|  | /* | 
|  | * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com | 
|  | * Written by Alex Tomas <alex@clusterfs.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public Licens | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mballoc.c contains the multiblocks allocation routines | 
|  | */ | 
|  |  | 
|  | #include "mballoc.h" | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <trace/events/ext4.h> | 
|  |  | 
|  | /* | 
|  | * MUSTDO: | 
|  | *   - test ext4_ext_search_left() and ext4_ext_search_right() | 
|  | *   - search for metadata in few groups | 
|  | * | 
|  | * TODO v4: | 
|  | *   - normalization should take into account whether file is still open | 
|  | *   - discard preallocations if no free space left (policy?) | 
|  | *   - don't normalize tails | 
|  | *   - quota | 
|  | *   - reservation for superuser | 
|  | * | 
|  | * TODO v3: | 
|  | *   - bitmap read-ahead (proposed by Oleg Drokin aka green) | 
|  | *   - track min/max extents in each group for better group selection | 
|  | *   - mb_mark_used() may allocate chunk right after splitting buddy | 
|  | *   - tree of groups sorted by number of free blocks | 
|  | *   - error handling | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The allocation request involve request for multiple number of blocks | 
|  | * near to the goal(block) value specified. | 
|  | * | 
|  | * During initialization phase of the allocator we decide to use the | 
|  | * group preallocation or inode preallocation depending on the size of | 
|  | * the file. The size of the file could be the resulting file size we | 
|  | * would have after allocation, or the current file size, which ever | 
|  | * is larger. If the size is less than sbi->s_mb_stream_request we | 
|  | * select to use the group preallocation. The default value of | 
|  | * s_mb_stream_request is 16 blocks. This can also be tuned via | 
|  | * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in | 
|  | * terms of number of blocks. | 
|  | * | 
|  | * The main motivation for having small file use group preallocation is to | 
|  | * ensure that we have small files closer together on the disk. | 
|  | * | 
|  | * First stage the allocator looks at the inode prealloc list, | 
|  | * ext4_inode_info->i_prealloc_list, which contains list of prealloc | 
|  | * spaces for this particular inode. The inode prealloc space is | 
|  | * represented as: | 
|  | * | 
|  | * pa_lstart -> the logical start block for this prealloc space | 
|  | * pa_pstart -> the physical start block for this prealloc space | 
|  | * pa_len    -> length for this prealloc space | 
|  | * pa_free   ->  free space available in this prealloc space | 
|  | * | 
|  | * The inode preallocation space is used looking at the _logical_ start | 
|  | * block. If only the logical file block falls within the range of prealloc | 
|  | * space we will consume the particular prealloc space. This make sure that | 
|  | * that the we have contiguous physical blocks representing the file blocks | 
|  | * | 
|  | * The important thing to be noted in case of inode prealloc space is that | 
|  | * we don't modify the values associated to inode prealloc space except | 
|  | * pa_free. | 
|  | * | 
|  | * If we are not able to find blocks in the inode prealloc space and if we | 
|  | * have the group allocation flag set then we look at the locality group | 
|  | * prealloc space. These are per CPU prealloc list repreasented as | 
|  | * | 
|  | * ext4_sb_info.s_locality_groups[smp_processor_id()] | 
|  | * | 
|  | * The reason for having a per cpu locality group is to reduce the contention | 
|  | * between CPUs. It is possible to get scheduled at this point. | 
|  | * | 
|  | * The locality group prealloc space is used looking at whether we have | 
|  | * enough free space (pa_free) within the prealloc space. | 
|  | * | 
|  | * If we can't allocate blocks via inode prealloc or/and locality group | 
|  | * prealloc then we look at the buddy cache. The buddy cache is represented | 
|  | * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets | 
|  | * mapped to the buddy and bitmap information regarding different | 
|  | * groups. The buddy information is attached to buddy cache inode so that | 
|  | * we can access them through the page cache. The information regarding | 
|  | * each group is loaded via ext4_mb_load_buddy.  The information involve | 
|  | * block bitmap and buddy information. The information are stored in the | 
|  | * inode as: | 
|  | * | 
|  | *  {                        page                        } | 
|  | *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... | 
|  | * | 
|  | * | 
|  | * one block each for bitmap and buddy information.  So for each group we | 
|  | * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / | 
|  | * blocksize) blocks.  So it can have information regarding groups_per_page | 
|  | * which is blocks_per_page/2 | 
|  | * | 
|  | * The buddy cache inode is not stored on disk. The inode is thrown | 
|  | * away when the filesystem is unmounted. | 
|  | * | 
|  | * We look for count number of blocks in the buddy cache. If we were able | 
|  | * to locate that many free blocks we return with additional information | 
|  | * regarding rest of the contiguous physical block available | 
|  | * | 
|  | * Before allocating blocks via buddy cache we normalize the request | 
|  | * blocks. This ensure we ask for more blocks that we needed. The extra | 
|  | * blocks that we get after allocation is added to the respective prealloc | 
|  | * list. In case of inode preallocation we follow a list of heuristics | 
|  | * based on file size. This can be found in ext4_mb_normalize_request. If | 
|  | * we are doing a group prealloc we try to normalize the request to | 
|  | * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is | 
|  | * 512 blocks. This can be tuned via | 
|  | * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in | 
|  | * terms of number of blocks. If we have mounted the file system with -O | 
|  | * stripe=<value> option the group prealloc request is normalized to the | 
|  | * stripe value (sbi->s_stripe) | 
|  | * | 
|  | * The regular allocator(using the buddy cache) supports few tunables. | 
|  | * | 
|  | * /sys/fs/ext4/<partition>/mb_min_to_scan | 
|  | * /sys/fs/ext4/<partition>/mb_max_to_scan | 
|  | * /sys/fs/ext4/<partition>/mb_order2_req | 
|  | * | 
|  | * The regular allocator uses buddy scan only if the request len is power of | 
|  | * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The | 
|  | * value of s_mb_order2_reqs can be tuned via | 
|  | * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to | 
|  | * stripe size (sbi->s_stripe), we try to search for contiguous block in | 
|  | * stripe size. This should result in better allocation on RAID setups. If | 
|  | * not, we search in the specific group using bitmap for best extents. The | 
|  | * tunable min_to_scan and max_to_scan control the behaviour here. | 
|  | * min_to_scan indicate how long the mballoc __must__ look for a best | 
|  | * extent and max_to_scan indicates how long the mballoc __can__ look for a | 
|  | * best extent in the found extents. Searching for the blocks starts with | 
|  | * the group specified as the goal value in allocation context via | 
|  | * ac_g_ex. Each group is first checked based on the criteria whether it | 
|  | * can used for allocation. ext4_mb_good_group explains how the groups are | 
|  | * checked. | 
|  | * | 
|  | * Both the prealloc space are getting populated as above. So for the first | 
|  | * request we will hit the buddy cache which will result in this prealloc | 
|  | * space getting filled. The prealloc space is then later used for the | 
|  | * subsequent request. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * mballoc operates on the following data: | 
|  | *  - on-disk bitmap | 
|  | *  - in-core buddy (actually includes buddy and bitmap) | 
|  | *  - preallocation descriptors (PAs) | 
|  | * | 
|  | * there are two types of preallocations: | 
|  | *  - inode | 
|  | *    assiged to specific inode and can be used for this inode only. | 
|  | *    it describes part of inode's space preallocated to specific | 
|  | *    physical blocks. any block from that preallocated can be used | 
|  | *    independent. the descriptor just tracks number of blocks left | 
|  | *    unused. so, before taking some block from descriptor, one must | 
|  | *    make sure corresponded logical block isn't allocated yet. this | 
|  | *    also means that freeing any block within descriptor's range | 
|  | *    must discard all preallocated blocks. | 
|  | *  - locality group | 
|  | *    assigned to specific locality group which does not translate to | 
|  | *    permanent set of inodes: inode can join and leave group. space | 
|  | *    from this type of preallocation can be used for any inode. thus | 
|  | *    it's consumed from the beginning to the end. | 
|  | * | 
|  | * relation between them can be expressed as: | 
|  | *    in-core buddy = on-disk bitmap + preallocation descriptors | 
|  | * | 
|  | * this mean blocks mballoc considers used are: | 
|  | *  - allocated blocks (persistent) | 
|  | *  - preallocated blocks (non-persistent) | 
|  | * | 
|  | * consistency in mballoc world means that at any time a block is either | 
|  | * free or used in ALL structures. notice: "any time" should not be read | 
|  | * literally -- time is discrete and delimited by locks. | 
|  | * | 
|  | *  to keep it simple, we don't use block numbers, instead we count number of | 
|  | *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. | 
|  | * | 
|  | * all operations can be expressed as: | 
|  | *  - init buddy:			buddy = on-disk + PAs | 
|  | *  - new PA:				buddy += N; PA = N | 
|  | *  - use inode PA:			on-disk += N; PA -= N | 
|  | *  - discard inode PA			buddy -= on-disk - PA; PA = 0 | 
|  | *  - use locality group PA		on-disk += N; PA -= N | 
|  | *  - discard locality group PA		buddy -= PA; PA = 0 | 
|  | *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap | 
|  | *        is used in real operation because we can't know actual used | 
|  | *        bits from PA, only from on-disk bitmap | 
|  | * | 
|  | * if we follow this strict logic, then all operations above should be atomic. | 
|  | * given some of them can block, we'd have to use something like semaphores | 
|  | * killing performance on high-end SMP hardware. let's try to relax it using | 
|  | * the following knowledge: | 
|  | *  1) if buddy is referenced, it's already initialized | 
|  | *  2) while block is used in buddy and the buddy is referenced, | 
|  | *     nobody can re-allocate that block | 
|  | *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has | 
|  | *     bit set and PA claims same block, it's OK. IOW, one can set bit in | 
|  | *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded | 
|  | *     block | 
|  | * | 
|  | * so, now we're building a concurrency table: | 
|  | *  - init buddy vs. | 
|  | *    - new PA | 
|  | *      blocks for PA are allocated in the buddy, buddy must be referenced | 
|  | *      until PA is linked to allocation group to avoid concurrent buddy init | 
|  | *    - use inode PA | 
|  | *      we need to make sure that either on-disk bitmap or PA has uptodate data | 
|  | *      given (3) we care that PA-=N operation doesn't interfere with init | 
|  | *    - discard inode PA | 
|  | *      the simplest way would be to have buddy initialized by the discard | 
|  | *    - use locality group PA | 
|  | *      again PA-=N must be serialized with init | 
|  | *    - discard locality group PA | 
|  | *      the simplest way would be to have buddy initialized by the discard | 
|  | *  - new PA vs. | 
|  | *    - use inode PA | 
|  | *      i_data_sem serializes them | 
|  | *    - discard inode PA | 
|  | *      discard process must wait until PA isn't used by another process | 
|  | *    - use locality group PA | 
|  | *      some mutex should serialize them | 
|  | *    - discard locality group PA | 
|  | *      discard process must wait until PA isn't used by another process | 
|  | *  - use inode PA | 
|  | *    - use inode PA | 
|  | *      i_data_sem or another mutex should serializes them | 
|  | *    - discard inode PA | 
|  | *      discard process must wait until PA isn't used by another process | 
|  | *    - use locality group PA | 
|  | *      nothing wrong here -- they're different PAs covering different blocks | 
|  | *    - discard locality group PA | 
|  | *      discard process must wait until PA isn't used by another process | 
|  | * | 
|  | * now we're ready to make few consequences: | 
|  | *  - PA is referenced and while it is no discard is possible | 
|  | *  - PA is referenced until block isn't marked in on-disk bitmap | 
|  | *  - PA changes only after on-disk bitmap | 
|  | *  - discard must not compete with init. either init is done before | 
|  | *    any discard or they're serialized somehow | 
|  | *  - buddy init as sum of on-disk bitmap and PAs is done atomically | 
|  | * | 
|  | * a special case when we've used PA to emptiness. no need to modify buddy | 
|  | * in this case, but we should care about concurrent init | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Logic in few words: | 
|  | * | 
|  | *  - allocation: | 
|  | *    load group | 
|  | *    find blocks | 
|  | *    mark bits in on-disk bitmap | 
|  | *    release group | 
|  | * | 
|  | *  - use preallocation: | 
|  | *    find proper PA (per-inode or group) | 
|  | *    load group | 
|  | *    mark bits in on-disk bitmap | 
|  | *    release group | 
|  | *    release PA | 
|  | * | 
|  | *  - free: | 
|  | *    load group | 
|  | *    mark bits in on-disk bitmap | 
|  | *    release group | 
|  | * | 
|  | *  - discard preallocations in group: | 
|  | *    mark PAs deleted | 
|  | *    move them onto local list | 
|  | *    load on-disk bitmap | 
|  | *    load group | 
|  | *    remove PA from object (inode or locality group) | 
|  | *    mark free blocks in-core | 
|  | * | 
|  | *  - discard inode's preallocations: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Locking rules | 
|  | * | 
|  | * Locks: | 
|  | *  - bitlock on a group	(group) | 
|  | *  - object (inode/locality)	(object) | 
|  | *  - per-pa lock		(pa) | 
|  | * | 
|  | * Paths: | 
|  | *  - new pa | 
|  | *    object | 
|  | *    group | 
|  | * | 
|  | *  - find and use pa: | 
|  | *    pa | 
|  | * | 
|  | *  - release consumed pa: | 
|  | *    pa | 
|  | *    group | 
|  | *    object | 
|  | * | 
|  | *  - generate in-core bitmap: | 
|  | *    group | 
|  | *        pa | 
|  | * | 
|  | *  - discard all for given object (inode, locality group): | 
|  | *    object | 
|  | *        pa | 
|  | *    group | 
|  | * | 
|  | *  - discard all for given group: | 
|  | *    group | 
|  | *        pa | 
|  | *    group | 
|  | *        object | 
|  | * | 
|  | */ | 
|  | static struct kmem_cache *ext4_pspace_cachep; | 
|  | static struct kmem_cache *ext4_ac_cachep; | 
|  | static struct kmem_cache *ext4_free_ext_cachep; | 
|  |  | 
|  | /* We create slab caches for groupinfo data structures based on the | 
|  | * superblock block size.  There will be one per mounted filesystem for | 
|  | * each unique s_blocksize_bits */ | 
|  | #define NR_GRPINFO_CACHES 8 | 
|  | static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; | 
|  |  | 
|  | static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { | 
|  | "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", | 
|  | "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", | 
|  | "ext4_groupinfo_64k", "ext4_groupinfo_128k" | 
|  | }; | 
|  |  | 
|  | static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, | 
|  | ext4_group_t group); | 
|  | static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, | 
|  | ext4_group_t group); | 
|  | static void release_blocks_on_commit(journal_t *journal, transaction_t *txn); | 
|  |  | 
|  | static inline void *mb_correct_addr_and_bit(int *bit, void *addr) | 
|  | { | 
|  | #if BITS_PER_LONG == 64 | 
|  | *bit += ((unsigned long) addr & 7UL) << 3; | 
|  | addr = (void *) ((unsigned long) addr & ~7UL); | 
|  | #elif BITS_PER_LONG == 32 | 
|  | *bit += ((unsigned long) addr & 3UL) << 3; | 
|  | addr = (void *) ((unsigned long) addr & ~3UL); | 
|  | #else | 
|  | #error "how many bits you are?!" | 
|  | #endif | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline int mb_test_bit(int bit, void *addr) | 
|  | { | 
|  | /* | 
|  | * ext4_test_bit on architecture like powerpc | 
|  | * needs unsigned long aligned address | 
|  | */ | 
|  | addr = mb_correct_addr_and_bit(&bit, addr); | 
|  | return ext4_test_bit(bit, addr); | 
|  | } | 
|  |  | 
|  | static inline void mb_set_bit(int bit, void *addr) | 
|  | { | 
|  | addr = mb_correct_addr_and_bit(&bit, addr); | 
|  | ext4_set_bit(bit, addr); | 
|  | } | 
|  |  | 
|  | static inline void mb_clear_bit(int bit, void *addr) | 
|  | { | 
|  | addr = mb_correct_addr_and_bit(&bit, addr); | 
|  | ext4_clear_bit(bit, addr); | 
|  | } | 
|  |  | 
|  | static inline int mb_find_next_zero_bit(void *addr, int max, int start) | 
|  | { | 
|  | int fix = 0, ret, tmpmax; | 
|  | addr = mb_correct_addr_and_bit(&fix, addr); | 
|  | tmpmax = max + fix; | 
|  | start += fix; | 
|  |  | 
|  | ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; | 
|  | if (ret > max) | 
|  | return max; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int mb_find_next_bit(void *addr, int max, int start) | 
|  | { | 
|  | int fix = 0, ret, tmpmax; | 
|  | addr = mb_correct_addr_and_bit(&fix, addr); | 
|  | tmpmax = max + fix; | 
|  | start += fix; | 
|  |  | 
|  | ret = ext4_find_next_bit(addr, tmpmax, start) - fix; | 
|  | if (ret > max) | 
|  | return max; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) | 
|  | { | 
|  | char *bb; | 
|  |  | 
|  | BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); | 
|  | BUG_ON(max == NULL); | 
|  |  | 
|  | if (order > e4b->bd_blkbits + 1) { | 
|  | *max = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* at order 0 we see each particular block */ | 
|  | if (order == 0) { | 
|  | *max = 1 << (e4b->bd_blkbits + 3); | 
|  | return EXT4_MB_BITMAP(e4b); | 
|  | } | 
|  |  | 
|  | bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; | 
|  | *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; | 
|  |  | 
|  | return bb; | 
|  | } | 
|  |  | 
|  | #ifdef DOUBLE_CHECK | 
|  | static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, | 
|  | int first, int count) | 
|  | { | 
|  | int i; | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  |  | 
|  | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) | 
|  | return; | 
|  | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); | 
|  | for (i = 0; i < count; i++) { | 
|  | if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { | 
|  | ext4_fsblk_t blocknr; | 
|  |  | 
|  | blocknr = ext4_group_first_block_no(sb, e4b->bd_group); | 
|  | blocknr += first + i; | 
|  | ext4_grp_locked_error(sb, e4b->bd_group, | 
|  | inode ? inode->i_ino : 0, | 
|  | blocknr, | 
|  | "freeing block already freed " | 
|  | "(bit %u)", | 
|  | first + i); | 
|  | } | 
|  | mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) | 
|  | return; | 
|  | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); | 
|  | for (i = 0; i < count; i++) { | 
|  | BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); | 
|  | mb_set_bit(first + i, e4b->bd_info->bb_bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) | 
|  | { | 
|  | if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { | 
|  | unsigned char *b1, *b2; | 
|  | int i; | 
|  | b1 = (unsigned char *) e4b->bd_info->bb_bitmap; | 
|  | b2 = (unsigned char *) bitmap; | 
|  | for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { | 
|  | if (b1[i] != b2[i]) { | 
|  | printk(KERN_ERR "corruption in group %u " | 
|  | "at byte %u(%u): %x in copy != %x " | 
|  | "on disk/prealloc\n", | 
|  | e4b->bd_group, i, i * 8, b1[i], b2[i]); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void mb_free_blocks_double(struct inode *inode, | 
|  | struct ext4_buddy *e4b, int first, int count) | 
|  | { | 
|  | return; | 
|  | } | 
|  | static inline void mb_mark_used_double(struct ext4_buddy *e4b, | 
|  | int first, int count) | 
|  | { | 
|  | return; | 
|  | } | 
|  | static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) | 
|  | { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef AGGRESSIVE_CHECK | 
|  |  | 
|  | #define MB_CHECK_ASSERT(assert)						\ | 
|  | do {									\ | 
|  | if (!(assert)) {						\ | 
|  | printk(KERN_EMERG					\ | 
|  | "Assertion failure in %s() at %s:%d: \"%s\"\n",	\ | 
|  | function, file, line, # assert);		\ | 
|  | BUG();							\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, | 
|  | const char *function, int line) | 
|  | { | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  | int order = e4b->bd_blkbits + 1; | 
|  | int max; | 
|  | int max2; | 
|  | int i; | 
|  | int j; | 
|  | int k; | 
|  | int count; | 
|  | struct ext4_group_info *grp; | 
|  | int fragments = 0; | 
|  | int fstart; | 
|  | struct list_head *cur; | 
|  | void *buddy; | 
|  | void *buddy2; | 
|  |  | 
|  | { | 
|  | static int mb_check_counter; | 
|  | if (mb_check_counter++ % 100 != 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while (order > 1) { | 
|  | buddy = mb_find_buddy(e4b, order, &max); | 
|  | MB_CHECK_ASSERT(buddy); | 
|  | buddy2 = mb_find_buddy(e4b, order - 1, &max2); | 
|  | MB_CHECK_ASSERT(buddy2); | 
|  | MB_CHECK_ASSERT(buddy != buddy2); | 
|  | MB_CHECK_ASSERT(max * 2 == max2); | 
|  |  | 
|  | count = 0; | 
|  | for (i = 0; i < max; i++) { | 
|  |  | 
|  | if (mb_test_bit(i, buddy)) { | 
|  | /* only single bit in buddy2 may be 1 */ | 
|  | if (!mb_test_bit(i << 1, buddy2)) { | 
|  | MB_CHECK_ASSERT( | 
|  | mb_test_bit((i<<1)+1, buddy2)); | 
|  | } else if (!mb_test_bit((i << 1) + 1, buddy2)) { | 
|  | MB_CHECK_ASSERT( | 
|  | mb_test_bit(i << 1, buddy2)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* both bits in buddy2 must be 0 */ | 
|  | MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); | 
|  | MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); | 
|  |  | 
|  | for (j = 0; j < (1 << order); j++) { | 
|  | k = (i * (1 << order)) + j; | 
|  | MB_CHECK_ASSERT( | 
|  | !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); | 
|  | } | 
|  | count++; | 
|  | } | 
|  | MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); | 
|  | order--; | 
|  | } | 
|  |  | 
|  | fstart = -1; | 
|  | buddy = mb_find_buddy(e4b, 0, &max); | 
|  | for (i = 0; i < max; i++) { | 
|  | if (!mb_test_bit(i, buddy)) { | 
|  | MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); | 
|  | if (fstart == -1) { | 
|  | fragments++; | 
|  | fstart = i; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | fstart = -1; | 
|  | /* check used bits only */ | 
|  | for (j = 0; j < e4b->bd_blkbits + 1; j++) { | 
|  | buddy2 = mb_find_buddy(e4b, j, &max2); | 
|  | k = i >> j; | 
|  | MB_CHECK_ASSERT(k < max2); | 
|  | MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); | 
|  | } | 
|  | } | 
|  | MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); | 
|  | MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); | 
|  |  | 
|  | grp = ext4_get_group_info(sb, e4b->bd_group); | 
|  | list_for_each(cur, &grp->bb_prealloc_list) { | 
|  | ext4_group_t groupnr; | 
|  | struct ext4_prealloc_space *pa; | 
|  | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); | 
|  | MB_CHECK_ASSERT(groupnr == e4b->bd_group); | 
|  | for (i = 0; i < pa->pa_len; i++) | 
|  | MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #undef MB_CHECK_ASSERT | 
|  | #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\ | 
|  | __FILE__, __func__, __LINE__) | 
|  | #else | 
|  | #define mb_check_buddy(e4b) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Divide blocks started from @first with length @len into | 
|  | * smaller chunks with power of 2 blocks. | 
|  | * Clear the bits in bitmap which the blocks of the chunk(s) covered, | 
|  | * then increase bb_counters[] for corresponded chunk size. | 
|  | */ | 
|  | static void ext4_mb_mark_free_simple(struct super_block *sb, | 
|  | void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, | 
|  | struct ext4_group_info *grp) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | ext4_grpblk_t min; | 
|  | ext4_grpblk_t max; | 
|  | ext4_grpblk_t chunk; | 
|  | unsigned short border; | 
|  |  | 
|  | BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); | 
|  |  | 
|  | border = 2 << sb->s_blocksize_bits; | 
|  |  | 
|  | while (len > 0) { | 
|  | /* find how many blocks can be covered since this position */ | 
|  | max = ffs(first | border) - 1; | 
|  |  | 
|  | /* find how many blocks of power 2 we need to mark */ | 
|  | min = fls(len) - 1; | 
|  |  | 
|  | if (max < min) | 
|  | min = max; | 
|  | chunk = 1 << min; | 
|  |  | 
|  | /* mark multiblock chunks only */ | 
|  | grp->bb_counters[min]++; | 
|  | if (min > 0) | 
|  | mb_clear_bit(first >> min, | 
|  | buddy + sbi->s_mb_offsets[min]); | 
|  |  | 
|  | len -= chunk; | 
|  | first += chunk; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache the order of the largest free extent we have available in this block | 
|  | * group. | 
|  | */ | 
|  | static void | 
|  | mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) | 
|  | { | 
|  | int i; | 
|  | int bits; | 
|  |  | 
|  | grp->bb_largest_free_order = -1; /* uninit */ | 
|  |  | 
|  | bits = sb->s_blocksize_bits + 1; | 
|  | for (i = bits; i >= 0; i--) { | 
|  | if (grp->bb_counters[i] > 0) { | 
|  | grp->bb_largest_free_order = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | void ext4_mb_generate_buddy(struct super_block *sb, | 
|  | void *buddy, void *bitmap, ext4_group_t group) | 
|  | { | 
|  | struct ext4_group_info *grp = ext4_get_group_info(sb, group); | 
|  | ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb); | 
|  | ext4_grpblk_t i = 0; | 
|  | ext4_grpblk_t first; | 
|  | ext4_grpblk_t len; | 
|  | unsigned free = 0; | 
|  | unsigned fragments = 0; | 
|  | unsigned long long period = get_cycles(); | 
|  |  | 
|  | /* initialize buddy from bitmap which is aggregation | 
|  | * of on-disk bitmap and preallocations */ | 
|  | i = mb_find_next_zero_bit(bitmap, max, 0); | 
|  | grp->bb_first_free = i; | 
|  | while (i < max) { | 
|  | fragments++; | 
|  | first = i; | 
|  | i = mb_find_next_bit(bitmap, max, i); | 
|  | len = i - first; | 
|  | free += len; | 
|  | if (len > 1) | 
|  | ext4_mb_mark_free_simple(sb, buddy, first, len, grp); | 
|  | else | 
|  | grp->bb_counters[0]++; | 
|  | if (i < max) | 
|  | i = mb_find_next_zero_bit(bitmap, max, i); | 
|  | } | 
|  | grp->bb_fragments = fragments; | 
|  |  | 
|  | if (free != grp->bb_free) { | 
|  | ext4_grp_locked_error(sb, group, 0, 0, | 
|  | "%u blocks in bitmap, %u in gd", | 
|  | free, grp->bb_free); | 
|  | /* | 
|  | * If we intent to continue, we consider group descritor | 
|  | * corrupt and update bb_free using bitmap value | 
|  | */ | 
|  | grp->bb_free = free; | 
|  | } | 
|  | mb_set_largest_free_order(sb, grp); | 
|  |  | 
|  | clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); | 
|  |  | 
|  | period = get_cycles() - period; | 
|  | spin_lock(&EXT4_SB(sb)->s_bal_lock); | 
|  | EXT4_SB(sb)->s_mb_buddies_generated++; | 
|  | EXT4_SB(sb)->s_mb_generation_time += period; | 
|  | spin_unlock(&EXT4_SB(sb)->s_bal_lock); | 
|  | } | 
|  |  | 
|  | /* The buddy information is attached the buddy cache inode | 
|  | * for convenience. The information regarding each group | 
|  | * is loaded via ext4_mb_load_buddy. The information involve | 
|  | * block bitmap and buddy information. The information are | 
|  | * stored in the inode as | 
|  | * | 
|  | * {                        page                        } | 
|  | * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... | 
|  | * | 
|  | * | 
|  | * one block each for bitmap and buddy information. | 
|  | * So for each group we take up 2 blocks. A page can | 
|  | * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks. | 
|  | * So it can have information regarding groups_per_page which | 
|  | * is blocks_per_page/2 | 
|  | * | 
|  | * Locking note:  This routine takes the block group lock of all groups | 
|  | * for this page; do not hold this lock when calling this routine! | 
|  | */ | 
|  |  | 
|  | static int ext4_mb_init_cache(struct page *page, char *incore) | 
|  | { | 
|  | ext4_group_t ngroups; | 
|  | int blocksize; | 
|  | int blocks_per_page; | 
|  | int groups_per_page; | 
|  | int err = 0; | 
|  | int i; | 
|  | ext4_group_t first_group; | 
|  | int first_block; | 
|  | struct super_block *sb; | 
|  | struct buffer_head *bhs; | 
|  | struct buffer_head **bh; | 
|  | struct inode *inode; | 
|  | char *data; | 
|  | char *bitmap; | 
|  | struct ext4_group_info *grinfo; | 
|  |  | 
|  | mb_debug(1, "init page %lu\n", page->index); | 
|  |  | 
|  | inode = page->mapping->host; | 
|  | sb = inode->i_sb; | 
|  | ngroups = ext4_get_groups_count(sb); | 
|  | blocksize = 1 << inode->i_blkbits; | 
|  | blocks_per_page = PAGE_CACHE_SIZE / blocksize; | 
|  |  | 
|  | groups_per_page = blocks_per_page >> 1; | 
|  | if (groups_per_page == 0) | 
|  | groups_per_page = 1; | 
|  |  | 
|  | /* allocate buffer_heads to read bitmaps */ | 
|  | if (groups_per_page > 1) { | 
|  | err = -ENOMEM; | 
|  | i = sizeof(struct buffer_head *) * groups_per_page; | 
|  | bh = kzalloc(i, GFP_NOFS); | 
|  | if (bh == NULL) | 
|  | goto out; | 
|  | } else | 
|  | bh = &bhs; | 
|  |  | 
|  | first_group = page->index * blocks_per_page / 2; | 
|  |  | 
|  | /* read all groups the page covers into the cache */ | 
|  | for (i = 0; i < groups_per_page; i++) { | 
|  | struct ext4_group_desc *desc; | 
|  |  | 
|  | if (first_group + i >= ngroups) | 
|  | break; | 
|  |  | 
|  | grinfo = ext4_get_group_info(sb, first_group + i); | 
|  | /* | 
|  | * If page is uptodate then we came here after online resize | 
|  | * which added some new uninitialized group info structs, so | 
|  | * we must skip all initialized uptodate buddies on the page, | 
|  | * which may be currently in use by an allocating task. | 
|  | */ | 
|  | if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { | 
|  | bh[i] = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = -EIO; | 
|  | desc = ext4_get_group_desc(sb, first_group + i, NULL); | 
|  | if (desc == NULL) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); | 
|  | if (bh[i] == NULL) | 
|  | goto out; | 
|  |  | 
|  | if (bitmap_uptodate(bh[i])) | 
|  | continue; | 
|  |  | 
|  | lock_buffer(bh[i]); | 
|  | if (bitmap_uptodate(bh[i])) { | 
|  | unlock_buffer(bh[i]); | 
|  | continue; | 
|  | } | 
|  | ext4_lock_group(sb, first_group + i); | 
|  | if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
|  | ext4_init_block_bitmap(sb, bh[i], | 
|  | first_group + i, desc); | 
|  | set_bitmap_uptodate(bh[i]); | 
|  | set_buffer_uptodate(bh[i]); | 
|  | ext4_unlock_group(sb, first_group + i); | 
|  | unlock_buffer(bh[i]); | 
|  | continue; | 
|  | } | 
|  | ext4_unlock_group(sb, first_group + i); | 
|  | if (buffer_uptodate(bh[i])) { | 
|  | /* | 
|  | * if not uninit if bh is uptodate, | 
|  | * bitmap is also uptodate | 
|  | */ | 
|  | set_bitmap_uptodate(bh[i]); | 
|  | unlock_buffer(bh[i]); | 
|  | continue; | 
|  | } | 
|  | get_bh(bh[i]); | 
|  | /* | 
|  | * submit the buffer_head for read. We can | 
|  | * safely mark the bitmap as uptodate now. | 
|  | * We do it here so the bitmap uptodate bit | 
|  | * get set with buffer lock held. | 
|  | */ | 
|  | set_bitmap_uptodate(bh[i]); | 
|  | bh[i]->b_end_io = end_buffer_read_sync; | 
|  | submit_bh(READ, bh[i]); | 
|  | mb_debug(1, "read bitmap for group %u\n", first_group + i); | 
|  | } | 
|  |  | 
|  | /* wait for I/O completion */ | 
|  | for (i = 0; i < groups_per_page; i++) | 
|  | if (bh[i]) | 
|  | wait_on_buffer(bh[i]); | 
|  |  | 
|  | err = -EIO; | 
|  | for (i = 0; i < groups_per_page; i++) | 
|  | if (bh[i] && !buffer_uptodate(bh[i])) | 
|  | goto out; | 
|  |  | 
|  | err = 0; | 
|  | first_block = page->index * blocks_per_page; | 
|  | for (i = 0; i < blocks_per_page; i++) { | 
|  | int group; | 
|  |  | 
|  | group = (first_block + i) >> 1; | 
|  | if (group >= ngroups) | 
|  | break; | 
|  |  | 
|  | if (!bh[group - first_group]) | 
|  | /* skip initialized uptodate buddy */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * data carry information regarding this | 
|  | * particular group in the format specified | 
|  | * above | 
|  | * | 
|  | */ | 
|  | data = page_address(page) + (i * blocksize); | 
|  | bitmap = bh[group - first_group]->b_data; | 
|  |  | 
|  | /* | 
|  | * We place the buddy block and bitmap block | 
|  | * close together | 
|  | */ | 
|  | if ((first_block + i) & 1) { | 
|  | /* this is block of buddy */ | 
|  | BUG_ON(incore == NULL); | 
|  | mb_debug(1, "put buddy for group %u in page %lu/%x\n", | 
|  | group, page->index, i * blocksize); | 
|  | trace_ext4_mb_buddy_bitmap_load(sb, group); | 
|  | grinfo = ext4_get_group_info(sb, group); | 
|  | grinfo->bb_fragments = 0; | 
|  | memset(grinfo->bb_counters, 0, | 
|  | sizeof(*grinfo->bb_counters) * | 
|  | (sb->s_blocksize_bits+2)); | 
|  | /* | 
|  | * incore got set to the group block bitmap below | 
|  | */ | 
|  | ext4_lock_group(sb, group); | 
|  | /* init the buddy */ | 
|  | memset(data, 0xff, blocksize); | 
|  | ext4_mb_generate_buddy(sb, data, incore, group); | 
|  | ext4_unlock_group(sb, group); | 
|  | incore = NULL; | 
|  | } else { | 
|  | /* this is block of bitmap */ | 
|  | BUG_ON(incore != NULL); | 
|  | mb_debug(1, "put bitmap for group %u in page %lu/%x\n", | 
|  | group, page->index, i * blocksize); | 
|  | trace_ext4_mb_bitmap_load(sb, group); | 
|  |  | 
|  | /* see comments in ext4_mb_put_pa() */ | 
|  | ext4_lock_group(sb, group); | 
|  | memcpy(data, bitmap, blocksize); | 
|  |  | 
|  | /* mark all preallocated blks used in in-core bitmap */ | 
|  | ext4_mb_generate_from_pa(sb, data, group); | 
|  | ext4_mb_generate_from_freelist(sb, data, group); | 
|  | ext4_unlock_group(sb, group); | 
|  |  | 
|  | /* set incore so that the buddy information can be | 
|  | * generated using this | 
|  | */ | 
|  | incore = data; | 
|  | } | 
|  | } | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | out: | 
|  | if (bh) { | 
|  | for (i = 0; i < groups_per_page; i++) | 
|  | brelse(bh[i]); | 
|  | if (bh != &bhs) | 
|  | kfree(bh); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock the buddy and bitmap pages. This make sure other parallel init_group | 
|  | * on the same buddy page doesn't happen whild holding the buddy page lock. | 
|  | * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap | 
|  | * are on the same page e4b->bd_buddy_page is NULL and return value is 0. | 
|  | */ | 
|  | static int ext4_mb_get_buddy_page_lock(struct super_block *sb, | 
|  | ext4_group_t group, struct ext4_buddy *e4b) | 
|  | { | 
|  | struct inode *inode = EXT4_SB(sb)->s_buddy_cache; | 
|  | int block, pnum, poff; | 
|  | int blocks_per_page; | 
|  | struct page *page; | 
|  |  | 
|  | e4b->bd_buddy_page = NULL; | 
|  | e4b->bd_bitmap_page = NULL; | 
|  |  | 
|  | blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; | 
|  | /* | 
|  | * the buddy cache inode stores the block bitmap | 
|  | * and buddy information in consecutive blocks. | 
|  | * So for each group we need two blocks. | 
|  | */ | 
|  | block = group * 2; | 
|  | pnum = block / blocks_per_page; | 
|  | poff = block % blocks_per_page; | 
|  | page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); | 
|  | if (!page) | 
|  | return -EIO; | 
|  | BUG_ON(page->mapping != inode->i_mapping); | 
|  | e4b->bd_bitmap_page = page; | 
|  | e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); | 
|  |  | 
|  | if (blocks_per_page >= 2) { | 
|  | /* buddy and bitmap are on the same page */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | block++; | 
|  | pnum = block / blocks_per_page; | 
|  | poff = block % blocks_per_page; | 
|  | page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); | 
|  | if (!page) | 
|  | return -EIO; | 
|  | BUG_ON(page->mapping != inode->i_mapping); | 
|  | e4b->bd_buddy_page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) | 
|  | { | 
|  | if (e4b->bd_bitmap_page) { | 
|  | unlock_page(e4b->bd_bitmap_page); | 
|  | page_cache_release(e4b->bd_bitmap_page); | 
|  | } | 
|  | if (e4b->bd_buddy_page) { | 
|  | unlock_page(e4b->bd_buddy_page); | 
|  | page_cache_release(e4b->bd_buddy_page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking note:  This routine calls ext4_mb_init_cache(), which takes the | 
|  | * block group lock of all groups for this page; do not hold the BG lock when | 
|  | * calling this routine! | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) | 
|  | { | 
|  |  | 
|  | struct ext4_group_info *this_grp; | 
|  | struct ext4_buddy e4b; | 
|  | struct page *page; | 
|  | int ret = 0; | 
|  |  | 
|  | mb_debug(1, "init group %u\n", group); | 
|  | this_grp = ext4_get_group_info(sb, group); | 
|  | /* | 
|  | * This ensures that we don't reinit the buddy cache | 
|  | * page which map to the group from which we are already | 
|  | * allocating. If we are looking at the buddy cache we would | 
|  | * have taken a reference using ext4_mb_load_buddy and that | 
|  | * would have pinned buddy page to page cache. | 
|  | */ | 
|  | ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); | 
|  | if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { | 
|  | /* | 
|  | * somebody initialized the group | 
|  | * return without doing anything | 
|  | */ | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | page = e4b.bd_bitmap_page; | 
|  | ret = ext4_mb_init_cache(page, NULL); | 
|  | if (ret) | 
|  | goto err; | 
|  | if (!PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | if (e4b.bd_buddy_page == NULL) { | 
|  | /* | 
|  | * If both the bitmap and buddy are in | 
|  | * the same page we don't need to force | 
|  | * init the buddy | 
|  | */ | 
|  | ret = 0; | 
|  | goto err; | 
|  | } | 
|  | /* init buddy cache */ | 
|  | page = e4b.bd_buddy_page; | 
|  | ret = ext4_mb_init_cache(page, e4b.bd_bitmap); | 
|  | if (ret) | 
|  | goto err; | 
|  | if (!PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | mark_page_accessed(page); | 
|  | err: | 
|  | ext4_mb_put_buddy_page_lock(&e4b); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking note:  This routine calls ext4_mb_init_cache(), which takes the | 
|  | * block group lock of all groups for this page; do not hold the BG lock when | 
|  | * calling this routine! | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | int blocks_per_page; | 
|  | int block; | 
|  | int pnum; | 
|  | int poff; | 
|  | struct page *page; | 
|  | int ret; | 
|  | struct ext4_group_info *grp; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct inode *inode = sbi->s_buddy_cache; | 
|  |  | 
|  | mb_debug(1, "load group %u\n", group); | 
|  |  | 
|  | blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; | 
|  | grp = ext4_get_group_info(sb, group); | 
|  |  | 
|  | e4b->bd_blkbits = sb->s_blocksize_bits; | 
|  | e4b->bd_info = ext4_get_group_info(sb, group); | 
|  | e4b->bd_sb = sb; | 
|  | e4b->bd_group = group; | 
|  | e4b->bd_buddy_page = NULL; | 
|  | e4b->bd_bitmap_page = NULL; | 
|  |  | 
|  | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { | 
|  | /* | 
|  | * we need full data about the group | 
|  | * to make a good selection | 
|  | */ | 
|  | ret = ext4_mb_init_group(sb, group); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the buddy cache inode stores the block bitmap | 
|  | * and buddy information in consecutive blocks. | 
|  | * So for each group we need two blocks. | 
|  | */ | 
|  | block = group * 2; | 
|  | pnum = block / blocks_per_page; | 
|  | poff = block % blocks_per_page; | 
|  |  | 
|  | /* we could use find_or_create_page(), but it locks page | 
|  | * what we'd like to avoid in fast path ... */ | 
|  | page = find_get_page(inode->i_mapping, pnum); | 
|  | if (page == NULL || !PageUptodate(page)) { | 
|  | if (page) | 
|  | /* | 
|  | * drop the page reference and try | 
|  | * to get the page with lock. If we | 
|  | * are not uptodate that implies | 
|  | * somebody just created the page but | 
|  | * is yet to initialize the same. So | 
|  | * wait for it to initialize. | 
|  | */ | 
|  | page_cache_release(page); | 
|  | page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); | 
|  | if (page) { | 
|  | BUG_ON(page->mapping != inode->i_mapping); | 
|  | if (!PageUptodate(page)) { | 
|  | ret = ext4_mb_init_cache(page, NULL); | 
|  | if (ret) { | 
|  | unlock_page(page); | 
|  | goto err; | 
|  | } | 
|  | mb_cmp_bitmaps(e4b, page_address(page) + | 
|  | (poff * sb->s_blocksize)); | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  | if (page == NULL || !PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | e4b->bd_bitmap_page = page; | 
|  | e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | block++; | 
|  | pnum = block / blocks_per_page; | 
|  | poff = block % blocks_per_page; | 
|  |  | 
|  | page = find_get_page(inode->i_mapping, pnum); | 
|  | if (page == NULL || !PageUptodate(page)) { | 
|  | if (page) | 
|  | page_cache_release(page); | 
|  | page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); | 
|  | if (page) { | 
|  | BUG_ON(page->mapping != inode->i_mapping); | 
|  | if (!PageUptodate(page)) { | 
|  | ret = ext4_mb_init_cache(page, e4b->bd_bitmap); | 
|  | if (ret) { | 
|  | unlock_page(page); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  | if (page == NULL || !PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | e4b->bd_buddy_page = page; | 
|  | e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | BUG_ON(e4b->bd_bitmap_page == NULL); | 
|  | BUG_ON(e4b->bd_buddy_page == NULL); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | if (page) | 
|  | page_cache_release(page); | 
|  | if (e4b->bd_bitmap_page) | 
|  | page_cache_release(e4b->bd_bitmap_page); | 
|  | if (e4b->bd_buddy_page) | 
|  | page_cache_release(e4b->bd_buddy_page); | 
|  | e4b->bd_buddy = NULL; | 
|  | e4b->bd_bitmap = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) | 
|  | { | 
|  | if (e4b->bd_bitmap_page) | 
|  | page_cache_release(e4b->bd_bitmap_page); | 
|  | if (e4b->bd_buddy_page) | 
|  | page_cache_release(e4b->bd_buddy_page); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) | 
|  | { | 
|  | int order = 1; | 
|  | void *bb; | 
|  |  | 
|  | BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); | 
|  | BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); | 
|  |  | 
|  | bb = EXT4_MB_BUDDY(e4b); | 
|  | while (order <= e4b->bd_blkbits + 1) { | 
|  | block = block >> 1; | 
|  | if (!mb_test_bit(block, bb)) { | 
|  | /* this block is part of buddy of order 'order' */ | 
|  | return order; | 
|  | } | 
|  | bb += 1 << (e4b->bd_blkbits - order); | 
|  | order++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mb_clear_bits(void *bm, int cur, int len) | 
|  | { | 
|  | __u32 *addr; | 
|  |  | 
|  | len = cur + len; | 
|  | while (cur < len) { | 
|  | if ((cur & 31) == 0 && (len - cur) >= 32) { | 
|  | /* fast path: clear whole word at once */ | 
|  | addr = bm + (cur >> 3); | 
|  | *addr = 0; | 
|  | cur += 32; | 
|  | continue; | 
|  | } | 
|  | mb_clear_bit(cur, bm); | 
|  | cur++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mb_set_bits(void *bm, int cur, int len) | 
|  | { | 
|  | __u32 *addr; | 
|  |  | 
|  | len = cur + len; | 
|  | while (cur < len) { | 
|  | if ((cur & 31) == 0 && (len - cur) >= 32) { | 
|  | /* fast path: set whole word at once */ | 
|  | addr = bm + (cur >> 3); | 
|  | *addr = 0xffffffff; | 
|  | cur += 32; | 
|  | continue; | 
|  | } | 
|  | mb_set_bit(cur, bm); | 
|  | cur++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, | 
|  | int first, int count) | 
|  | { | 
|  | int block = 0; | 
|  | int max = 0; | 
|  | int order; | 
|  | void *buddy; | 
|  | void *buddy2; | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  |  | 
|  | BUG_ON(first + count > (sb->s_blocksize << 3)); | 
|  | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); | 
|  | mb_check_buddy(e4b); | 
|  | mb_free_blocks_double(inode, e4b, first, count); | 
|  |  | 
|  | e4b->bd_info->bb_free += count; | 
|  | if (first < e4b->bd_info->bb_first_free) | 
|  | e4b->bd_info->bb_first_free = first; | 
|  |  | 
|  | /* let's maintain fragments counter */ | 
|  | if (first != 0) | 
|  | block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); | 
|  | if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) | 
|  | max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); | 
|  | if (block && max) | 
|  | e4b->bd_info->bb_fragments--; | 
|  | else if (!block && !max) | 
|  | e4b->bd_info->bb_fragments++; | 
|  |  | 
|  | /* let's maintain buddy itself */ | 
|  | while (count-- > 0) { | 
|  | block = first++; | 
|  | order = 0; | 
|  |  | 
|  | if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { | 
|  | ext4_fsblk_t blocknr; | 
|  |  | 
|  | blocknr = ext4_group_first_block_no(sb, e4b->bd_group); | 
|  | blocknr += block; | 
|  | ext4_grp_locked_error(sb, e4b->bd_group, | 
|  | inode ? inode->i_ino : 0, | 
|  | blocknr, | 
|  | "freeing already freed block " | 
|  | "(bit %u)", block); | 
|  | } | 
|  | mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); | 
|  | e4b->bd_info->bb_counters[order]++; | 
|  |  | 
|  | /* start of the buddy */ | 
|  | buddy = mb_find_buddy(e4b, order, &max); | 
|  |  | 
|  | do { | 
|  | block &= ~1UL; | 
|  | if (mb_test_bit(block, buddy) || | 
|  | mb_test_bit(block + 1, buddy)) | 
|  | break; | 
|  |  | 
|  | /* both the buddies are free, try to coalesce them */ | 
|  | buddy2 = mb_find_buddy(e4b, order + 1, &max); | 
|  |  | 
|  | if (!buddy2) | 
|  | break; | 
|  |  | 
|  | if (order > 0) { | 
|  | /* for special purposes, we don't set | 
|  | * free bits in bitmap */ | 
|  | mb_set_bit(block, buddy); | 
|  | mb_set_bit(block + 1, buddy); | 
|  | } | 
|  | e4b->bd_info->bb_counters[order]--; | 
|  | e4b->bd_info->bb_counters[order]--; | 
|  |  | 
|  | block = block >> 1; | 
|  | order++; | 
|  | e4b->bd_info->bb_counters[order]++; | 
|  |  | 
|  | mb_clear_bit(block, buddy2); | 
|  | buddy = buddy2; | 
|  | } while (1); | 
|  | } | 
|  | mb_set_largest_free_order(sb, e4b->bd_info); | 
|  | mb_check_buddy(e4b); | 
|  | } | 
|  |  | 
|  | static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, | 
|  | int needed, struct ext4_free_extent *ex) | 
|  | { | 
|  | int next = block; | 
|  | int max; | 
|  | int ord; | 
|  | void *buddy; | 
|  |  | 
|  | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); | 
|  | BUG_ON(ex == NULL); | 
|  |  | 
|  | buddy = mb_find_buddy(e4b, order, &max); | 
|  | BUG_ON(buddy == NULL); | 
|  | BUG_ON(block >= max); | 
|  | if (mb_test_bit(block, buddy)) { | 
|  | ex->fe_len = 0; | 
|  | ex->fe_start = 0; | 
|  | ex->fe_group = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* FIXME dorp order completely ? */ | 
|  | if (likely(order == 0)) { | 
|  | /* find actual order */ | 
|  | order = mb_find_order_for_block(e4b, block); | 
|  | block = block >> order; | 
|  | } | 
|  |  | 
|  | ex->fe_len = 1 << order; | 
|  | ex->fe_start = block << order; | 
|  | ex->fe_group = e4b->bd_group; | 
|  |  | 
|  | /* calc difference from given start */ | 
|  | next = next - ex->fe_start; | 
|  | ex->fe_len -= next; | 
|  | ex->fe_start += next; | 
|  |  | 
|  | while (needed > ex->fe_len && | 
|  | (buddy = mb_find_buddy(e4b, order, &max))) { | 
|  |  | 
|  | if (block + 1 >= max) | 
|  | break; | 
|  |  | 
|  | next = (block + 1) * (1 << order); | 
|  | if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) | 
|  | break; | 
|  |  | 
|  | ord = mb_find_order_for_block(e4b, next); | 
|  |  | 
|  | order = ord; | 
|  | block = next >> order; | 
|  | ex->fe_len += 1 << order; | 
|  | } | 
|  |  | 
|  | BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); | 
|  | return ex->fe_len; | 
|  | } | 
|  |  | 
|  | static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) | 
|  | { | 
|  | int ord; | 
|  | int mlen = 0; | 
|  | int max = 0; | 
|  | int cur; | 
|  | int start = ex->fe_start; | 
|  | int len = ex->fe_len; | 
|  | unsigned ret = 0; | 
|  | int len0 = len; | 
|  | void *buddy; | 
|  |  | 
|  | BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); | 
|  | BUG_ON(e4b->bd_group != ex->fe_group); | 
|  | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); | 
|  | mb_check_buddy(e4b); | 
|  | mb_mark_used_double(e4b, start, len); | 
|  |  | 
|  | e4b->bd_info->bb_free -= len; | 
|  | if (e4b->bd_info->bb_first_free == start) | 
|  | e4b->bd_info->bb_first_free += len; | 
|  |  | 
|  | /* let's maintain fragments counter */ | 
|  | if (start != 0) | 
|  | mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); | 
|  | if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) | 
|  | max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); | 
|  | if (mlen && max) | 
|  | e4b->bd_info->bb_fragments++; | 
|  | else if (!mlen && !max) | 
|  | e4b->bd_info->bb_fragments--; | 
|  |  | 
|  | /* let's maintain buddy itself */ | 
|  | while (len) { | 
|  | ord = mb_find_order_for_block(e4b, start); | 
|  |  | 
|  | if (((start >> ord) << ord) == start && len >= (1 << ord)) { | 
|  | /* the whole chunk may be allocated at once! */ | 
|  | mlen = 1 << ord; | 
|  | buddy = mb_find_buddy(e4b, ord, &max); | 
|  | BUG_ON((start >> ord) >= max); | 
|  | mb_set_bit(start >> ord, buddy); | 
|  | e4b->bd_info->bb_counters[ord]--; | 
|  | start += mlen; | 
|  | len -= mlen; | 
|  | BUG_ON(len < 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* store for history */ | 
|  | if (ret == 0) | 
|  | ret = len | (ord << 16); | 
|  |  | 
|  | /* we have to split large buddy */ | 
|  | BUG_ON(ord <= 0); | 
|  | buddy = mb_find_buddy(e4b, ord, &max); | 
|  | mb_set_bit(start >> ord, buddy); | 
|  | e4b->bd_info->bb_counters[ord]--; | 
|  |  | 
|  | ord--; | 
|  | cur = (start >> ord) & ~1U; | 
|  | buddy = mb_find_buddy(e4b, ord, &max); | 
|  | mb_clear_bit(cur, buddy); | 
|  | mb_clear_bit(cur + 1, buddy); | 
|  | e4b->bd_info->bb_counters[ord]++; | 
|  | e4b->bd_info->bb_counters[ord]++; | 
|  | } | 
|  | mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); | 
|  |  | 
|  | mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0); | 
|  | mb_check_buddy(e4b); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called under group lock! | 
|  | */ | 
|  | static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); | 
|  | BUG_ON(ac->ac_status == AC_STATUS_FOUND); | 
|  |  | 
|  | ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); | 
|  | ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; | 
|  | ret = mb_mark_used(e4b, &ac->ac_b_ex); | 
|  |  | 
|  | /* preallocation can change ac_b_ex, thus we store actually | 
|  | * allocated blocks for history */ | 
|  | ac->ac_f_ex = ac->ac_b_ex; | 
|  |  | 
|  | ac->ac_status = AC_STATUS_FOUND; | 
|  | ac->ac_tail = ret & 0xffff; | 
|  | ac->ac_buddy = ret >> 16; | 
|  |  | 
|  | /* | 
|  | * take the page reference. We want the page to be pinned | 
|  | * so that we don't get a ext4_mb_init_cache_call for this | 
|  | * group until we update the bitmap. That would mean we | 
|  | * double allocate blocks. The reference is dropped | 
|  | * in ext4_mb_release_context | 
|  | */ | 
|  | ac->ac_bitmap_page = e4b->bd_bitmap_page; | 
|  | get_page(ac->ac_bitmap_page); | 
|  | ac->ac_buddy_page = e4b->bd_buddy_page; | 
|  | get_page(ac->ac_buddy_page); | 
|  | /* store last allocated for subsequent stream allocation */ | 
|  | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { | 
|  | spin_lock(&sbi->s_md_lock); | 
|  | sbi->s_mb_last_group = ac->ac_f_ex.fe_group; | 
|  | sbi->s_mb_last_start = ac->ac_f_ex.fe_start; | 
|  | spin_unlock(&sbi->s_md_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * regular allocator, for general purposes allocation | 
|  | */ | 
|  |  | 
|  | static void ext4_mb_check_limits(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b, | 
|  | int finish_group) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); | 
|  | struct ext4_free_extent *bex = &ac->ac_b_ex; | 
|  | struct ext4_free_extent *gex = &ac->ac_g_ex; | 
|  | struct ext4_free_extent ex; | 
|  | int max; | 
|  |  | 
|  | if (ac->ac_status == AC_STATUS_FOUND) | 
|  | return; | 
|  | /* | 
|  | * We don't want to scan for a whole year | 
|  | */ | 
|  | if (ac->ac_found > sbi->s_mb_max_to_scan && | 
|  | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { | 
|  | ac->ac_status = AC_STATUS_BREAK; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Haven't found good chunk so far, let's continue | 
|  | */ | 
|  | if (bex->fe_len < gex->fe_len) | 
|  | return; | 
|  |  | 
|  | if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) | 
|  | && bex->fe_group == e4b->bd_group) { | 
|  | /* recheck chunk's availability - we don't know | 
|  | * when it was found (within this lock-unlock | 
|  | * period or not) */ | 
|  | max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); | 
|  | if (max >= gex->fe_len) { | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The routine checks whether found extent is good enough. If it is, | 
|  | * then the extent gets marked used and flag is set to the context | 
|  | * to stop scanning. Otherwise, the extent is compared with the | 
|  | * previous found extent and if new one is better, then it's stored | 
|  | * in the context. Later, the best found extent will be used, if | 
|  | * mballoc can't find good enough extent. | 
|  | * | 
|  | * FIXME: real allocation policy is to be designed yet! | 
|  | */ | 
|  | static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, | 
|  | struct ext4_free_extent *ex, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct ext4_free_extent *bex = &ac->ac_b_ex; | 
|  | struct ext4_free_extent *gex = &ac->ac_g_ex; | 
|  |  | 
|  | BUG_ON(ex->fe_len <= 0); | 
|  | BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); | 
|  | BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); | 
|  | BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); | 
|  |  | 
|  | ac->ac_found++; | 
|  |  | 
|  | /* | 
|  | * The special case - take what you catch first | 
|  | */ | 
|  | if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { | 
|  | *bex = *ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let's check whether the chuck is good enough | 
|  | */ | 
|  | if (ex->fe_len == gex->fe_len) { | 
|  | *bex = *ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is first found extent, just store it in the context | 
|  | */ | 
|  | if (bex->fe_len == 0) { | 
|  | *bex = *ex; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If new found extent is better, store it in the context | 
|  | */ | 
|  | if (bex->fe_len < gex->fe_len) { | 
|  | /* if the request isn't satisfied, any found extent | 
|  | * larger than previous best one is better */ | 
|  | if (ex->fe_len > bex->fe_len) | 
|  | *bex = *ex; | 
|  | } else if (ex->fe_len > gex->fe_len) { | 
|  | /* if the request is satisfied, then we try to find | 
|  | * an extent that still satisfy the request, but is | 
|  | * smaller than previous one */ | 
|  | if (ex->fe_len < bex->fe_len) | 
|  | *bex = *ex; | 
|  | } | 
|  |  | 
|  | ext4_mb_check_limits(ac, e4b, 0); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int ext4_mb_try_best_found(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct ext4_free_extent ex = ac->ac_b_ex; | 
|  | ext4_group_t group = ex.fe_group; | 
|  | int max; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(ex.fe_len <= 0); | 
|  | err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ext4_lock_group(ac->ac_sb, group); | 
|  | max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); | 
|  |  | 
|  | if (max > 0) { | 
|  | ac->ac_b_ex = ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | } | 
|  |  | 
|  | ext4_unlock_group(ac->ac_sb, group); | 
|  | ext4_mb_unload_buddy(e4b); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | ext4_group_t group = ac->ac_g_ex.fe_group; | 
|  | int max; | 
|  | int err; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); | 
|  | struct ext4_free_extent ex; | 
|  |  | 
|  | if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) | 
|  | return 0; | 
|  |  | 
|  | err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ext4_lock_group(ac->ac_sb, group); | 
|  | max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, | 
|  | ac->ac_g_ex.fe_len, &ex); | 
|  |  | 
|  | if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { | 
|  | ext4_fsblk_t start; | 
|  |  | 
|  | start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + | 
|  | ex.fe_start; | 
|  | /* use do_div to get remainder (would be 64-bit modulo) */ | 
|  | if (do_div(start, sbi->s_stripe) == 0) { | 
|  | ac->ac_found++; | 
|  | ac->ac_b_ex = ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | } | 
|  | } else if (max >= ac->ac_g_ex.fe_len) { | 
|  | BUG_ON(ex.fe_len <= 0); | 
|  | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); | 
|  | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); | 
|  | ac->ac_found++; | 
|  | ac->ac_b_ex = ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { | 
|  | /* Sometimes, caller may want to merge even small | 
|  | * number of blocks to an existing extent */ | 
|  | BUG_ON(ex.fe_len <= 0); | 
|  | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); | 
|  | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); | 
|  | ac->ac_found++; | 
|  | ac->ac_b_ex = ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | } | 
|  | ext4_unlock_group(ac->ac_sb, group); | 
|  | ext4_mb_unload_buddy(e4b); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The routine scans buddy structures (not bitmap!) from given order | 
|  | * to max order and tries to find big enough chunk to satisfy the req | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_group_info *grp = e4b->bd_info; | 
|  | void *buddy; | 
|  | int i; | 
|  | int k; | 
|  | int max; | 
|  |  | 
|  | BUG_ON(ac->ac_2order <= 0); | 
|  | for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { | 
|  | if (grp->bb_counters[i] == 0) | 
|  | continue; | 
|  |  | 
|  | buddy = mb_find_buddy(e4b, i, &max); | 
|  | BUG_ON(buddy == NULL); | 
|  |  | 
|  | k = mb_find_next_zero_bit(buddy, max, 0); | 
|  | BUG_ON(k >= max); | 
|  |  | 
|  | ac->ac_found++; | 
|  |  | 
|  | ac->ac_b_ex.fe_len = 1 << i; | 
|  | ac->ac_b_ex.fe_start = k << i; | 
|  | ac->ac_b_ex.fe_group = e4b->bd_group; | 
|  |  | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  |  | 
|  | BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); | 
|  |  | 
|  | if (EXT4_SB(sb)->s_mb_stats) | 
|  | atomic_inc(&EXT4_SB(sb)->s_bal_2orders); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The routine scans the group and measures all found extents. | 
|  | * In order to optimize scanning, caller must pass number of | 
|  | * free blocks in the group, so the routine can know upper limit. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | void *bitmap = EXT4_MB_BITMAP(e4b); | 
|  | struct ext4_free_extent ex; | 
|  | int i; | 
|  | int free; | 
|  |  | 
|  | free = e4b->bd_info->bb_free; | 
|  | BUG_ON(free <= 0); | 
|  |  | 
|  | i = e4b->bd_info->bb_first_free; | 
|  |  | 
|  | while (free && ac->ac_status == AC_STATUS_CONTINUE) { | 
|  | i = mb_find_next_zero_bit(bitmap, | 
|  | EXT4_BLOCKS_PER_GROUP(sb), i); | 
|  | if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { | 
|  | /* | 
|  | * IF we have corrupt bitmap, we won't find any | 
|  | * free blocks even though group info says we | 
|  | * we have free blocks | 
|  | */ | 
|  | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, | 
|  | "%d free blocks as per " | 
|  | "group info. But bitmap says 0", | 
|  | free); | 
|  | break; | 
|  | } | 
|  |  | 
|  | mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); | 
|  | BUG_ON(ex.fe_len <= 0); | 
|  | if (free < ex.fe_len) { | 
|  | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, | 
|  | "%d free blocks as per " | 
|  | "group info. But got %d blocks", | 
|  | free, ex.fe_len); | 
|  | /* | 
|  | * The number of free blocks differs. This mostly | 
|  | * indicate that the bitmap is corrupt. So exit | 
|  | * without claiming the space. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | ext4_mb_measure_extent(ac, &ex, e4b); | 
|  |  | 
|  | i += ex.fe_len; | 
|  | free -= ex.fe_len; | 
|  | } | 
|  |  | 
|  | ext4_mb_check_limits(ac, e4b, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a special case for storages like raid5 | 
|  | * we try to find stripe-aligned chunks for stripe-size-multiple requests | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, | 
|  | struct ext4_buddy *e4b) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | void *bitmap = EXT4_MB_BITMAP(e4b); | 
|  | struct ext4_free_extent ex; | 
|  | ext4_fsblk_t first_group_block; | 
|  | ext4_fsblk_t a; | 
|  | ext4_grpblk_t i; | 
|  | int max; | 
|  |  | 
|  | BUG_ON(sbi->s_stripe == 0); | 
|  |  | 
|  | /* find first stripe-aligned block in group */ | 
|  | first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); | 
|  |  | 
|  | a = first_group_block + sbi->s_stripe - 1; | 
|  | do_div(a, sbi->s_stripe); | 
|  | i = (a * sbi->s_stripe) - first_group_block; | 
|  |  | 
|  | while (i < EXT4_BLOCKS_PER_GROUP(sb)) { | 
|  | if (!mb_test_bit(i, bitmap)) { | 
|  | max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); | 
|  | if (max >= sbi->s_stripe) { | 
|  | ac->ac_found++; | 
|  | ac->ac_b_ex = ex; | 
|  | ext4_mb_use_best_found(ac, e4b); | 
|  | break; | 
|  | } | 
|  | } | 
|  | i += sbi->s_stripe; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This is now called BEFORE we load the buddy bitmap. */ | 
|  | static int ext4_mb_good_group(struct ext4_allocation_context *ac, | 
|  | ext4_group_t group, int cr) | 
|  | { | 
|  | unsigned free, fragments; | 
|  | int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); | 
|  | struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); | 
|  |  | 
|  | BUG_ON(cr < 0 || cr >= 4); | 
|  |  | 
|  | /* We only do this if the grp has never been initialized */ | 
|  | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { | 
|  | int ret = ext4_mb_init_group(ac->ac_sb, group); | 
|  | if (ret) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | free = grp->bb_free; | 
|  | fragments = grp->bb_fragments; | 
|  | if (free == 0) | 
|  | return 0; | 
|  | if (fragments == 0) | 
|  | return 0; | 
|  |  | 
|  | switch (cr) { | 
|  | case 0: | 
|  | BUG_ON(ac->ac_2order == 0); | 
|  |  | 
|  | if (grp->bb_largest_free_order < ac->ac_2order) | 
|  | return 0; | 
|  |  | 
|  | /* Avoid using the first bg of a flexgroup for data files */ | 
|  | if ((ac->ac_flags & EXT4_MB_HINT_DATA) && | 
|  | (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && | 
|  | ((group % flex_size) == 0)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | case 1: | 
|  | if ((free / fragments) >= ac->ac_g_ex.fe_len) | 
|  | return 1; | 
|  | break; | 
|  | case 2: | 
|  | if (free >= ac->ac_g_ex.fe_len) | 
|  | return 1; | 
|  | break; | 
|  | case 3: | 
|  | return 1; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | ext4_mb_regular_allocator(struct ext4_allocation_context *ac) | 
|  | { | 
|  | ext4_group_t ngroups, group, i; | 
|  | int cr; | 
|  | int err = 0; | 
|  | struct ext4_sb_info *sbi; | 
|  | struct super_block *sb; | 
|  | struct ext4_buddy e4b; | 
|  |  | 
|  | sb = ac->ac_sb; | 
|  | sbi = EXT4_SB(sb); | 
|  | ngroups = ext4_get_groups_count(sb); | 
|  | /* non-extent files are limited to low blocks/groups */ | 
|  | if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) | 
|  | ngroups = sbi->s_blockfile_groups; | 
|  |  | 
|  | BUG_ON(ac->ac_status == AC_STATUS_FOUND); | 
|  |  | 
|  | /* first, try the goal */ | 
|  | err = ext4_mb_find_by_goal(ac, &e4b); | 
|  | if (err || ac->ac_status == AC_STATUS_FOUND) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * ac->ac2_order is set only if the fe_len is a power of 2 | 
|  | * if ac2_order is set we also set criteria to 0 so that we | 
|  | * try exact allocation using buddy. | 
|  | */ | 
|  | i = fls(ac->ac_g_ex.fe_len); | 
|  | ac->ac_2order = 0; | 
|  | /* | 
|  | * We search using buddy data only if the order of the request | 
|  | * is greater than equal to the sbi_s_mb_order2_reqs | 
|  | * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req | 
|  | */ | 
|  | if (i >= sbi->s_mb_order2_reqs) { | 
|  | /* | 
|  | * This should tell if fe_len is exactly power of 2 | 
|  | */ | 
|  | if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) | 
|  | ac->ac_2order = i - 1; | 
|  | } | 
|  |  | 
|  | /* if stream allocation is enabled, use global goal */ | 
|  | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { | 
|  | /* TBD: may be hot point */ | 
|  | spin_lock(&sbi->s_md_lock); | 
|  | ac->ac_g_ex.fe_group = sbi->s_mb_last_group; | 
|  | ac->ac_g_ex.fe_start = sbi->s_mb_last_start; | 
|  | spin_unlock(&sbi->s_md_lock); | 
|  | } | 
|  |  | 
|  | /* Let's just scan groups to find more-less suitable blocks */ | 
|  | cr = ac->ac_2order ? 0 : 1; | 
|  | /* | 
|  | * cr == 0 try to get exact allocation, | 
|  | * cr == 3  try to get anything | 
|  | */ | 
|  | repeat: | 
|  | for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { | 
|  | ac->ac_criteria = cr; | 
|  | /* | 
|  | * searching for the right group start | 
|  | * from the goal value specified | 
|  | */ | 
|  | group = ac->ac_g_ex.fe_group; | 
|  |  | 
|  | for (i = 0; i < ngroups; group++, i++) { | 
|  | if (group == ngroups) | 
|  | group = 0; | 
|  |  | 
|  | /* This now checks without needing the buddy page */ | 
|  | if (!ext4_mb_good_group(ac, group, cr)) | 
|  | continue; | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, group, &e4b); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | ext4_lock_group(sb, group); | 
|  |  | 
|  | /* | 
|  | * We need to check again after locking the | 
|  | * block group | 
|  | */ | 
|  | if (!ext4_mb_good_group(ac, group, cr)) { | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ac->ac_groups_scanned++; | 
|  | if (cr == 0) | 
|  | ext4_mb_simple_scan_group(ac, &e4b); | 
|  | else if (cr == 1 && sbi->s_stripe && | 
|  | !(ac->ac_g_ex.fe_len % sbi->s_stripe)) | 
|  | ext4_mb_scan_aligned(ac, &e4b); | 
|  | else | 
|  | ext4_mb_complex_scan_group(ac, &e4b); | 
|  |  | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  |  | 
|  | if (ac->ac_status != AC_STATUS_CONTINUE) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && | 
|  | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { | 
|  | /* | 
|  | * We've been searching too long. Let's try to allocate | 
|  | * the best chunk we've found so far | 
|  | */ | 
|  |  | 
|  | ext4_mb_try_best_found(ac, &e4b); | 
|  | if (ac->ac_status != AC_STATUS_FOUND) { | 
|  | /* | 
|  | * Someone more lucky has already allocated it. | 
|  | * The only thing we can do is just take first | 
|  | * found block(s) | 
|  | printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); | 
|  | */ | 
|  | ac->ac_b_ex.fe_group = 0; | 
|  | ac->ac_b_ex.fe_start = 0; | 
|  | ac->ac_b_ex.fe_len = 0; | 
|  | ac->ac_status = AC_STATUS_CONTINUE; | 
|  | ac->ac_flags |= EXT4_MB_HINT_FIRST; | 
|  | cr = 3; | 
|  | atomic_inc(&sbi->s_mb_lost_chunks); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | struct super_block *sb = seq->private; | 
|  | ext4_group_t group; | 
|  |  | 
|  | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) | 
|  | return NULL; | 
|  | group = *pos + 1; | 
|  | return (void *) ((unsigned long) group); | 
|  | } | 
|  |  | 
|  | static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct super_block *sb = seq->private; | 
|  | ext4_group_t group; | 
|  |  | 
|  | ++*pos; | 
|  | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) | 
|  | return NULL; | 
|  | group = *pos + 1; | 
|  | return (void *) ((unsigned long) group); | 
|  | } | 
|  |  | 
|  | static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct super_block *sb = seq->private; | 
|  | ext4_group_t group = (ext4_group_t) ((unsigned long) v); | 
|  | int i; | 
|  | int err; | 
|  | struct ext4_buddy e4b; | 
|  | struct sg { | 
|  | struct ext4_group_info info; | 
|  | ext4_grpblk_t counters[16]; | 
|  | } sg; | 
|  |  | 
|  | group--; | 
|  | if (group == 0) | 
|  | seq_printf(seq, "#%-5s: %-5s %-5s %-5s " | 
|  | "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " | 
|  | "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", | 
|  | "group", "free", "frags", "first", | 
|  | "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", | 
|  | "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); | 
|  |  | 
|  | i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + | 
|  | sizeof(struct ext4_group_info); | 
|  | err = ext4_mb_load_buddy(sb, group, &e4b); | 
|  | if (err) { | 
|  | seq_printf(seq, "#%-5u: I/O error\n", group); | 
|  | return 0; | 
|  | } | 
|  | ext4_lock_group(sb, group); | 
|  | memcpy(&sg, ext4_get_group_info(sb, group), i); | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  |  | 
|  | seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, | 
|  | sg.info.bb_fragments, sg.info.bb_first_free); | 
|  | for (i = 0; i <= 13; i++) | 
|  | seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? | 
|  | sg.info.bb_counters[i] : 0); | 
|  | seq_printf(seq, " ]\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | } | 
|  |  | 
|  | static const struct seq_operations ext4_mb_seq_groups_ops = { | 
|  | .start  = ext4_mb_seq_groups_start, | 
|  | .next   = ext4_mb_seq_groups_next, | 
|  | .stop   = ext4_mb_seq_groups_stop, | 
|  | .show   = ext4_mb_seq_groups_show, | 
|  | }; | 
|  |  | 
|  | static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct super_block *sb = PDE(inode)->data; | 
|  | int rc; | 
|  |  | 
|  | rc = seq_open(file, &ext4_mb_seq_groups_ops); | 
|  | if (rc == 0) { | 
|  | struct seq_file *m = file->private_data; | 
|  | m->private = sb; | 
|  | } | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  | static const struct file_operations ext4_mb_seq_groups_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= ext4_mb_seq_groups_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) | 
|  | { | 
|  | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; | 
|  | struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; | 
|  |  | 
|  | BUG_ON(!cachep); | 
|  | return cachep; | 
|  | } | 
|  |  | 
|  | /* Create and initialize ext4_group_info data for the given group. */ | 
|  | int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, | 
|  | struct ext4_group_desc *desc) | 
|  | { | 
|  | int i; | 
|  | int metalen = 0; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_group_info **meta_group_info; | 
|  | struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); | 
|  |  | 
|  | /* | 
|  | * First check if this group is the first of a reserved block. | 
|  | * If it's true, we have to allocate a new table of pointers | 
|  | * to ext4_group_info structures | 
|  | */ | 
|  | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { | 
|  | metalen = sizeof(*meta_group_info) << | 
|  | EXT4_DESC_PER_BLOCK_BITS(sb); | 
|  | meta_group_info = kmalloc(metalen, GFP_KERNEL); | 
|  | if (meta_group_info == NULL) { | 
|  | printk(KERN_ERR "EXT4-fs: can't allocate mem for a " | 
|  | "buddy group\n"); | 
|  | goto exit_meta_group_info; | 
|  | } | 
|  | sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = | 
|  | meta_group_info; | 
|  | } | 
|  |  | 
|  | meta_group_info = | 
|  | sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; | 
|  | i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); | 
|  |  | 
|  | meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL); | 
|  | if (meta_group_info[i] == NULL) { | 
|  | printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); | 
|  | goto exit_group_info; | 
|  | } | 
|  | memset(meta_group_info[i], 0, kmem_cache_size(cachep)); | 
|  | set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, | 
|  | &(meta_group_info[i]->bb_state)); | 
|  |  | 
|  | /* | 
|  | * initialize bb_free to be able to skip | 
|  | * empty groups without initialization | 
|  | */ | 
|  | if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
|  | meta_group_info[i]->bb_free = | 
|  | ext4_free_blocks_after_init(sb, group, desc); | 
|  | } else { | 
|  | meta_group_info[i]->bb_free = | 
|  | ext4_free_blks_count(sb, desc); | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); | 
|  | init_rwsem(&meta_group_info[i]->alloc_sem); | 
|  | meta_group_info[i]->bb_free_root = RB_ROOT; | 
|  | meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */ | 
|  |  | 
|  | #ifdef DOUBLE_CHECK | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | meta_group_info[i]->bb_bitmap = | 
|  | kmalloc(sb->s_blocksize, GFP_KERNEL); | 
|  | BUG_ON(meta_group_info[i]->bb_bitmap == NULL); | 
|  | bh = ext4_read_block_bitmap(sb, group); | 
|  | BUG_ON(bh == NULL); | 
|  | memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, | 
|  | sb->s_blocksize); | 
|  | put_bh(bh); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_group_info: | 
|  | /* If a meta_group_info table has been allocated, release it now */ | 
|  | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) | 
|  | kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); | 
|  | exit_meta_group_info: | 
|  | return -ENOMEM; | 
|  | } /* ext4_mb_add_groupinfo */ | 
|  |  | 
|  | static int ext4_mb_init_backend(struct super_block *sb) | 
|  | { | 
|  | ext4_group_t ngroups = ext4_get_groups_count(sb); | 
|  | ext4_group_t i; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_super_block *es = sbi->s_es; | 
|  | int num_meta_group_infos; | 
|  | int num_meta_group_infos_max; | 
|  | int array_size; | 
|  | struct ext4_group_desc *desc; | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | /* This is the number of blocks used by GDT */ | 
|  | num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - | 
|  | 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); | 
|  |  | 
|  | /* | 
|  | * This is the total number of blocks used by GDT including | 
|  | * the number of reserved blocks for GDT. | 
|  | * The s_group_info array is allocated with this value | 
|  | * to allow a clean online resize without a complex | 
|  | * manipulation of pointer. | 
|  | * The drawback is the unused memory when no resize | 
|  | * occurs but it's very low in terms of pages | 
|  | * (see comments below) | 
|  | * Need to handle this properly when META_BG resizing is allowed | 
|  | */ | 
|  | num_meta_group_infos_max = num_meta_group_infos + | 
|  | le16_to_cpu(es->s_reserved_gdt_blocks); | 
|  |  | 
|  | /* | 
|  | * array_size is the size of s_group_info array. We round it | 
|  | * to the next power of two because this approximation is done | 
|  | * internally by kmalloc so we can have some more memory | 
|  | * for free here (e.g. may be used for META_BG resize). | 
|  | */ | 
|  | array_size = 1; | 
|  | while (array_size < sizeof(*sbi->s_group_info) * | 
|  | num_meta_group_infos_max) | 
|  | array_size = array_size << 1; | 
|  | /* An 8TB filesystem with 64-bit pointers requires a 4096 byte | 
|  | * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. | 
|  | * So a two level scheme suffices for now. */ | 
|  | sbi->s_group_info = kzalloc(array_size, GFP_KERNEL); | 
|  | if (sbi->s_group_info == NULL) { | 
|  | printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sbi->s_buddy_cache = new_inode(sb); | 
|  | if (sbi->s_buddy_cache == NULL) { | 
|  | printk(KERN_ERR "EXT4-fs: can't get new inode\n"); | 
|  | goto err_freesgi; | 
|  | } | 
|  | sbi->s_buddy_cache->i_ino = get_next_ino(); | 
|  | EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | desc = ext4_get_group_desc(sb, i, NULL); | 
|  | if (desc == NULL) { | 
|  | printk(KERN_ERR | 
|  | "EXT4-fs: can't read descriptor %u\n", i); | 
|  | goto err_freebuddy; | 
|  | } | 
|  | if (ext4_mb_add_groupinfo(sb, i, desc) != 0) | 
|  | goto err_freebuddy; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_freebuddy: | 
|  | cachep = get_groupinfo_cache(sb->s_blocksize_bits); | 
|  | while (i-- > 0) | 
|  | kmem_cache_free(cachep, ext4_get_group_info(sb, i)); | 
|  | i = num_meta_group_infos; | 
|  | while (i-- > 0) | 
|  | kfree(sbi->s_group_info[i]); | 
|  | iput(sbi->s_buddy_cache); | 
|  | err_freesgi: | 
|  | kfree(sbi->s_group_info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void ext4_groupinfo_destroy_slabs(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_GRPINFO_CACHES; i++) { | 
|  | if (ext4_groupinfo_caches[i]) | 
|  | kmem_cache_destroy(ext4_groupinfo_caches[i]); | 
|  | ext4_groupinfo_caches[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ext4_groupinfo_create_slab(size_t size) | 
|  | { | 
|  | static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); | 
|  | int slab_size; | 
|  | int blocksize_bits = order_base_2(size); | 
|  | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | if (cache_index >= NR_GRPINFO_CACHES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (unlikely(cache_index < 0)) | 
|  | cache_index = 0; | 
|  |  | 
|  | mutex_lock(&ext4_grpinfo_slab_create_mutex); | 
|  | if (ext4_groupinfo_caches[cache_index]) { | 
|  | mutex_unlock(&ext4_grpinfo_slab_create_mutex); | 
|  | return 0;	/* Already created */ | 
|  | } | 
|  |  | 
|  | slab_size = offsetof(struct ext4_group_info, | 
|  | bb_counters[blocksize_bits + 2]); | 
|  |  | 
|  | cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], | 
|  | slab_size, 0, SLAB_RECLAIM_ACCOUNT, | 
|  | NULL); | 
|  |  | 
|  | mutex_unlock(&ext4_grpinfo_slab_create_mutex); | 
|  | if (!cachep) { | 
|  | printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ext4_groupinfo_caches[cache_index] = cachep; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ext4_mb_init(struct super_block *sb, int needs_recovery) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | unsigned i, j; | 
|  | unsigned offset; | 
|  | unsigned max; | 
|  | int ret; | 
|  |  | 
|  | i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); | 
|  |  | 
|  | sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); | 
|  | if (sbi->s_mb_offsets == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); | 
|  | sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); | 
|  | if (sbi->s_mb_maxs == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = ext4_groupinfo_create_slab(sb->s_blocksize); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* order 0 is regular bitmap */ | 
|  | sbi->s_mb_maxs[0] = sb->s_blocksize << 3; | 
|  | sbi->s_mb_offsets[0] = 0; | 
|  |  | 
|  | i = 1; | 
|  | offset = 0; | 
|  | max = sb->s_blocksize << 2; | 
|  | do { | 
|  | sbi->s_mb_offsets[i] = offset; | 
|  | sbi->s_mb_maxs[i] = max; | 
|  | offset += 1 << (sb->s_blocksize_bits - i); | 
|  | max = max >> 1; | 
|  | i++; | 
|  | } while (i <= sb->s_blocksize_bits + 1); | 
|  |  | 
|  | /* init file for buddy data */ | 
|  | ret = ext4_mb_init_backend(sb); | 
|  | if (ret != 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&sbi->s_md_lock); | 
|  | spin_lock_init(&sbi->s_bal_lock); | 
|  |  | 
|  | sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; | 
|  | sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; | 
|  | sbi->s_mb_stats = MB_DEFAULT_STATS; | 
|  | sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; | 
|  | sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; | 
|  | sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; | 
|  |  | 
|  | sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); | 
|  | if (sbi->s_locality_groups == NULL) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | for_each_possible_cpu(i) { | 
|  | struct ext4_locality_group *lg; | 
|  | lg = per_cpu_ptr(sbi->s_locality_groups, i); | 
|  | mutex_init(&lg->lg_mutex); | 
|  | for (j = 0; j < PREALLOC_TB_SIZE; j++) | 
|  | INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); | 
|  | spin_lock_init(&lg->lg_prealloc_lock); | 
|  | } | 
|  |  | 
|  | if (sbi->s_proc) | 
|  | proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, | 
|  | &ext4_mb_seq_groups_fops, sb); | 
|  |  | 
|  | if (sbi->s_journal) | 
|  | sbi->s_journal->j_commit_callback = release_blocks_on_commit; | 
|  | out: | 
|  | if (ret) { | 
|  | kfree(sbi->s_mb_offsets); | 
|  | kfree(sbi->s_mb_maxs); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* need to called with the ext4 group lock held */ | 
|  | static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) | 
|  | { | 
|  | struct ext4_prealloc_space *pa; | 
|  | struct list_head *cur, *tmp; | 
|  | int count = 0; | 
|  |  | 
|  | list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { | 
|  | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); | 
|  | list_del(&pa->pa_group_list); | 
|  | count++; | 
|  | kmem_cache_free(ext4_pspace_cachep, pa); | 
|  | } | 
|  | if (count) | 
|  | mb_debug(1, "mballoc: %u PAs left\n", count); | 
|  |  | 
|  | } | 
|  |  | 
|  | int ext4_mb_release(struct super_block *sb) | 
|  | { | 
|  | ext4_group_t ngroups = ext4_get_groups_count(sb); | 
|  | ext4_group_t i; | 
|  | int num_meta_group_infos; | 
|  | struct ext4_group_info *grinfo; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); | 
|  |  | 
|  | if (sbi->s_group_info) { | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | grinfo = ext4_get_group_info(sb, i); | 
|  | #ifdef DOUBLE_CHECK | 
|  | kfree(grinfo->bb_bitmap); | 
|  | #endif | 
|  | ext4_lock_group(sb, i); | 
|  | ext4_mb_cleanup_pa(grinfo); | 
|  | ext4_unlock_group(sb, i); | 
|  | kmem_cache_free(cachep, grinfo); | 
|  | } | 
|  | num_meta_group_infos = (ngroups + | 
|  | EXT4_DESC_PER_BLOCK(sb) - 1) >> | 
|  | EXT4_DESC_PER_BLOCK_BITS(sb); | 
|  | for (i = 0; i < num_meta_group_infos; i++) | 
|  | kfree(sbi->s_group_info[i]); | 
|  | kfree(sbi->s_group_info); | 
|  | } | 
|  | kfree(sbi->s_mb_offsets); | 
|  | kfree(sbi->s_mb_maxs); | 
|  | if (sbi->s_buddy_cache) | 
|  | iput(sbi->s_buddy_cache); | 
|  | if (sbi->s_mb_stats) { | 
|  | printk(KERN_INFO | 
|  | "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", | 
|  | atomic_read(&sbi->s_bal_allocated), | 
|  | atomic_read(&sbi->s_bal_reqs), | 
|  | atomic_read(&sbi->s_bal_success)); | 
|  | printk(KERN_INFO | 
|  | "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " | 
|  | "%u 2^N hits, %u breaks, %u lost\n", | 
|  | atomic_read(&sbi->s_bal_ex_scanned), | 
|  | atomic_read(&sbi->s_bal_goals), | 
|  | atomic_read(&sbi->s_bal_2orders), | 
|  | atomic_read(&sbi->s_bal_breaks), | 
|  | atomic_read(&sbi->s_mb_lost_chunks)); | 
|  | printk(KERN_INFO | 
|  | "EXT4-fs: mballoc: %lu generated and it took %Lu\n", | 
|  | sbi->s_mb_buddies_generated++, | 
|  | sbi->s_mb_generation_time); | 
|  | printk(KERN_INFO | 
|  | "EXT4-fs: mballoc: %u preallocated, %u discarded\n", | 
|  | atomic_read(&sbi->s_mb_preallocated), | 
|  | atomic_read(&sbi->s_mb_discarded)); | 
|  | } | 
|  |  | 
|  | free_percpu(sbi->s_locality_groups); | 
|  | if (sbi->s_proc) | 
|  | remove_proc_entry("mb_groups", sbi->s_proc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int ext4_issue_discard(struct super_block *sb, | 
|  | ext4_group_t block_group, ext4_grpblk_t block, int count) | 
|  | { | 
|  | ext4_fsblk_t discard_block; | 
|  |  | 
|  | discard_block = block + ext4_group_first_block_no(sb, block_group); | 
|  | trace_ext4_discard_blocks(sb, | 
|  | (unsigned long long) discard_block, count); | 
|  | return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called by the jbd2 layer once the commit has finished, | 
|  | * so we know we can free the blocks that were released with that commit. | 
|  | */ | 
|  | static void release_blocks_on_commit(journal_t *journal, transaction_t *txn) | 
|  | { | 
|  | struct super_block *sb = journal->j_private; | 
|  | struct ext4_buddy e4b; | 
|  | struct ext4_group_info *db; | 
|  | int err, count = 0, count2 = 0; | 
|  | struct ext4_free_data *entry; | 
|  | struct list_head *l, *ltmp; | 
|  |  | 
|  | list_for_each_safe(l, ltmp, &txn->t_private_list) { | 
|  | entry = list_entry(l, struct ext4_free_data, list); | 
|  |  | 
|  | mb_debug(1, "gonna free %u blocks in group %u (0x%p):", | 
|  | entry->count, entry->group, entry); | 
|  |  | 
|  | if (test_opt(sb, DISCARD)) | 
|  | ext4_issue_discard(sb, entry->group, | 
|  | entry->start_blk, entry->count); | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, entry->group, &e4b); | 
|  | /* we expect to find existing buddy because it's pinned */ | 
|  | BUG_ON(err != 0); | 
|  |  | 
|  | db = e4b.bd_info; | 
|  | /* there are blocks to put in buddy to make them really free */ | 
|  | count += entry->count; | 
|  | count2++; | 
|  | ext4_lock_group(sb, entry->group); | 
|  | /* Take it out of per group rb tree */ | 
|  | rb_erase(&entry->node, &(db->bb_free_root)); | 
|  | mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); | 
|  |  | 
|  | if (!db->bb_free_root.rb_node) { | 
|  | /* No more items in the per group rb tree | 
|  | * balance refcounts from ext4_mb_free_metadata() | 
|  | */ | 
|  | page_cache_release(e4b.bd_buddy_page); | 
|  | page_cache_release(e4b.bd_bitmap_page); | 
|  | } | 
|  | ext4_unlock_group(sb, entry->group); | 
|  | kmem_cache_free(ext4_free_ext_cachep, entry); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | } | 
|  |  | 
|  | mb_debug(1, "freed %u blocks in %u structures\n", count, count2); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EXT4_DEBUG | 
|  | u8 mb_enable_debug __read_mostly; | 
|  |  | 
|  | static struct dentry *debugfs_dir; | 
|  | static struct dentry *debugfs_debug; | 
|  |  | 
|  | static void __init ext4_create_debugfs_entry(void) | 
|  | { | 
|  | debugfs_dir = debugfs_create_dir("ext4", NULL); | 
|  | if (debugfs_dir) | 
|  | debugfs_debug = debugfs_create_u8("mballoc-debug", | 
|  | S_IRUGO | S_IWUSR, | 
|  | debugfs_dir, | 
|  | &mb_enable_debug); | 
|  | } | 
|  |  | 
|  | static void ext4_remove_debugfs_entry(void) | 
|  | { | 
|  | debugfs_remove(debugfs_debug); | 
|  | debugfs_remove(debugfs_dir); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void __init ext4_create_debugfs_entry(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void ext4_remove_debugfs_entry(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | int __init ext4_init_mballoc(void) | 
|  | { | 
|  | ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, | 
|  | SLAB_RECLAIM_ACCOUNT); | 
|  | if (ext4_pspace_cachep == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, | 
|  | SLAB_RECLAIM_ACCOUNT); | 
|  | if (ext4_ac_cachep == NULL) { | 
|  | kmem_cache_destroy(ext4_pspace_cachep); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data, | 
|  | SLAB_RECLAIM_ACCOUNT); | 
|  | if (ext4_free_ext_cachep == NULL) { | 
|  | kmem_cache_destroy(ext4_pspace_cachep); | 
|  | kmem_cache_destroy(ext4_ac_cachep); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ext4_create_debugfs_entry(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ext4_exit_mballoc(void) | 
|  | { | 
|  | /* | 
|  | * Wait for completion of call_rcu()'s on ext4_pspace_cachep | 
|  | * before destroying the slab cache. | 
|  | */ | 
|  | rcu_barrier(); | 
|  | kmem_cache_destroy(ext4_pspace_cachep); | 
|  | kmem_cache_destroy(ext4_ac_cachep); | 
|  | kmem_cache_destroy(ext4_free_ext_cachep); | 
|  | ext4_groupinfo_destroy_slabs(); | 
|  | ext4_remove_debugfs_entry(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps | 
|  | * Returns 0 if success or error code | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, | 
|  | handle_t *handle, unsigned int reserv_blks) | 
|  | { | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct ext4_group_desc *gdp; | 
|  | struct buffer_head *gdp_bh; | 
|  | struct ext4_sb_info *sbi; | 
|  | struct super_block *sb; | 
|  | ext4_fsblk_t block; | 
|  | int err, len; | 
|  |  | 
|  | BUG_ON(ac->ac_status != AC_STATUS_FOUND); | 
|  | BUG_ON(ac->ac_b_ex.fe_len <= 0); | 
|  |  | 
|  | sb = ac->ac_sb; | 
|  | sbi = EXT4_SB(sb); | 
|  |  | 
|  | err = -EIO; | 
|  | bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); | 
|  | if (!bitmap_bh) | 
|  | goto out_err; | 
|  |  | 
|  | err = ext4_journal_get_write_access(handle, bitmap_bh); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | err = -EIO; | 
|  | gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); | 
|  | if (!gdp) | 
|  | goto out_err; | 
|  |  | 
|  | ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, | 
|  | ext4_free_blks_count(sb, gdp)); | 
|  |  | 
|  | err = ext4_journal_get_write_access(handle, gdp_bh); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); | 
|  |  | 
|  | len = ac->ac_b_ex.fe_len; | 
|  | if (!ext4_data_block_valid(sbi, block, len)) { | 
|  | ext4_error(sb, "Allocating blocks %llu-%llu which overlap " | 
|  | "fs metadata\n", block, block+len); | 
|  | /* File system mounted not to panic on error | 
|  | * Fix the bitmap and repeat the block allocation | 
|  | * We leak some of the blocks here. | 
|  | */ | 
|  | ext4_lock_group(sb, ac->ac_b_ex.fe_group); | 
|  | mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, | 
|  | ac->ac_b_ex.fe_len); | 
|  | ext4_unlock_group(sb, ac->ac_b_ex.fe_group); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); | 
|  | if (!err) | 
|  | err = -EAGAIN; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | ext4_lock_group(sb, ac->ac_b_ex.fe_group); | 
|  | #ifdef AGGRESSIVE_CHECK | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < ac->ac_b_ex.fe_len; i++) { | 
|  | BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, | 
|  | bitmap_bh->b_data)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len); | 
|  | if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
|  | gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); | 
|  | ext4_free_blks_set(sb, gdp, | 
|  | ext4_free_blocks_after_init(sb, | 
|  | ac->ac_b_ex.fe_group, gdp)); | 
|  | } | 
|  | len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len; | 
|  | ext4_free_blks_set(sb, gdp, len); | 
|  | gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); | 
|  |  | 
|  | ext4_unlock_group(sb, ac->ac_b_ex.fe_group); | 
|  | percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); | 
|  | /* | 
|  | * Now reduce the dirty block count also. Should not go negative | 
|  | */ | 
|  | if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) | 
|  | /* release all the reserved blocks if non delalloc */ | 
|  | percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t flex_group = ext4_flex_group(sbi, | 
|  | ac->ac_b_ex.fe_group); | 
|  | atomic_sub(ac->ac_b_ex.fe_len, | 
|  | &sbi->s_flex_groups[flex_group].free_blocks); | 
|  | } | 
|  |  | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); | 
|  | if (err) | 
|  | goto out_err; | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); | 
|  |  | 
|  | out_err: | 
|  | ext4_mark_super_dirty(sb); | 
|  | brelse(bitmap_bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * here we normalize request for locality group | 
|  | * Group request are normalized to s_strip size if we set the same via mount | 
|  | * option. If not we set it to s_mb_group_prealloc which can be configured via | 
|  | * /sys/fs/ext4/<partition>/mb_group_prealloc | 
|  | * | 
|  | * XXX: should we try to preallocate more than the group has now? | 
|  | */ | 
|  | static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_locality_group *lg = ac->ac_lg; | 
|  |  | 
|  | BUG_ON(lg == NULL); | 
|  | if (EXT4_SB(sb)->s_stripe) | 
|  | ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; | 
|  | else | 
|  | ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; | 
|  | mb_debug(1, "#%u: goal %u blocks for locality group\n", | 
|  | current->pid, ac->ac_g_ex.fe_len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Normalization means making request better in terms of | 
|  | * size and alignment | 
|  | */ | 
|  | static noinline_for_stack void | 
|  | ext4_mb_normalize_request(struct ext4_allocation_context *ac, | 
|  | struct ext4_allocation_request *ar) | 
|  | { | 
|  | int bsbits, max; | 
|  | ext4_lblk_t end; | 
|  | loff_t size, orig_size, start_off; | 
|  | ext4_lblk_t start; | 
|  | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); | 
|  | struct ext4_prealloc_space *pa; | 
|  |  | 
|  | /* do normalize only data requests, metadata requests | 
|  | do not need preallocation */ | 
|  | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) | 
|  | return; | 
|  |  | 
|  | /* sometime caller may want exact blocks */ | 
|  | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) | 
|  | return; | 
|  |  | 
|  | /* caller may indicate that preallocation isn't | 
|  | * required (it's a tail, for example) */ | 
|  | if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) | 
|  | return; | 
|  |  | 
|  | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { | 
|  | ext4_mb_normalize_group_request(ac); | 
|  | return ; | 
|  | } | 
|  |  | 
|  | bsbits = ac->ac_sb->s_blocksize_bits; | 
|  |  | 
|  | /* first, let's learn actual file size | 
|  | * given current request is allocated */ | 
|  | size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; | 
|  | size = size << bsbits; | 
|  | if (size < i_size_read(ac->ac_inode)) | 
|  | size = i_size_read(ac->ac_inode); | 
|  | orig_size = size; | 
|  |  | 
|  | /* max size of free chunks */ | 
|  | max = 2 << bsbits; | 
|  |  | 
|  | #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\ | 
|  | (req <= (size) || max <= (chunk_size)) | 
|  |  | 
|  | /* first, try to predict filesize */ | 
|  | /* XXX: should this table be tunable? */ | 
|  | start_off = 0; | 
|  | if (size <= 16 * 1024) { | 
|  | size = 16 * 1024; | 
|  | } else if (size <= 32 * 1024) { | 
|  | size = 32 * 1024; | 
|  | } else if (size <= 64 * 1024) { | 
|  | size = 64 * 1024; | 
|  | } else if (size <= 128 * 1024) { | 
|  | size = 128 * 1024; | 
|  | } else if (size <= 256 * 1024) { | 
|  | size = 256 * 1024; | 
|  | } else if (size <= 512 * 1024) { | 
|  | size = 512 * 1024; | 
|  | } else if (size <= 1024 * 1024) { | 
|  | size = 1024 * 1024; | 
|  | } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { | 
|  | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> | 
|  | (21 - bsbits)) << 21; | 
|  | size = 2 * 1024 * 1024; | 
|  | } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { | 
|  | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> | 
|  | (22 - bsbits)) << 22; | 
|  | size = 4 * 1024 * 1024; | 
|  | } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, | 
|  | (8<<20)>>bsbits, max, 8 * 1024)) { | 
|  | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> | 
|  | (23 - bsbits)) << 23; | 
|  | size = 8 * 1024 * 1024; | 
|  | } else { | 
|  | start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; | 
|  | size	  = ac->ac_o_ex.fe_len << bsbits; | 
|  | } | 
|  | size = size >> bsbits; | 
|  | start = start_off >> bsbits; | 
|  |  | 
|  | /* don't cover already allocated blocks in selected range */ | 
|  | if (ar->pleft && start <= ar->lleft) { | 
|  | size -= ar->lleft + 1 - start; | 
|  | start = ar->lleft + 1; | 
|  | } | 
|  | if (ar->pright && start + size - 1 >= ar->lright) | 
|  | size -= start + size - ar->lright; | 
|  |  | 
|  | end = start + size; | 
|  |  | 
|  | /* check we don't cross already preallocated blocks */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { | 
|  | ext4_lblk_t pa_end; | 
|  |  | 
|  | if (pa->pa_deleted) | 
|  | continue; | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (pa->pa_deleted) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pa_end = pa->pa_lstart + pa->pa_len; | 
|  |  | 
|  | /* PA must not overlap original request */ | 
|  | BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || | 
|  | ac->ac_o_ex.fe_logical < pa->pa_lstart)); | 
|  |  | 
|  | /* skip PAs this normalized request doesn't overlap with */ | 
|  | if (pa->pa_lstart >= end || pa_end <= start) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  | BUG_ON(pa->pa_lstart <= start && pa_end >= end); | 
|  |  | 
|  | /* adjust start or end to be adjacent to this pa */ | 
|  | if (pa_end <= ac->ac_o_ex.fe_logical) { | 
|  | BUG_ON(pa_end < start); | 
|  | start = pa_end; | 
|  | } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { | 
|  | BUG_ON(pa->pa_lstart > end); | 
|  | end = pa->pa_lstart; | 
|  | } | 
|  | spin_unlock(&pa->pa_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | size = end - start; | 
|  |  | 
|  | /* XXX: extra loop to check we really don't overlap preallocations */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { | 
|  | ext4_lblk_t pa_end; | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (pa->pa_deleted == 0) { | 
|  | pa_end = pa->pa_lstart + pa->pa_len; | 
|  | BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); | 
|  | } | 
|  | spin_unlock(&pa->pa_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (start + size <= ac->ac_o_ex.fe_logical && | 
|  | start > ac->ac_o_ex.fe_logical) { | 
|  | printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", | 
|  | (unsigned long) start, (unsigned long) size, | 
|  | (unsigned long) ac->ac_o_ex.fe_logical); | 
|  | } | 
|  | BUG_ON(start + size <= ac->ac_o_ex.fe_logical && | 
|  | start > ac->ac_o_ex.fe_logical); | 
|  | BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); | 
|  |  | 
|  | /* now prepare goal request */ | 
|  |  | 
|  | /* XXX: is it better to align blocks WRT to logical | 
|  | * placement or satisfy big request as is */ | 
|  | ac->ac_g_ex.fe_logical = start; | 
|  | ac->ac_g_ex.fe_len = size; | 
|  |  | 
|  | /* define goal start in order to merge */ | 
|  | if (ar->pright && (ar->lright == (start + size))) { | 
|  | /* merge to the right */ | 
|  | ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, | 
|  | &ac->ac_f_ex.fe_group, | 
|  | &ac->ac_f_ex.fe_start); | 
|  | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; | 
|  | } | 
|  | if (ar->pleft && (ar->lleft + 1 == start)) { | 
|  | /* merge to the left */ | 
|  | ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, | 
|  | &ac->ac_f_ex.fe_group, | 
|  | &ac->ac_f_ex.fe_start); | 
|  | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; | 
|  | } | 
|  |  | 
|  | mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, | 
|  | (unsigned) orig_size, (unsigned) start); | 
|  | } | 
|  |  | 
|  | static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); | 
|  |  | 
|  | if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { | 
|  | atomic_inc(&sbi->s_bal_reqs); | 
|  | atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); | 
|  | if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) | 
|  | atomic_inc(&sbi->s_bal_success); | 
|  | atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); | 
|  | if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && | 
|  | ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) | 
|  | atomic_inc(&sbi->s_bal_goals); | 
|  | if (ac->ac_found > sbi->s_mb_max_to_scan) | 
|  | atomic_inc(&sbi->s_bal_breaks); | 
|  | } | 
|  |  | 
|  | if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) | 
|  | trace_ext4_mballoc_alloc(ac); | 
|  | else | 
|  | trace_ext4_mballoc_prealloc(ac); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called on failure; free up any blocks from the inode PA for this | 
|  | * context.  We don't need this for MB_GROUP_PA because we only change | 
|  | * pa_free in ext4_mb_release_context(), but on failure, we've already | 
|  | * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. | 
|  | */ | 
|  | static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct ext4_prealloc_space *pa = ac->ac_pa; | 
|  | int len; | 
|  |  | 
|  | if (pa && pa->pa_type == MB_INODE_PA) { | 
|  | len = ac->ac_b_ex.fe_len; | 
|  | pa->pa_free += len; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * use blocks preallocated to inode | 
|  | */ | 
|  | static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, | 
|  | struct ext4_prealloc_space *pa) | 
|  | { | 
|  | ext4_fsblk_t start; | 
|  | ext4_fsblk_t end; | 
|  | int len; | 
|  |  | 
|  | /* found preallocated blocks, use them */ | 
|  | start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); | 
|  | end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); | 
|  | len = end - start; | 
|  | ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, | 
|  | &ac->ac_b_ex.fe_start); | 
|  | ac->ac_b_ex.fe_len = len; | 
|  | ac->ac_status = AC_STATUS_FOUND; | 
|  | ac->ac_pa = pa; | 
|  |  | 
|  | BUG_ON(start < pa->pa_pstart); | 
|  | BUG_ON(start + len > pa->pa_pstart + pa->pa_len); | 
|  | BUG_ON(pa->pa_free < len); | 
|  | pa->pa_free -= len; | 
|  |  | 
|  | mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * use blocks preallocated to locality group | 
|  | */ | 
|  | static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, | 
|  | struct ext4_prealloc_space *pa) | 
|  | { | 
|  | unsigned int len = ac->ac_o_ex.fe_len; | 
|  |  | 
|  | ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, | 
|  | &ac->ac_b_ex.fe_group, | 
|  | &ac->ac_b_ex.fe_start); | 
|  | ac->ac_b_ex.fe_len = len; | 
|  | ac->ac_status = AC_STATUS_FOUND; | 
|  | ac->ac_pa = pa; | 
|  |  | 
|  | /* we don't correct pa_pstart or pa_plen here to avoid | 
|  | * possible race when the group is being loaded concurrently | 
|  | * instead we correct pa later, after blocks are marked | 
|  | * in on-disk bitmap -- see ext4_mb_release_context() | 
|  | * Other CPUs are prevented from allocating from this pa by lg_mutex | 
|  | */ | 
|  | mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the prealloc space that have minimal distance | 
|  | * from the goal block. @cpa is the prealloc | 
|  | * space that is having currently known minimal distance | 
|  | * from the goal block. | 
|  | */ | 
|  | static struct ext4_prealloc_space * | 
|  | ext4_mb_check_group_pa(ext4_fsblk_t goal_block, | 
|  | struct ext4_prealloc_space *pa, | 
|  | struct ext4_prealloc_space *cpa) | 
|  | { | 
|  | ext4_fsblk_t cur_distance, new_distance; | 
|  |  | 
|  | if (cpa == NULL) { | 
|  | atomic_inc(&pa->pa_count); | 
|  | return pa; | 
|  | } | 
|  | cur_distance = abs(goal_block - cpa->pa_pstart); | 
|  | new_distance = abs(goal_block - pa->pa_pstart); | 
|  |  | 
|  | if (cur_distance <= new_distance) | 
|  | return cpa; | 
|  |  | 
|  | /* drop the previous reference */ | 
|  | atomic_dec(&cpa->pa_count); | 
|  | atomic_inc(&pa->pa_count); | 
|  | return pa; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search goal blocks in preallocated space | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_use_preallocated(struct ext4_allocation_context *ac) | 
|  | { | 
|  | int order, i; | 
|  | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); | 
|  | struct ext4_locality_group *lg; | 
|  | struct ext4_prealloc_space *pa, *cpa = NULL; | 
|  | ext4_fsblk_t goal_block; | 
|  |  | 
|  | /* only data can be preallocated */ | 
|  | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) | 
|  | return 0; | 
|  |  | 
|  | /* first, try per-file preallocation */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { | 
|  |  | 
|  | /* all fields in this condition don't change, | 
|  | * so we can skip locking for them */ | 
|  | if (ac->ac_o_ex.fe_logical < pa->pa_lstart || | 
|  | ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) | 
|  | continue; | 
|  |  | 
|  | /* non-extent files can't have physical blocks past 2^32 */ | 
|  | if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && | 
|  | pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS) | 
|  | continue; | 
|  |  | 
|  | /* found preallocated blocks, use them */ | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (pa->pa_deleted == 0 && pa->pa_free) { | 
|  | atomic_inc(&pa->pa_count); | 
|  | ext4_mb_use_inode_pa(ac, pa); | 
|  | spin_unlock(&pa->pa_lock); | 
|  | ac->ac_criteria = 10; | 
|  | rcu_read_unlock(); | 
|  | return 1; | 
|  | } | 
|  | spin_unlock(&pa->pa_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* can we use group allocation? */ | 
|  | if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) | 
|  | return 0; | 
|  |  | 
|  | /* inode may have no locality group for some reason */ | 
|  | lg = ac->ac_lg; | 
|  | if (lg == NULL) | 
|  | return 0; | 
|  | order  = fls(ac->ac_o_ex.fe_len) - 1; | 
|  | if (order > PREALLOC_TB_SIZE - 1) | 
|  | /* The max size of hash table is PREALLOC_TB_SIZE */ | 
|  | order = PREALLOC_TB_SIZE - 1; | 
|  |  | 
|  | goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); | 
|  | /* | 
|  | * search for the prealloc space that is having | 
|  | * minimal distance from the goal block. | 
|  | */ | 
|  | for (i = order; i < PREALLOC_TB_SIZE; i++) { | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], | 
|  | pa_inode_list) { | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (pa->pa_deleted == 0 && | 
|  | pa->pa_free >= ac->ac_o_ex.fe_len) { | 
|  |  | 
|  | cpa = ext4_mb_check_group_pa(goal_block, | 
|  | pa, cpa); | 
|  | } | 
|  | spin_unlock(&pa->pa_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | if (cpa) { | 
|  | ext4_mb_use_group_pa(ac, cpa); | 
|  | ac->ac_criteria = 20; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the function goes through all block freed in the group | 
|  | * but not yet committed and marks them used in in-core bitmap. | 
|  | * buddy must be generated from this bitmap | 
|  | * Need to be called with the ext4 group lock held | 
|  | */ | 
|  | static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, | 
|  | ext4_group_t group) | 
|  | { | 
|  | struct rb_node *n; | 
|  | struct ext4_group_info *grp; | 
|  | struct ext4_free_data *entry; | 
|  |  | 
|  | grp = ext4_get_group_info(sb, group); | 
|  | n = rb_first(&(grp->bb_free_root)); | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct ext4_free_data, node); | 
|  | mb_set_bits(bitmap, entry->start_blk, entry->count); | 
|  | n = rb_next(n); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the function goes through all preallocation in this group and marks them | 
|  | * used in in-core bitmap. buddy must be generated from this bitmap | 
|  | * Need to be called with ext4 group lock held | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, | 
|  | ext4_group_t group) | 
|  | { | 
|  | struct ext4_group_info *grp = ext4_get_group_info(sb, group); | 
|  | struct ext4_prealloc_space *pa; | 
|  | struct list_head *cur; | 
|  | ext4_group_t groupnr; | 
|  | ext4_grpblk_t start; | 
|  | int preallocated = 0; | 
|  | int count = 0; | 
|  | int len; | 
|  |  | 
|  | /* all form of preallocation discards first load group, | 
|  | * so the only competing code is preallocation use. | 
|  | * we don't need any locking here | 
|  | * notice we do NOT ignore preallocations with pa_deleted | 
|  | * otherwise we could leave used blocks available for | 
|  | * allocation in buddy when concurrent ext4_mb_put_pa() | 
|  | * is dropping preallocation | 
|  | */ | 
|  | list_for_each(cur, &grp->bb_prealloc_list) { | 
|  | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); | 
|  | spin_lock(&pa->pa_lock); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, | 
|  | &groupnr, &start); | 
|  | len = pa->pa_len; | 
|  | spin_unlock(&pa->pa_lock); | 
|  | if (unlikely(len == 0)) | 
|  | continue; | 
|  | BUG_ON(groupnr != group); | 
|  | mb_set_bits(bitmap, start, len); | 
|  | preallocated += len; | 
|  | count++; | 
|  | } | 
|  | mb_debug(1, "prellocated %u for group %u\n", preallocated, group); | 
|  | } | 
|  |  | 
|  | static void ext4_mb_pa_callback(struct rcu_head *head) | 
|  | { | 
|  | struct ext4_prealloc_space *pa; | 
|  | pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); | 
|  | kmem_cache_free(ext4_pspace_cachep, pa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drops a reference to preallocated space descriptor | 
|  | * if this was the last reference and the space is consumed | 
|  | */ | 
|  | static void ext4_mb_put_pa(struct ext4_allocation_context *ac, | 
|  | struct super_block *sb, struct ext4_prealloc_space *pa) | 
|  | { | 
|  | ext4_group_t grp; | 
|  | ext4_fsblk_t grp_blk; | 
|  |  | 
|  | if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) | 
|  | return; | 
|  |  | 
|  | /* in this short window concurrent discard can set pa_deleted */ | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (pa->pa_deleted == 1) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pa->pa_deleted = 1; | 
|  | spin_unlock(&pa->pa_lock); | 
|  |  | 
|  | grp_blk = pa->pa_pstart; | 
|  | /* | 
|  | * If doing group-based preallocation, pa_pstart may be in the | 
|  | * next group when pa is used up | 
|  | */ | 
|  | if (pa->pa_type == MB_GROUP_PA) | 
|  | grp_blk--; | 
|  |  | 
|  | ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); | 
|  |  | 
|  | /* | 
|  | * possible race: | 
|  | * | 
|  | *  P1 (buddy init)			P2 (regular allocation) | 
|  | *					find block B in PA | 
|  | *  copy on-disk bitmap to buddy | 
|  | *  					mark B in on-disk bitmap | 
|  | *					drop PA from group | 
|  | *  mark all PAs in buddy | 
|  | * | 
|  | * thus, P1 initializes buddy with B available. to prevent this | 
|  | * we make "copy" and "mark all PAs" atomic and serialize "drop PA" | 
|  | * against that pair | 
|  | */ | 
|  | ext4_lock_group(sb, grp); | 
|  | list_del(&pa->pa_group_list); | 
|  | ext4_unlock_group(sb, grp); | 
|  |  | 
|  | spin_lock(pa->pa_obj_lock); | 
|  | list_del_rcu(&pa->pa_inode_list); | 
|  | spin_unlock(pa->pa_obj_lock); | 
|  |  | 
|  | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * creates new preallocated space for given inode | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_prealloc_space *pa; | 
|  | struct ext4_group_info *grp; | 
|  | struct ext4_inode_info *ei; | 
|  |  | 
|  | /* preallocate only when found space is larger then requested */ | 
|  | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); | 
|  | BUG_ON(ac->ac_status != AC_STATUS_FOUND); | 
|  | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); | 
|  |  | 
|  | pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); | 
|  | if (pa == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { | 
|  | int winl; | 
|  | int wins; | 
|  | int win; | 
|  | int offs; | 
|  |  | 
|  | /* we can't allocate as much as normalizer wants. | 
|  | * so, found space must get proper lstart | 
|  | * to cover original request */ | 
|  | BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); | 
|  | BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); | 
|  |  | 
|  | /* we're limited by original request in that | 
|  | * logical block must be covered any way | 
|  | * winl is window we can move our chunk within */ | 
|  | winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; | 
|  |  | 
|  | /* also, we should cover whole original request */ | 
|  | wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; | 
|  |  | 
|  | /* the smallest one defines real window */ | 
|  | win = min(winl, wins); | 
|  |  | 
|  | offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; | 
|  | if (offs && offs < win) | 
|  | win = offs; | 
|  |  | 
|  | ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; | 
|  | BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); | 
|  | BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); | 
|  | } | 
|  |  | 
|  | /* preallocation can change ac_b_ex, thus we store actually | 
|  | * allocated blocks for history */ | 
|  | ac->ac_f_ex = ac->ac_b_ex; | 
|  |  | 
|  | pa->pa_lstart = ac->ac_b_ex.fe_logical; | 
|  | pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); | 
|  | pa->pa_len = ac->ac_b_ex.fe_len; | 
|  | pa->pa_free = pa->pa_len; | 
|  | atomic_set(&pa->pa_count, 1); | 
|  | spin_lock_init(&pa->pa_lock); | 
|  | INIT_LIST_HEAD(&pa->pa_inode_list); | 
|  | INIT_LIST_HEAD(&pa->pa_group_list); | 
|  | pa->pa_deleted = 0; | 
|  | pa->pa_type = MB_INODE_PA; | 
|  |  | 
|  | mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, | 
|  | pa->pa_pstart, pa->pa_len, pa->pa_lstart); | 
|  | trace_ext4_mb_new_inode_pa(ac, pa); | 
|  |  | 
|  | ext4_mb_use_inode_pa(ac, pa); | 
|  | atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); | 
|  |  | 
|  | ei = EXT4_I(ac->ac_inode); | 
|  | grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); | 
|  |  | 
|  | pa->pa_obj_lock = &ei->i_prealloc_lock; | 
|  | pa->pa_inode = ac->ac_inode; | 
|  |  | 
|  | ext4_lock_group(sb, ac->ac_b_ex.fe_group); | 
|  | list_add(&pa->pa_group_list, &grp->bb_prealloc_list); | 
|  | ext4_unlock_group(sb, ac->ac_b_ex.fe_group); | 
|  |  | 
|  | spin_lock(pa->pa_obj_lock); | 
|  | list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); | 
|  | spin_unlock(pa->pa_obj_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * creates new preallocated space for locality group inodes belongs to | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_new_group_pa(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_locality_group *lg; | 
|  | struct ext4_prealloc_space *pa; | 
|  | struct ext4_group_info *grp; | 
|  |  | 
|  | /* preallocate only when found space is larger then requested */ | 
|  | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); | 
|  | BUG_ON(ac->ac_status != AC_STATUS_FOUND); | 
|  | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); | 
|  |  | 
|  | BUG_ON(ext4_pspace_cachep == NULL); | 
|  | pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); | 
|  | if (pa == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* preallocation can change ac_b_ex, thus we store actually | 
|  | * allocated blocks for history */ | 
|  | ac->ac_f_ex = ac->ac_b_ex; | 
|  |  | 
|  | pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); | 
|  | pa->pa_lstart = pa->pa_pstart; | 
|  | pa->pa_len = ac->ac_b_ex.fe_len; | 
|  | pa->pa_free = pa->pa_len; | 
|  | atomic_set(&pa->pa_count, 1); | 
|  | spin_lock_init(&pa->pa_lock); | 
|  | INIT_LIST_HEAD(&pa->pa_inode_list); | 
|  | INIT_LIST_HEAD(&pa->pa_group_list); | 
|  | pa->pa_deleted = 0; | 
|  | pa->pa_type = MB_GROUP_PA; | 
|  |  | 
|  | mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, | 
|  | pa->pa_pstart, pa->pa_len, pa->pa_lstart); | 
|  | trace_ext4_mb_new_group_pa(ac, pa); | 
|  |  | 
|  | ext4_mb_use_group_pa(ac, pa); | 
|  | atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); | 
|  |  | 
|  | grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); | 
|  | lg = ac->ac_lg; | 
|  | BUG_ON(lg == NULL); | 
|  |  | 
|  | pa->pa_obj_lock = &lg->lg_prealloc_lock; | 
|  | pa->pa_inode = NULL; | 
|  |  | 
|  | ext4_lock_group(sb, ac->ac_b_ex.fe_group); | 
|  | list_add(&pa->pa_group_list, &grp->bb_prealloc_list); | 
|  | ext4_unlock_group(sb, ac->ac_b_ex.fe_group); | 
|  |  | 
|  | /* | 
|  | * We will later add the new pa to the right bucket | 
|  | * after updating the pa_free in ext4_mb_release_context | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) | 
|  | err = ext4_mb_new_group_pa(ac); | 
|  | else | 
|  | err = ext4_mb_new_inode_pa(ac); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finds all unused blocks in on-disk bitmap, frees them in | 
|  | * in-core bitmap and buddy. | 
|  | * @pa must be unlinked from inode and group lists, so that | 
|  | * nobody else can find/use it. | 
|  | * the caller MUST hold group/inode locks. | 
|  | * TODO: optimize the case when there are no in-core structures yet | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, | 
|  | struct ext4_prealloc_space *pa) | 
|  | { | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | unsigned int end; | 
|  | unsigned int next; | 
|  | ext4_group_t group; | 
|  | ext4_grpblk_t bit; | 
|  | unsigned long long grp_blk_start; | 
|  | int err = 0; | 
|  | int free = 0; | 
|  |  | 
|  | BUG_ON(pa->pa_deleted == 0); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); | 
|  | grp_blk_start = pa->pa_pstart - bit; | 
|  | BUG_ON(group != e4b->bd_group && pa->pa_len != 0); | 
|  | end = bit + pa->pa_len; | 
|  |  | 
|  | while (bit < end) { | 
|  | bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); | 
|  | if (bit >= end) | 
|  | break; | 
|  | next = mb_find_next_bit(bitmap_bh->b_data, end, bit); | 
|  | mb_debug(1, "    free preallocated %u/%u in group %u\n", | 
|  | (unsigned) ext4_group_first_block_no(sb, group) + bit, | 
|  | (unsigned) next - bit, (unsigned) group); | 
|  | free += next - bit; | 
|  |  | 
|  | trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); | 
|  | trace_ext4_mb_release_inode_pa(pa, grp_blk_start + bit, | 
|  | next - bit); | 
|  | mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); | 
|  | bit = next + 1; | 
|  | } | 
|  | if (free != pa->pa_free) { | 
|  | printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", | 
|  | pa, (unsigned long) pa->pa_lstart, | 
|  | (unsigned long) pa->pa_pstart, | 
|  | (unsigned long) pa->pa_len); | 
|  | ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", | 
|  | free, pa->pa_free); | 
|  | /* | 
|  | * pa is already deleted so we use the value obtained | 
|  | * from the bitmap and continue. | 
|  | */ | 
|  | } | 
|  | atomic_add(free, &sbi->s_mb_discarded); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | ext4_mb_release_group_pa(struct ext4_buddy *e4b, | 
|  | struct ext4_prealloc_space *pa) | 
|  | { | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  | ext4_group_t group; | 
|  | ext4_grpblk_t bit; | 
|  |  | 
|  | trace_ext4_mb_release_group_pa(pa); | 
|  | BUG_ON(pa->pa_deleted == 0); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); | 
|  | BUG_ON(group != e4b->bd_group && pa->pa_len != 0); | 
|  | mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); | 
|  | atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); | 
|  | trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * releases all preallocations in given group | 
|  | * | 
|  | * first, we need to decide discard policy: | 
|  | * - when do we discard | 
|  | *   1) ENOSPC | 
|  | * - how many do we discard | 
|  | *   1) how many requested | 
|  | */ | 
|  | static noinline_for_stack int | 
|  | ext4_mb_discard_group_preallocations(struct super_block *sb, | 
|  | ext4_group_t group, int needed) | 
|  | { | 
|  | struct ext4_group_info *grp = ext4_get_group_info(sb, group); | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct ext4_prealloc_space *pa, *tmp; | 
|  | struct list_head list; | 
|  | struct ext4_buddy e4b; | 
|  | int err; | 
|  | int busy = 0; | 
|  | int free = 0; | 
|  |  | 
|  | mb_debug(1, "discard preallocation for group %u\n", group); | 
|  |  | 
|  | if (list_empty(&grp->bb_prealloc_list)) | 
|  | return 0; | 
|  |  | 
|  | bitmap_bh = ext4_read_block_bitmap(sb, group); | 
|  | if (bitmap_bh == NULL) { | 
|  | ext4_error(sb, "Error reading block bitmap for %u", group); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, group, &e4b); | 
|  | if (err) { | 
|  | ext4_error(sb, "Error loading buddy information for %u", group); | 
|  | put_bh(bitmap_bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (needed == 0) | 
|  | needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; | 
|  |  | 
|  | INIT_LIST_HEAD(&list); | 
|  | repeat: | 
|  | ext4_lock_group(sb, group); | 
|  | list_for_each_entry_safe(pa, tmp, | 
|  | &grp->bb_prealloc_list, pa_group_list) { | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (atomic_read(&pa->pa_count)) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | busy = 1; | 
|  | continue; | 
|  | } | 
|  | if (pa->pa_deleted) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* seems this one can be freed ... */ | 
|  | pa->pa_deleted = 1; | 
|  |  | 
|  | /* we can trust pa_free ... */ | 
|  | free += pa->pa_free; | 
|  |  | 
|  | spin_unlock(&pa->pa_lock); | 
|  |  | 
|  | list_del(&pa->pa_group_list); | 
|  | list_add(&pa->u.pa_tmp_list, &list); | 
|  | } | 
|  |  | 
|  | /* if we still need more blocks and some PAs were used, try again */ | 
|  | if (free < needed && busy) { | 
|  | busy = 0; | 
|  | ext4_unlock_group(sb, group); | 
|  | /* | 
|  | * Yield the CPU here so that we don't get soft lockup | 
|  | * in non preempt case. | 
|  | */ | 
|  | yield(); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* found anything to free? */ | 
|  | if (list_empty(&list)) { | 
|  | BUG_ON(free != 0); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* now free all selected PAs */ | 
|  | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { | 
|  |  | 
|  | /* remove from object (inode or locality group) */ | 
|  | spin_lock(pa->pa_obj_lock); | 
|  | list_del_rcu(&pa->pa_inode_list); | 
|  | spin_unlock(pa->pa_obj_lock); | 
|  |  | 
|  | if (pa->pa_type == MB_GROUP_PA) | 
|  | ext4_mb_release_group_pa(&e4b, pa); | 
|  | else | 
|  | ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); | 
|  |  | 
|  | list_del(&pa->u.pa_tmp_list); | 
|  | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); | 
|  | } | 
|  |  | 
|  | out: | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | put_bh(bitmap_bh); | 
|  | return free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * releases all non-used preallocated blocks for given inode | 
|  | * | 
|  | * It's important to discard preallocations under i_data_sem | 
|  | * We don't want another block to be served from the prealloc | 
|  | * space when we are discarding the inode prealloc space. | 
|  | * | 
|  | * FIXME!! Make sure it is valid at all the call sites | 
|  | */ | 
|  | void ext4_discard_preallocations(struct inode *inode) | 
|  | { | 
|  | struct ext4_inode_info *ei = EXT4_I(inode); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct ext4_prealloc_space *pa, *tmp; | 
|  | ext4_group_t group = 0; | 
|  | struct list_head list; | 
|  | struct ext4_buddy e4b; | 
|  | int err; | 
|  |  | 
|  | if (!S_ISREG(inode->i_mode)) { | 
|  | /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ | 
|  | return; | 
|  | } | 
|  |  | 
|  | mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); | 
|  | trace_ext4_discard_preallocations(inode); | 
|  |  | 
|  | INIT_LIST_HEAD(&list); | 
|  |  | 
|  | repeat: | 
|  | /* first, collect all pa's in the inode */ | 
|  | spin_lock(&ei->i_prealloc_lock); | 
|  | while (!list_empty(&ei->i_prealloc_list)) { | 
|  | pa = list_entry(ei->i_prealloc_list.next, | 
|  | struct ext4_prealloc_space, pa_inode_list); | 
|  | BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (atomic_read(&pa->pa_count)) { | 
|  | /* this shouldn't happen often - nobody should | 
|  | * use preallocation while we're discarding it */ | 
|  | spin_unlock(&pa->pa_lock); | 
|  | spin_unlock(&ei->i_prealloc_lock); | 
|  | printk(KERN_ERR "uh-oh! used pa while discarding\n"); | 
|  | WARN_ON(1); | 
|  | schedule_timeout_uninterruptible(HZ); | 
|  | goto repeat; | 
|  |  | 
|  | } | 
|  | if (pa->pa_deleted == 0) { | 
|  | pa->pa_deleted = 1; | 
|  | spin_unlock(&pa->pa_lock); | 
|  | list_del_rcu(&pa->pa_inode_list); | 
|  | list_add(&pa->u.pa_tmp_list, &list); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* someone is deleting pa right now */ | 
|  | spin_unlock(&pa->pa_lock); | 
|  | spin_unlock(&ei->i_prealloc_lock); | 
|  |  | 
|  | /* we have to wait here because pa_deleted | 
|  | * doesn't mean pa is already unlinked from | 
|  | * the list. as we might be called from | 
|  | * ->clear_inode() the inode will get freed | 
|  | * and concurrent thread which is unlinking | 
|  | * pa from inode's list may access already | 
|  | * freed memory, bad-bad-bad */ | 
|  |  | 
|  | /* XXX: if this happens too often, we can | 
|  | * add a flag to force wait only in case | 
|  | * of ->clear_inode(), but not in case of | 
|  | * regular truncate */ | 
|  | schedule_timeout_uninterruptible(HZ); | 
|  | goto repeat; | 
|  | } | 
|  | spin_unlock(&ei->i_prealloc_lock); | 
|  |  | 
|  | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { | 
|  | BUG_ON(pa->pa_type != MB_INODE_PA); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, group, &e4b); | 
|  | if (err) { | 
|  | ext4_error(sb, "Error loading buddy information for %u", | 
|  | group); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bitmap_bh = ext4_read_block_bitmap(sb, group); | 
|  | if (bitmap_bh == NULL) { | 
|  | ext4_error(sb, "Error reading block bitmap for %u", | 
|  | group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ext4_lock_group(sb, group); | 
|  | list_del(&pa->pa_group_list); | 
|  | ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); | 
|  | ext4_unlock_group(sb, group); | 
|  |  | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | put_bh(bitmap_bh); | 
|  |  | 
|  | list_del(&pa->u.pa_tmp_list); | 
|  | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EXT4_DEBUG | 
|  | static void ext4_mb_show_ac(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | ext4_group_t ngroups, i; | 
|  |  | 
|  | if (!mb_enable_debug || | 
|  | (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ERR "EXT4-fs: Can't allocate:" | 
|  | " Allocation context details:\n"); | 
|  | printk(KERN_ERR "EXT4-fs: status %d flags %d\n", | 
|  | ac->ac_status, ac->ac_flags); | 
|  | printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " | 
|  | "best %lu/%lu/%lu@%lu cr %d\n", | 
|  | (unsigned long)ac->ac_o_ex.fe_group, | 
|  | (unsigned long)ac->ac_o_ex.fe_start, | 
|  | (unsigned long)ac->ac_o_ex.fe_len, | 
|  | (unsigned long)ac->ac_o_ex.fe_logical, | 
|  | (unsigned long)ac->ac_g_ex.fe_group, | 
|  | (unsigned long)ac->ac_g_ex.fe_start, | 
|  | (unsigned long)ac->ac_g_ex.fe_len, | 
|  | (unsigned long)ac->ac_g_ex.fe_logical, | 
|  | (unsigned long)ac->ac_b_ex.fe_group, | 
|  | (unsigned long)ac->ac_b_ex.fe_start, | 
|  | (unsigned long)ac->ac_b_ex.fe_len, | 
|  | (unsigned long)ac->ac_b_ex.fe_logical, | 
|  | (int)ac->ac_criteria); | 
|  | printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, | 
|  | ac->ac_found); | 
|  | printk(KERN_ERR "EXT4-fs: groups: \n"); | 
|  | ngroups = ext4_get_groups_count(sb); | 
|  | for (i = 0; i < ngroups; i++) { | 
|  | struct ext4_group_info *grp = ext4_get_group_info(sb, i); | 
|  | struct ext4_prealloc_space *pa; | 
|  | ext4_grpblk_t start; | 
|  | struct list_head *cur; | 
|  | ext4_lock_group(sb, i); | 
|  | list_for_each(cur, &grp->bb_prealloc_list) { | 
|  | pa = list_entry(cur, struct ext4_prealloc_space, | 
|  | pa_group_list); | 
|  | spin_lock(&pa->pa_lock); | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, | 
|  | NULL, &start); | 
|  | spin_unlock(&pa->pa_lock); | 
|  | printk(KERN_ERR "PA:%u:%d:%u \n", i, | 
|  | start, pa->pa_len); | 
|  | } | 
|  | ext4_unlock_group(sb, i); | 
|  |  | 
|  | if (grp->bb_free == 0) | 
|  | continue; | 
|  | printk(KERN_ERR "%u: %d/%d \n", | 
|  | i, grp->bb_free, grp->bb_fragments); | 
|  | } | 
|  | printk(KERN_ERR "\n"); | 
|  | } | 
|  | #else | 
|  | static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) | 
|  | { | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We use locality group preallocation for small size file. The size of the | 
|  | * file is determined by the current size or the resulting size after | 
|  | * allocation which ever is larger | 
|  | * | 
|  | * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req | 
|  | */ | 
|  | static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); | 
|  | int bsbits = ac->ac_sb->s_blocksize_bits; | 
|  | loff_t size, isize; | 
|  |  | 
|  | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) | 
|  | return; | 
|  |  | 
|  | size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; | 
|  | isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) | 
|  | >> bsbits; | 
|  |  | 
|  | if ((size == isize) && | 
|  | !ext4_fs_is_busy(sbi) && | 
|  | (atomic_read(&ac->ac_inode->i_writecount) == 0)) { | 
|  | ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* don't use group allocation for large files */ | 
|  | size = max(size, isize); | 
|  | if (size > sbi->s_mb_stream_request) { | 
|  | ac->ac_flags |= EXT4_MB_STREAM_ALLOC; | 
|  | return; | 
|  | } | 
|  |  | 
|  | BUG_ON(ac->ac_lg != NULL); | 
|  | /* | 
|  | * locality group prealloc space are per cpu. The reason for having | 
|  | * per cpu locality group is to reduce the contention between block | 
|  | * request from multiple CPUs. | 
|  | */ | 
|  | ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); | 
|  |  | 
|  | /* we're going to use group allocation */ | 
|  | ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; | 
|  |  | 
|  | /* serialize all allocations in the group */ | 
|  | mutex_lock(&ac->ac_lg->lg_mutex); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | ext4_mb_initialize_context(struct ext4_allocation_context *ac, | 
|  | struct ext4_allocation_request *ar) | 
|  | { | 
|  | struct super_block *sb = ar->inode->i_sb; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_super_block *es = sbi->s_es; | 
|  | ext4_group_t group; | 
|  | unsigned int len; | 
|  | ext4_fsblk_t goal; | 
|  | ext4_grpblk_t block; | 
|  |  | 
|  | /* we can't allocate > group size */ | 
|  | len = ar->len; | 
|  |  | 
|  | /* just a dirty hack to filter too big requests  */ | 
|  | if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) | 
|  | len = EXT4_BLOCKS_PER_GROUP(sb) - 10; | 
|  |  | 
|  | /* start searching from the goal */ | 
|  | goal = ar->goal; | 
|  | if (goal < le32_to_cpu(es->s_first_data_block) || | 
|  | goal >= ext4_blocks_count(es)) | 
|  | goal = le32_to_cpu(es->s_first_data_block); | 
|  | ext4_get_group_no_and_offset(sb, goal, &group, &block); | 
|  |  | 
|  | /* set up allocation goals */ | 
|  | memset(ac, 0, sizeof(struct ext4_allocation_context)); | 
|  | ac->ac_b_ex.fe_logical = ar->logical; | 
|  | ac->ac_status = AC_STATUS_CONTINUE; | 
|  | ac->ac_sb = sb; | 
|  | ac->ac_inode = ar->inode; | 
|  | ac->ac_o_ex.fe_logical = ar->logical; | 
|  | ac->ac_o_ex.fe_group = group; | 
|  | ac->ac_o_ex.fe_start = block; | 
|  | ac->ac_o_ex.fe_len = len; | 
|  | ac->ac_g_ex.fe_logical = ar->logical; | 
|  | ac->ac_g_ex.fe_group = group; | 
|  | ac->ac_g_ex.fe_start = block; | 
|  | ac->ac_g_ex.fe_len = len; | 
|  | ac->ac_flags = ar->flags; | 
|  |  | 
|  | /* we have to define context: we'll we work with a file or | 
|  | * locality group. this is a policy, actually */ | 
|  | ext4_mb_group_or_file(ac); | 
|  |  | 
|  | mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " | 
|  | "left: %u/%u, right %u/%u to %swritable\n", | 
|  | (unsigned) ar->len, (unsigned) ar->logical, | 
|  | (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, | 
|  | (unsigned) ar->lleft, (unsigned) ar->pleft, | 
|  | (unsigned) ar->lright, (unsigned) ar->pright, | 
|  | atomic_read(&ar->inode->i_writecount) ? "" : "non-"); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void | 
|  | ext4_mb_discard_lg_preallocations(struct super_block *sb, | 
|  | struct ext4_locality_group *lg, | 
|  | int order, int total_entries) | 
|  | { | 
|  | ext4_group_t group = 0; | 
|  | struct ext4_buddy e4b; | 
|  | struct list_head discard_list; | 
|  | struct ext4_prealloc_space *pa, *tmp; | 
|  |  | 
|  | mb_debug(1, "discard locality group preallocation\n"); | 
|  |  | 
|  | INIT_LIST_HEAD(&discard_list); | 
|  |  | 
|  | spin_lock(&lg->lg_prealloc_lock); | 
|  | list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], | 
|  | pa_inode_list) { | 
|  | spin_lock(&pa->pa_lock); | 
|  | if (atomic_read(&pa->pa_count)) { | 
|  | /* | 
|  | * This is the pa that we just used | 
|  | * for block allocation. So don't | 
|  | * free that | 
|  | */ | 
|  | spin_unlock(&pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  | if (pa->pa_deleted) { | 
|  | spin_unlock(&pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  | /* only lg prealloc space */ | 
|  | BUG_ON(pa->pa_type != MB_GROUP_PA); | 
|  |  | 
|  | /* seems this one can be freed ... */ | 
|  | pa->pa_deleted = 1; | 
|  | spin_unlock(&pa->pa_lock); | 
|  |  | 
|  | list_del_rcu(&pa->pa_inode_list); | 
|  | list_add(&pa->u.pa_tmp_list, &discard_list); | 
|  |  | 
|  | total_entries--; | 
|  | if (total_entries <= 5) { | 
|  | /* | 
|  | * we want to keep only 5 entries | 
|  | * allowing it to grow to 8. This | 
|  | * mak sure we don't call discard | 
|  | * soon for this list. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&lg->lg_prealloc_lock); | 
|  |  | 
|  | list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { | 
|  |  | 
|  | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); | 
|  | if (ext4_mb_load_buddy(sb, group, &e4b)) { | 
|  | ext4_error(sb, "Error loading buddy information for %u", | 
|  | group); | 
|  | continue; | 
|  | } | 
|  | ext4_lock_group(sb, group); | 
|  | list_del(&pa->pa_group_list); | 
|  | ext4_mb_release_group_pa(&e4b, pa); | 
|  | ext4_unlock_group(sb, group); | 
|  |  | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  | list_del(&pa->u.pa_tmp_list); | 
|  | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have incremented pa_count. So it cannot be freed at this | 
|  | * point. Also we hold lg_mutex. So no parallel allocation is | 
|  | * possible from this lg. That means pa_free cannot be updated. | 
|  | * | 
|  | * A parallel ext4_mb_discard_group_preallocations is possible. | 
|  | * which can cause the lg_prealloc_list to be updated. | 
|  | */ | 
|  |  | 
|  | static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) | 
|  | { | 
|  | int order, added = 0, lg_prealloc_count = 1; | 
|  | struct super_block *sb = ac->ac_sb; | 
|  | struct ext4_locality_group *lg = ac->ac_lg; | 
|  | struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; | 
|  |  | 
|  | order = fls(pa->pa_free) - 1; | 
|  | if (order > PREALLOC_TB_SIZE - 1) | 
|  | /* The max size of hash table is PREALLOC_TB_SIZE */ | 
|  | order = PREALLOC_TB_SIZE - 1; | 
|  | /* Add the prealloc space to lg */ | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], | 
|  | pa_inode_list) { | 
|  | spin_lock(&tmp_pa->pa_lock); | 
|  | if (tmp_pa->pa_deleted) { | 
|  | spin_unlock(&tmp_pa->pa_lock); | 
|  | continue; | 
|  | } | 
|  | if (!added && pa->pa_free < tmp_pa->pa_free) { | 
|  | /* Add to the tail of the previous entry */ | 
|  | list_add_tail_rcu(&pa->pa_inode_list, | 
|  | &tmp_pa->pa_inode_list); | 
|  | added = 1; | 
|  | /* | 
|  | * we want to count the total | 
|  | * number of entries in the list | 
|  | */ | 
|  | } | 
|  | spin_unlock(&tmp_pa->pa_lock); | 
|  | lg_prealloc_count++; | 
|  | } | 
|  | if (!added) | 
|  | list_add_tail_rcu(&pa->pa_inode_list, | 
|  | &lg->lg_prealloc_list[order]); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* Now trim the list to be not more than 8 elements */ | 
|  | if (lg_prealloc_count > 8) { | 
|  | ext4_mb_discard_lg_preallocations(sb, lg, | 
|  | order, lg_prealloc_count); | 
|  | return; | 
|  | } | 
|  | return ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * release all resource we used in allocation | 
|  | */ | 
|  | static int ext4_mb_release_context(struct ext4_allocation_context *ac) | 
|  | { | 
|  | struct ext4_prealloc_space *pa = ac->ac_pa; | 
|  | if (pa) { | 
|  | if (pa->pa_type == MB_GROUP_PA) { | 
|  | /* see comment in ext4_mb_use_group_pa() */ | 
|  | spin_lock(&pa->pa_lock); | 
|  | pa->pa_pstart += ac->ac_b_ex.fe_len; | 
|  | pa->pa_lstart += ac->ac_b_ex.fe_len; | 
|  | pa->pa_free -= ac->ac_b_ex.fe_len; | 
|  | pa->pa_len -= ac->ac_b_ex.fe_len; | 
|  | spin_unlock(&pa->pa_lock); | 
|  | } | 
|  | } | 
|  | if (pa) { | 
|  | /* | 
|  | * We want to add the pa to the right bucket. | 
|  | * Remove it from the list and while adding | 
|  | * make sure the list to which we are adding | 
|  | * doesn't grow big. | 
|  | */ | 
|  | if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { | 
|  | spin_lock(pa->pa_obj_lock); | 
|  | list_del_rcu(&pa->pa_inode_list); | 
|  | spin_unlock(pa->pa_obj_lock); | 
|  | ext4_mb_add_n_trim(ac); | 
|  | } | 
|  | ext4_mb_put_pa(ac, ac->ac_sb, pa); | 
|  | } | 
|  | if (ac->ac_bitmap_page) | 
|  | page_cache_release(ac->ac_bitmap_page); | 
|  | if (ac->ac_buddy_page) | 
|  | page_cache_release(ac->ac_buddy_page); | 
|  | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) | 
|  | mutex_unlock(&ac->ac_lg->lg_mutex); | 
|  | ext4_mb_collect_stats(ac); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) | 
|  | { | 
|  | ext4_group_t i, ngroups = ext4_get_groups_count(sb); | 
|  | int ret; | 
|  | int freed = 0; | 
|  |  | 
|  | trace_ext4_mb_discard_preallocations(sb, needed); | 
|  | for (i = 0; i < ngroups && needed > 0; i++) { | 
|  | ret = ext4_mb_discard_group_preallocations(sb, i, needed); | 
|  | freed += ret; | 
|  | needed -= ret; | 
|  | } | 
|  |  | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Main entry point into mballoc to allocate blocks | 
|  | * it tries to use preallocation first, then falls back | 
|  | * to usual allocation | 
|  | */ | 
|  | ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, | 
|  | struct ext4_allocation_request *ar, int *errp) | 
|  | { | 
|  | int freed; | 
|  | struct ext4_allocation_context *ac = NULL; | 
|  | struct ext4_sb_info *sbi; | 
|  | struct super_block *sb; | 
|  | ext4_fsblk_t block = 0; | 
|  | unsigned int inquota = 0; | 
|  | unsigned int reserv_blks = 0; | 
|  |  | 
|  | sb = ar->inode->i_sb; | 
|  | sbi = EXT4_SB(sb); | 
|  |  | 
|  | trace_ext4_request_blocks(ar); | 
|  |  | 
|  | /* | 
|  | * For delayed allocation, we could skip the ENOSPC and | 
|  | * EDQUOT check, as blocks and quotas have been already | 
|  | * reserved when data being copied into pagecache. | 
|  | */ | 
|  | if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) | 
|  | ar->flags |= EXT4_MB_DELALLOC_RESERVED; | 
|  | else { | 
|  | /* Without delayed allocation we need to verify | 
|  | * there is enough free blocks to do block allocation | 
|  | * and verify allocation doesn't exceed the quota limits. | 
|  | */ | 
|  | while (ar->len && | 
|  | ext4_claim_free_blocks(sbi, ar->len, ar->flags)) { | 
|  |  | 
|  | /* let others to free the space */ | 
|  | yield(); | 
|  | ar->len = ar->len >> 1; | 
|  | } | 
|  | if (!ar->len) { | 
|  | *errp = -ENOSPC; | 
|  | return 0; | 
|  | } | 
|  | reserv_blks = ar->len; | 
|  | if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { | 
|  | dquot_alloc_block_nofail(ar->inode, ar->len); | 
|  | } else { | 
|  | while (ar->len && | 
|  | dquot_alloc_block(ar->inode, ar->len)) { | 
|  |  | 
|  | ar->flags |= EXT4_MB_HINT_NOPREALLOC; | 
|  | ar->len--; | 
|  | } | 
|  | } | 
|  | inquota = ar->len; | 
|  | if (ar->len == 0) { | 
|  | *errp = -EDQUOT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); | 
|  | if (!ac) { | 
|  | ar->len = 0; | 
|  | *errp = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *errp = ext4_mb_initialize_context(ac, ar); | 
|  | if (*errp) { | 
|  | ar->len = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ac->ac_op = EXT4_MB_HISTORY_PREALLOC; | 
|  | if (!ext4_mb_use_preallocated(ac)) { | 
|  | ac->ac_op = EXT4_MB_HISTORY_ALLOC; | 
|  | ext4_mb_normalize_request(ac, ar); | 
|  | repeat: | 
|  | /* allocate space in core */ | 
|  | *errp = ext4_mb_regular_allocator(ac); | 
|  | if (*errp) | 
|  | goto errout; | 
|  |  | 
|  | /* as we've just preallocated more space than | 
|  | * user requested orinally, we store allocated | 
|  | * space in a special descriptor */ | 
|  | if (ac->ac_status == AC_STATUS_FOUND && | 
|  | ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) | 
|  | ext4_mb_new_preallocation(ac); | 
|  | } | 
|  | if (likely(ac->ac_status == AC_STATUS_FOUND)) { | 
|  | *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); | 
|  | if (*errp == -EAGAIN) { | 
|  | /* | 
|  | * drop the reference that we took | 
|  | * in ext4_mb_use_best_found | 
|  | */ | 
|  | ext4_mb_release_context(ac); | 
|  | ac->ac_b_ex.fe_group = 0; | 
|  | ac->ac_b_ex.fe_start = 0; | 
|  | ac->ac_b_ex.fe_len = 0; | 
|  | ac->ac_status = AC_STATUS_CONTINUE; | 
|  | goto repeat; | 
|  | } else if (*errp) | 
|  | errout: | 
|  | ext4_discard_allocated_blocks(ac); | 
|  | else { | 
|  | block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); | 
|  | ar->len = ac->ac_b_ex.fe_len; | 
|  | } | 
|  | } else { | 
|  | freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); | 
|  | if (freed) | 
|  | goto repeat; | 
|  | *errp = -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (*errp) { | 
|  | ac->ac_b_ex.fe_len = 0; | 
|  | ar->len = 0; | 
|  | ext4_mb_show_ac(ac); | 
|  | } | 
|  | ext4_mb_release_context(ac); | 
|  | out: | 
|  | if (ac) | 
|  | kmem_cache_free(ext4_ac_cachep, ac); | 
|  | if (inquota && ar->len < inquota) | 
|  | dquot_free_block(ar->inode, inquota - ar->len); | 
|  | if (!ar->len) { | 
|  | if (!ext4_test_inode_state(ar->inode, | 
|  | EXT4_STATE_DELALLOC_RESERVED)) | 
|  | /* release all the reserved blocks if non delalloc */ | 
|  | percpu_counter_sub(&sbi->s_dirtyblocks_counter, | 
|  | reserv_blks); | 
|  | } | 
|  |  | 
|  | trace_ext4_allocate_blocks(ar, (unsigned long long)block); | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can merge two free data extents only if the physical blocks | 
|  | * are contiguous, AND the extents were freed by the same transaction, | 
|  | * AND the blocks are associated with the same group. | 
|  | */ | 
|  | static int can_merge(struct ext4_free_data *entry1, | 
|  | struct ext4_free_data *entry2) | 
|  | { | 
|  | if ((entry1->t_tid == entry2->t_tid) && | 
|  | (entry1->group == entry2->group) && | 
|  | ((entry1->start_blk + entry1->count) == entry2->start_blk)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, | 
|  | struct ext4_free_data *new_entry) | 
|  | { | 
|  | ext4_group_t group = e4b->bd_group; | 
|  | ext4_grpblk_t block; | 
|  | struct ext4_free_data *entry; | 
|  | struct ext4_group_info *db = e4b->bd_info; | 
|  | struct super_block *sb = e4b->bd_sb; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct rb_node **n = &db->bb_free_root.rb_node, *node; | 
|  | struct rb_node *parent = NULL, *new_node; | 
|  |  | 
|  | BUG_ON(!ext4_handle_valid(handle)); | 
|  | BUG_ON(e4b->bd_bitmap_page == NULL); | 
|  | BUG_ON(e4b->bd_buddy_page == NULL); | 
|  |  | 
|  | new_node = &new_entry->node; | 
|  | block = new_entry->start_blk; | 
|  |  | 
|  | if (!*n) { | 
|  | /* first free block exent. We need to | 
|  | protect buddy cache from being freed, | 
|  | * otherwise we'll refresh it from | 
|  | * on-disk bitmap and lose not-yet-available | 
|  | * blocks */ | 
|  | page_cache_get(e4b->bd_buddy_page); | 
|  | page_cache_get(e4b->bd_bitmap_page); | 
|  | } | 
|  | while (*n) { | 
|  | parent = *n; | 
|  | entry = rb_entry(parent, struct ext4_free_data, node); | 
|  | if (block < entry->start_blk) | 
|  | n = &(*n)->rb_left; | 
|  | else if (block >= (entry->start_blk + entry->count)) | 
|  | n = &(*n)->rb_right; | 
|  | else { | 
|  | ext4_grp_locked_error(sb, group, 0, | 
|  | ext4_group_first_block_no(sb, group) + block, | 
|  | "Block already on to-be-freed list"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(new_node, parent, n); | 
|  | rb_insert_color(new_node, &db->bb_free_root); | 
|  |  | 
|  | /* Now try to see the extent can be merged to left and right */ | 
|  | node = rb_prev(new_node); | 
|  | if (node) { | 
|  | entry = rb_entry(node, struct ext4_free_data, node); | 
|  | if (can_merge(entry, new_entry)) { | 
|  | new_entry->start_blk = entry->start_blk; | 
|  | new_entry->count += entry->count; | 
|  | rb_erase(node, &(db->bb_free_root)); | 
|  | spin_lock(&sbi->s_md_lock); | 
|  | list_del(&entry->list); | 
|  | spin_unlock(&sbi->s_md_lock); | 
|  | kmem_cache_free(ext4_free_ext_cachep, entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | node = rb_next(new_node); | 
|  | if (node) { | 
|  | entry = rb_entry(node, struct ext4_free_data, node); | 
|  | if (can_merge(new_entry, entry)) { | 
|  | new_entry->count += entry->count; | 
|  | rb_erase(node, &(db->bb_free_root)); | 
|  | spin_lock(&sbi->s_md_lock); | 
|  | list_del(&entry->list); | 
|  | spin_unlock(&sbi->s_md_lock); | 
|  | kmem_cache_free(ext4_free_ext_cachep, entry); | 
|  | } | 
|  | } | 
|  | /* Add the extent to transaction's private list */ | 
|  | spin_lock(&sbi->s_md_lock); | 
|  | list_add(&new_entry->list, &handle->h_transaction->t_private_list); | 
|  | spin_unlock(&sbi->s_md_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_free_blocks() -- Free given blocks and update quota | 
|  | * @handle:		handle for this transaction | 
|  | * @inode:		inode | 
|  | * @block:		start physical block to free | 
|  | * @count:		number of blocks to count | 
|  | * @flags:		flags used by ext4_free_blocks | 
|  | */ | 
|  | void ext4_free_blocks(handle_t *handle, struct inode *inode, | 
|  | struct buffer_head *bh, ext4_fsblk_t block, | 
|  | unsigned long count, int flags) | 
|  | { | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct ext4_group_desc *gdp; | 
|  | unsigned long freed = 0; | 
|  | unsigned int overflow; | 
|  | ext4_grpblk_t bit; | 
|  | struct buffer_head *gd_bh; | 
|  | ext4_group_t block_group; | 
|  | struct ext4_sb_info *sbi; | 
|  | struct ext4_buddy e4b; | 
|  | int err = 0; | 
|  | int ret; | 
|  |  | 
|  | if (bh) { | 
|  | if (block) | 
|  | BUG_ON(block != bh->b_blocknr); | 
|  | else | 
|  | block = bh->b_blocknr; | 
|  | } | 
|  |  | 
|  | sbi = EXT4_SB(sb); | 
|  | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && | 
|  | !ext4_data_block_valid(sbi, block, count)) { | 
|  | ext4_error(sb, "Freeing blocks not in datazone - " | 
|  | "block = %llu, count = %lu", block, count); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | ext4_debug("freeing block %llu\n", block); | 
|  | trace_ext4_free_blocks(inode, block, count, flags); | 
|  |  | 
|  | if (flags & EXT4_FREE_BLOCKS_FORGET) { | 
|  | struct buffer_head *tbh = bh; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(bh && (count > 1)); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | if (!bh) | 
|  | tbh = sb_find_get_block(inode->i_sb, | 
|  | block + i); | 
|  | if (unlikely(!tbh)) | 
|  | continue; | 
|  | ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, | 
|  | inode, tbh, block + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to make sure we don't reuse the freed block until | 
|  | * after the transaction is committed, which we can do by | 
|  | * treating the block as metadata, below.  We make an | 
|  | * exception if the inode is to be written in writeback mode | 
|  | * since writeback mode has weak data consistency guarantees. | 
|  | */ | 
|  | if (!ext4_should_writeback_data(inode)) | 
|  | flags |= EXT4_FREE_BLOCKS_METADATA; | 
|  |  | 
|  | do_more: | 
|  | overflow = 0; | 
|  | ext4_get_group_no_and_offset(sb, block, &block_group, &bit); | 
|  |  | 
|  | /* | 
|  | * Check to see if we are freeing blocks across a group | 
|  | * boundary. | 
|  | */ | 
|  | if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { | 
|  | overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); | 
|  | count -= overflow; | 
|  | } | 
|  | bitmap_bh = ext4_read_block_bitmap(sb, block_group); | 
|  | if (!bitmap_bh) { | 
|  | err = -EIO; | 
|  | goto error_return; | 
|  | } | 
|  | gdp = ext4_get_group_desc(sb, block_group, &gd_bh); | 
|  | if (!gdp) { | 
|  | err = -EIO; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (in_range(ext4_block_bitmap(sb, gdp), block, count) || | 
|  | in_range(ext4_inode_bitmap(sb, gdp), block, count) || | 
|  | in_range(block, ext4_inode_table(sb, gdp), | 
|  | EXT4_SB(sb)->s_itb_per_group) || | 
|  | in_range(block + count - 1, ext4_inode_table(sb, gdp), | 
|  | EXT4_SB(sb)->s_itb_per_group)) { | 
|  |  | 
|  | ext4_error(sb, "Freeing blocks in system zone - " | 
|  | "Block = %llu, count = %lu", block, count); | 
|  | /* err = 0. ext4_std_error should be a no op */ | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | BUFFER_TRACE(bitmap_bh, "getting write access"); | 
|  | err = ext4_journal_get_write_access(handle, bitmap_bh); | 
|  | if (err) | 
|  | goto error_return; | 
|  |  | 
|  | /* | 
|  | * We are about to modify some metadata.  Call the journal APIs | 
|  | * to unshare ->b_data if a currently-committing transaction is | 
|  | * using it | 
|  | */ | 
|  | BUFFER_TRACE(gd_bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, gd_bh); | 
|  | if (err) | 
|  | goto error_return; | 
|  | #ifdef AGGRESSIVE_CHECK | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < count; i++) | 
|  | BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); | 
|  | } | 
|  | #endif | 
|  | trace_ext4_mballoc_free(sb, inode, block_group, bit, count); | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, block_group, &e4b); | 
|  | if (err) | 
|  | goto error_return; | 
|  |  | 
|  | if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { | 
|  | struct ext4_free_data *new_entry; | 
|  | /* | 
|  | * blocks being freed are metadata. these blocks shouldn't | 
|  | * be used until this transaction is committed | 
|  | */ | 
|  | new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); | 
|  | if (!new_entry) { | 
|  | err = -ENOMEM; | 
|  | goto error_return; | 
|  | } | 
|  | new_entry->start_blk = bit; | 
|  | new_entry->group  = block_group; | 
|  | new_entry->count = count; | 
|  | new_entry->t_tid = handle->h_transaction->t_tid; | 
|  |  | 
|  | ext4_lock_group(sb, block_group); | 
|  | mb_clear_bits(bitmap_bh->b_data, bit, count); | 
|  | ext4_mb_free_metadata(handle, &e4b, new_entry); | 
|  | } else { | 
|  | /* need to update group_info->bb_free and bitmap | 
|  | * with group lock held. generate_buddy look at | 
|  | * them with group lock_held | 
|  | */ | 
|  | ext4_lock_group(sb, block_group); | 
|  | mb_clear_bits(bitmap_bh->b_data, bit, count); | 
|  | mb_free_blocks(inode, &e4b, bit, count); | 
|  | } | 
|  |  | 
|  | ret = ext4_free_blks_count(sb, gdp) + count; | 
|  | ext4_free_blks_set(sb, gdp, ret); | 
|  | gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); | 
|  | ext4_unlock_group(sb, block_group); | 
|  | percpu_counter_add(&sbi->s_freeblocks_counter, count); | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t flex_group = ext4_flex_group(sbi, block_group); | 
|  | atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks); | 
|  | } | 
|  |  | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  |  | 
|  | freed += count; | 
|  |  | 
|  | /* We dirtied the bitmap block */ | 
|  | BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); | 
|  |  | 
|  | /* And the group descriptor block */ | 
|  | BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); | 
|  | ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); | 
|  | if (!err) | 
|  | err = ret; | 
|  |  | 
|  | if (overflow && !err) { | 
|  | block += count; | 
|  | count = overflow; | 
|  | put_bh(bitmap_bh); | 
|  | goto do_more; | 
|  | } | 
|  | ext4_mark_super_dirty(sb); | 
|  | error_return: | 
|  | if (freed && !(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) | 
|  | dquot_free_block(inode, freed); | 
|  | brelse(bitmap_bh); | 
|  | ext4_std_error(sb, err); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_add_groupblocks() -- Add given blocks to an existing group | 
|  | * @handle:			handle to this transaction | 
|  | * @sb:				super block | 
|  | * @block:			start physcial block to add to the block group | 
|  | * @count:			number of blocks to free | 
|  | * | 
|  | * This marks the blocks as free in the bitmap and buddy. | 
|  | */ | 
|  | void ext4_add_groupblocks(handle_t *handle, struct super_block *sb, | 
|  | ext4_fsblk_t block, unsigned long count) | 
|  | { | 
|  | struct buffer_head *bitmap_bh = NULL; | 
|  | struct buffer_head *gd_bh; | 
|  | ext4_group_t block_group; | 
|  | ext4_grpblk_t bit; | 
|  | unsigned int i; | 
|  | struct ext4_group_desc *desc; | 
|  | struct ext4_sb_info *sbi = EXT4_SB(sb); | 
|  | struct ext4_buddy e4b; | 
|  | int err = 0, ret, blk_free_count; | 
|  | ext4_grpblk_t blocks_freed; | 
|  | struct ext4_group_info *grp; | 
|  |  | 
|  | ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); | 
|  |  | 
|  | ext4_get_group_no_and_offset(sb, block, &block_group, &bit); | 
|  | grp = ext4_get_group_info(sb, block_group); | 
|  | /* | 
|  | * Check to see if we are freeing blocks across a group | 
|  | * boundary. | 
|  | */ | 
|  | if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) | 
|  | goto error_return; | 
|  |  | 
|  | bitmap_bh = ext4_read_block_bitmap(sb, block_group); | 
|  | if (!bitmap_bh) | 
|  | goto error_return; | 
|  | desc = ext4_get_group_desc(sb, block_group, &gd_bh); | 
|  | if (!desc) | 
|  | goto error_return; | 
|  |  | 
|  | if (in_range(ext4_block_bitmap(sb, desc), block, count) || | 
|  | in_range(ext4_inode_bitmap(sb, desc), block, count) || | 
|  | in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || | 
|  | in_range(block + count - 1, ext4_inode_table(sb, desc), | 
|  | sbi->s_itb_per_group)) { | 
|  | ext4_error(sb, "Adding blocks in system zones - " | 
|  | "Block = %llu, count = %lu", | 
|  | block, count); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | BUFFER_TRACE(bitmap_bh, "getting write access"); | 
|  | err = ext4_journal_get_write_access(handle, bitmap_bh); | 
|  | if (err) | 
|  | goto error_return; | 
|  |  | 
|  | /* | 
|  | * We are about to modify some metadata.  Call the journal APIs | 
|  | * to unshare ->b_data if a currently-committing transaction is | 
|  | * using it | 
|  | */ | 
|  | BUFFER_TRACE(gd_bh, "get_write_access"); | 
|  | err = ext4_journal_get_write_access(handle, gd_bh); | 
|  | if (err) | 
|  | goto error_return; | 
|  |  | 
|  | for (i = 0, blocks_freed = 0; i < count; i++) { | 
|  | BUFFER_TRACE(bitmap_bh, "clear bit"); | 
|  | if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { | 
|  | ext4_error(sb, "bit already cleared for block %llu", | 
|  | (ext4_fsblk_t)(block + i)); | 
|  | BUFFER_TRACE(bitmap_bh, "bit already cleared"); | 
|  | } else { | 
|  | blocks_freed++; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = ext4_mb_load_buddy(sb, block_group, &e4b); | 
|  | if (err) | 
|  | goto error_return; | 
|  |  | 
|  | /* | 
|  | * need to update group_info->bb_free and bitmap | 
|  | * with group lock held. generate_buddy look at | 
|  | * them with group lock_held | 
|  | */ | 
|  | ext4_lock_group(sb, block_group); | 
|  | mb_clear_bits(bitmap_bh->b_data, bit, count); | 
|  | mb_free_blocks(NULL, &e4b, bit, count); | 
|  | blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc); | 
|  | ext4_free_blks_set(sb, desc, blk_free_count); | 
|  | desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc); | 
|  | ext4_unlock_group(sb, block_group); | 
|  | percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed); | 
|  |  | 
|  | if (sbi->s_log_groups_per_flex) { | 
|  | ext4_group_t flex_group = ext4_flex_group(sbi, block_group); | 
|  | atomic_add(blocks_freed, | 
|  | &sbi->s_flex_groups[flex_group].free_blocks); | 
|  | } | 
|  |  | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  |  | 
|  | /* We dirtied the bitmap block */ | 
|  | BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); | 
|  | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); | 
|  |  | 
|  | /* And the group descriptor block */ | 
|  | BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); | 
|  | ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); | 
|  | if (!err) | 
|  | err = ret; | 
|  |  | 
|  | error_return: | 
|  | brelse(bitmap_bh); | 
|  | ext4_std_error(sb, err); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_trim_extent -- function to TRIM one single free extent in the group | 
|  | * @sb:		super block for the file system | 
|  | * @start:	starting block of the free extent in the alloc. group | 
|  | * @count:	number of blocks to TRIM | 
|  | * @group:	alloc. group we are working with | 
|  | * @e4b:	ext4 buddy for the group | 
|  | * | 
|  | * Trim "count" blocks starting at "start" in the "group". To assure that no | 
|  | * one will allocate those blocks, mark it as used in buddy bitmap. This must | 
|  | * be called with under the group lock. | 
|  | */ | 
|  | static void ext4_trim_extent(struct super_block *sb, int start, int count, | 
|  | ext4_group_t group, struct ext4_buddy *e4b) | 
|  | { | 
|  | struct ext4_free_extent ex; | 
|  |  | 
|  | assert_spin_locked(ext4_group_lock_ptr(sb, group)); | 
|  |  | 
|  | ex.fe_start = start; | 
|  | ex.fe_group = group; | 
|  | ex.fe_len = count; | 
|  |  | 
|  | /* | 
|  | * Mark blocks used, so no one can reuse them while | 
|  | * being trimmed. | 
|  | */ | 
|  | mb_mark_used(e4b, &ex); | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_issue_discard(sb, group, start, count); | 
|  | ext4_lock_group(sb, group); | 
|  | mb_free_blocks(NULL, e4b, start, ex.fe_len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_trim_all_free -- function to trim all free space in alloc. group | 
|  | * @sb:			super block for file system | 
|  | * @e4b:		ext4 buddy | 
|  | * @start:		first group block to examine | 
|  | * @max:		last group block to examine | 
|  | * @minblocks:		minimum extent block count | 
|  | * | 
|  | * ext4_trim_all_free walks through group's buddy bitmap searching for free | 
|  | * extents. When the free block is found, ext4_trim_extent is called to TRIM | 
|  | * the extent. | 
|  | * | 
|  | * | 
|  | * ext4_trim_all_free walks through group's block bitmap searching for free | 
|  | * extents. When the free extent is found, mark it as used in group buddy | 
|  | * bitmap. Then issue a TRIM command on this extent and free the extent in | 
|  | * the group buddy bitmap. This is done until whole group is scanned. | 
|  | */ | 
|  | static ext4_grpblk_t | 
|  | ext4_trim_all_free(struct super_block *sb, ext4_group_t group, | 
|  | ext4_grpblk_t start, ext4_grpblk_t max, | 
|  | ext4_grpblk_t minblocks) | 
|  | { | 
|  | void *bitmap; | 
|  | ext4_grpblk_t next, count = 0; | 
|  | struct ext4_buddy e4b; | 
|  | int ret; | 
|  |  | 
|  | ret = ext4_mb_load_buddy(sb, group, &e4b); | 
|  | if (ret) { | 
|  | ext4_error(sb, "Error in loading buddy " | 
|  | "information for %u", group); | 
|  | return ret; | 
|  | } | 
|  | bitmap = e4b.bd_bitmap; | 
|  |  | 
|  | ext4_lock_group(sb, group); | 
|  | start = (e4b.bd_info->bb_first_free > start) ? | 
|  | e4b.bd_info->bb_first_free : start; | 
|  |  | 
|  | while (start < max) { | 
|  | start = mb_find_next_zero_bit(bitmap, max, start); | 
|  | if (start >= max) | 
|  | break; | 
|  | next = mb_find_next_bit(bitmap, max, start); | 
|  |  | 
|  | if ((next - start) >= minblocks) { | 
|  | ext4_trim_extent(sb, start, | 
|  | next - start, group, &e4b); | 
|  | count += next - start; | 
|  | } | 
|  | start = next + 1; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | count = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (need_resched()) { | 
|  | ext4_unlock_group(sb, group); | 
|  | cond_resched(); | 
|  | ext4_lock_group(sb, group); | 
|  | } | 
|  |  | 
|  | if ((e4b.bd_info->bb_free - count) < minblocks) | 
|  | break; | 
|  | } | 
|  | ext4_unlock_group(sb, group); | 
|  | ext4_mb_unload_buddy(&e4b); | 
|  |  | 
|  | ext4_debug("trimmed %d blocks in the group %d\n", | 
|  | count, group); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext4_trim_fs() -- trim ioctl handle function | 
|  | * @sb:			superblock for filesystem | 
|  | * @range:		fstrim_range structure | 
|  | * | 
|  | * start:	First Byte to trim | 
|  | * len:		number of Bytes to trim from start | 
|  | * minlen:	minimum extent length in Bytes | 
|  | * ext4_trim_fs goes through all allocation groups containing Bytes from | 
|  | * start to start+len. For each such a group ext4_trim_all_free function | 
|  | * is invoked to trim all free space. | 
|  | */ | 
|  | int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) | 
|  | { | 
|  | struct ext4_group_info *grp; | 
|  | ext4_group_t first_group, last_group; | 
|  | ext4_group_t group, ngroups = ext4_get_groups_count(sb); | 
|  | ext4_grpblk_t cnt = 0, first_block, last_block; | 
|  | uint64_t start, len, minlen, trimmed = 0; | 
|  | ext4_fsblk_t first_data_blk = | 
|  | le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); | 
|  | int ret = 0; | 
|  |  | 
|  | start = range->start >> sb->s_blocksize_bits; | 
|  | len = range->len >> sb->s_blocksize_bits; | 
|  | minlen = range->minlen >> sb->s_blocksize_bits; | 
|  |  | 
|  | if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb))) | 
|  | return -EINVAL; | 
|  | if (start < first_data_blk) { | 
|  | len -= first_data_blk - start; | 
|  | start = first_data_blk; | 
|  | } | 
|  |  | 
|  | /* Determine first and last group to examine based on start and len */ | 
|  | ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, | 
|  | &first_group, &first_block); | 
|  | ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len), | 
|  | &last_group, &last_block); | 
|  | last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group; | 
|  | last_block = EXT4_BLOCKS_PER_GROUP(sb); | 
|  |  | 
|  | if (first_group > last_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (group = first_group; group <= last_group; group++) { | 
|  | grp = ext4_get_group_info(sb, group); | 
|  | /* We only do this if the grp has never been initialized */ | 
|  | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { | 
|  | ret = ext4_mb_init_group(sb, group); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For all the groups except the last one, last block will | 
|  | * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to | 
|  | * change it for the last group in which case start + | 
|  | * len < EXT4_BLOCKS_PER_GROUP(sb). | 
|  | */ | 
|  | if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb)) | 
|  | last_block = first_block + len; | 
|  | len -= last_block - first_block; | 
|  |  | 
|  | if (grp->bb_free >= minlen) { | 
|  | cnt = ext4_trim_all_free(sb, group, first_block, | 
|  | last_block, minlen); | 
|  | if (cnt < 0) { | 
|  | ret = cnt; | 
|  | break; | 
|  | } | 
|  | } | 
|  | trimmed += cnt; | 
|  | first_block = 0; | 
|  | } | 
|  | range->len = trimmed * sb->s_blocksize; | 
|  |  | 
|  | return ret; | 
|  | } |