 
 | } | 
 |  | 
 | /* | 
 |  * Setup early cpu_to_node. | 
 |  * | 
 |  * Populate cpu_to_node[] only if x86_cpu_to_apicid[], | 
 |  * and apicid_to_node[] tables have valid entries for a CPU. | 
 |  * This means we skip cpu_to_node[] initialisation for NUMA | 
 |  * emulation and faking node case (when running a kernel compiled | 
 |  * for NUMA on a non NUMA box), which is OK as cpu_to_node[] | 
 |  * is already initialized in a round robin manner at numa_init_array, | 
 |  * prior to this call, and this initialization is good enough | 
 |  * for the fake NUMA cases. | 
 |  * | 
 |  * Called before the per_cpu areas are setup. | 
 |  */ | 
 | void __init init_cpu_to_node(void) | 
 | { | 
 | 	int cpu; | 
 | 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); | 
 |  | 
 | 	BUG_ON(cpu_to_apicid == NULL); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		int node = numa_cpu_node(cpu); | 
 |  | 
 | 		if (node == NUMA_NO_NODE) | 
 | 			continue; | 
 | 		if (!node_online(node)) | 
 | 			node = find_near_online_node(node); | 
 | 		numa_set_node(cpu, node); | 
 | 	} | 
 | } | 
 |  | 
 | #ifndef CONFIG_DEBUG_PER_CPU_MAPS | 
 |  | 
 | # ifndef CONFIG_NUMA_EMU | 
 | void __cpuinit numa_add_cpu(int cpu) | 
 | { | 
 | 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
 | } | 
 |  | 
 | void __cpuinit numa_remove_cpu(int cpu) | 
 | { | 
 | 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); | 
 | } | 
 | # endif	/* !CONFIG_NUMA_EMU */ | 
 |  | 
 | #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */ | 
 |  | 
 | int __cpu_to_node(int cpu) | 
 | { | 
 | 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) { | 
 | 		printk(KERN_WARNING | 
 | 			"cpu_to_node(%d): usage too early!\n", cpu); | 
 | 		dump_stack(); | 
 | 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
 | 	} | 
 | 	return per_cpu(x86_cpu_to_node_map, cpu); | 
 | } | 
 | EXPORT_SYMBOL(__cpu_to_node); | 
 |  | 
 | /* | 
 |  * Same function as cpu_to_node() but used if called before the | 
 |  * per_cpu areas are setup. | 
 |  */ | 
 | int early_cpu_to_node(int cpu) | 
 | { | 
 | 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) | 
 | 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; | 
 |  | 
 | 	if (!cpu_possible(cpu)) { | 
 | 		printk(KERN_WARNING | 
 | 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu); | 
 | 		dump_stack(); | 
 | 		return NUMA_NO_NODE; | 
 | 	} | 
 | 	return per_cpu(x86_cpu_to_node_map, cpu); | 
 | } | 
 |  | 
 | void debug_cpumask_set_cpu(int cpu, int node, bool enable) | 
 | { | 
 | 	struct cpumask *mask; | 
 | 	char buf[64]; | 
 |  | 
 | 	if (node == NUMA_NO_NODE) { | 
 | 		/* early_cpu_to_node() already emits a warning and trace */ | 
 | 		return; | 
 | 	} | 
 | 	mask = node_to_cpumask_map[node]; | 
 | 	if (!mask) { | 
 | 		pr_err("node_to_cpumask_map[%i] NULL\n", node); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (enable) | 
 | 		cpumask_set_cpu(cpu, mask); | 
 | 	else | 
 | 		cpumask_clear_cpu(cpu, mask); | 
 |  | 
 | 	cpulist_scnprintf(buf, sizeof(buf), mask); | 
 | 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n", | 
 | 		enable ? "numa_add_cpu" : "numa_remove_cpu", | 
 | 		cpu, node, buf); | 
 | 	return; | 
 | } | 
 |  | 
 | # ifndef CONFIG_NUMA_EMU | 
 | static void __cpuinit numa_set_cpumask(int cpu, bool enable) | 
 | { | 
 | 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); | 
 | } | 
 |  | 
 | void __cpuinit numa_add_cpu(int cpu) | 
 | { | 
 | 	numa_set_cpumask(cpu, true); | 
 | } | 
 |  | 
 | void __cpuinit numa_remove_cpu(int cpu) | 
 | { | 
 | 	numa_set_cpumask(cpu, false); | 
 | } | 
 | # endif	/* !CONFIG_NUMA_EMU */ | 
 |  | 
 | /* | 
 |  * Returns a pointer to the bitmask of CPUs on Node 'node'. | 
 |  */ | 
 | const struct cpumask *cpumask_of_node(int node) | 
 | { | 
 | 	if (node >= nr_node_ids) { | 
 | 		printk(KERN_WARNING | 
 | 			"cpumask_of_node(%d): node > nr_node_ids(%d)\n", | 
 | 			node, nr_node_ids); | 
 | 		dump_stack(); | 
 | 		return cpu_none_mask; | 
 | 	} | 
 | 	if (node_to_cpumask_map[node] == NULL) { | 
 | 		printk(KERN_WARNING | 
 | 			"cpumask_of_node(%d): no node_to_cpumask_map!\n", | 
 | 			node); | 
 | 		dump_stack(); | 
 | 		return cpu_online_mask; | 
 | 	} | 
 | 	return node_to_cpumask_map[node]; | 
 | } | 
 | EXPORT_SYMBOL(cpumask_of_node); | 
 |  | 
 | #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */ | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | int memory_add_physaddr_to_nid(u64 start) | 
 | { | 
 | 	struct numa_meminfo *mi = &numa_meminfo; | 
 | 	int nid = mi->blk[0].nid; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < mi->nr_blks; i++) | 
 | 		if (mi->blk[i].start <= start && mi->blk[i].end > start) | 
 | 			nid = mi->blk[i].nid; | 
 | 	return nid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
 | #endif |