| /* | 
 |  * mm/truncate.c - code for taking down pages from address_spaces | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds | 
 |  * | 
 |  * 10Sep2002	Andrew Morton | 
 |  *		Initial version. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/buffer_head.h>	/* grr. try_to_release_page, | 
 | 				   do_invalidatepage */ | 
 | #include <linux/cleancache.h> | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | /** | 
 |  * do_invalidatepage - invalidate part or all of a page | 
 |  * @page: the page which is affected | 
 |  * @offset: the index of the truncation point | 
 |  * | 
 |  * do_invalidatepage() is called when all or part of the page has become | 
 |  * invalidated by a truncate operation. | 
 |  * | 
 |  * do_invalidatepage() does not have to release all buffers, but it must | 
 |  * ensure that no dirty buffer is left outside @offset and that no I/O | 
 |  * is underway against any of the blocks which are outside the truncation | 
 |  * point.  Because the caller is about to free (and possibly reuse) those | 
 |  * blocks on-disk. | 
 |  */ | 
 | void do_invalidatepage(struct page *page, unsigned long offset) | 
 | { | 
 | 	void (*invalidatepage)(struct page *, unsigned long); | 
 | 	invalidatepage = page->mapping->a_ops->invalidatepage; | 
 | #ifdef CONFIG_BLOCK | 
 | 	if (!invalidatepage) | 
 | 		invalidatepage = block_invalidatepage; | 
 | #endif | 
 | 	if (invalidatepage) | 
 | 		(*invalidatepage)(page, offset); | 
 | } | 
 |  | 
 | static inline void truncate_partial_page(struct page *page, unsigned partial) | 
 | { | 
 | 	zero_user_segment(page, partial, PAGE_CACHE_SIZE); | 
 | 	cleancache_flush_page(page->mapping, page); | 
 | 	if (page_has_private(page)) | 
 | 		do_invalidatepage(page, partial); | 
 | } | 
 |  | 
 | /* | 
 |  * This cancels just the dirty bit on the kernel page itself, it | 
 |  * does NOT actually remove dirty bits on any mmap's that may be | 
 |  * around. It also leaves the page tagged dirty, so any sync | 
 |  * activity will still find it on the dirty lists, and in particular, | 
 |  * clear_page_dirty_for_io() will still look at the dirty bits in | 
 |  * the VM. | 
 |  * | 
 |  * Doing this should *normally* only ever be done when a page | 
 |  * is truncated, and is not actually mapped anywhere at all. However, | 
 |  * fs/buffer.c does this when it notices that somebody has cleaned | 
 |  * out all the buffers on a page without actually doing it through | 
 |  * the VM. Can you say "ext3 is horribly ugly"? Tought you could. | 
 |  */ | 
 | void cancel_dirty_page(struct page *page, unsigned int account_size) | 
 | { | 
 | 	if (TestClearPageDirty(page)) { | 
 | 		struct address_space *mapping = page->mapping; | 
 | 		if (mapping && mapping_cap_account_dirty(mapping)) { | 
 | 			dec_zone_page_state(page, NR_FILE_DIRTY); | 
 | 			dec_bdi_stat(mapping->backing_dev_info, | 
 | 					BDI_RECLAIMABLE); | 
 | 			if (account_size) | 
 | 				task_io_account_cancelled_write(account_size); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(cancel_dirty_page); | 
 |  | 
 | /* | 
 |  * If truncate cannot remove the fs-private metadata from the page, the page | 
 |  * becomes orphaned.  It will be left on the LRU and may even be mapped into | 
 |  * user pagetables if we're racing with filemap_fault(). | 
 |  * | 
 |  * We need to bale out if page->mapping is no longer equal to the original | 
 |  * mapping.  This happens a) when the VM reclaimed the page while we waited on | 
 |  * its lock, b) when a concurrent invalidate_mapping_pages got there first and | 
 |  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. | 
 |  */ | 
 | static int | 
 | truncate_complete_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (page->mapping != mapping) | 
 | 		return -EIO; | 
 |  | 
 | 	if (page_has_private(page)) | 
 | 		do_invalidatepage(page, 0); | 
 |  | 
 | 	cancel_dirty_page(page, PAGE_CACHE_SIZE); | 
 |  | 
 | 	clear_page_mlock(page); | 
 | 	ClearPageMappedToDisk(page); | 
 | 	delete_from_page_cache(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is for invalidate_mapping_pages().  That function can be called at | 
 |  * any time, and is not supposed to throw away dirty pages.  But pages can | 
 |  * be marked dirty at any time too, so use remove_mapping which safely | 
 |  * discards clean, unused pages. | 
 |  * | 
 |  * Returns non-zero if the page was successfully invalidated. | 
 |  */ | 
 | static int | 
 | invalidate_complete_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (page->mapping != mapping) | 
 | 		return 0; | 
 |  | 
 | 	if (page_has_private(page) && !try_to_release_page(page, 0)) | 
 | 		return 0; | 
 |  | 
 | 	clear_page_mlock(page); | 
 | 	ret = remove_mapping(mapping, page); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int truncate_inode_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (page_mapped(page)) { | 
 | 		unmap_mapping_range(mapping, | 
 | 				   (loff_t)page->index << PAGE_CACHE_SHIFT, | 
 | 				   PAGE_CACHE_SIZE, 0); | 
 | 	} | 
 | 	return truncate_complete_page(mapping, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Used to get rid of pages on hardware memory corruption. | 
 |  */ | 
 | int generic_error_remove_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (!mapping) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Only punch for normal data pages for now. | 
 | 	 * Handling other types like directories would need more auditing. | 
 | 	 */ | 
 | 	if (!S_ISREG(mapping->host->i_mode)) | 
 | 		return -EIO; | 
 | 	return truncate_inode_page(mapping, page); | 
 | } | 
 | EXPORT_SYMBOL(generic_error_remove_page); | 
 |  | 
 | /* | 
 |  * Safely invalidate one page from its pagecache mapping. | 
 |  * It only drops clean, unused pages. The page must be locked. | 
 |  * | 
 |  * Returns 1 if the page is successfully invalidated, otherwise 0. | 
 |  */ | 
 | int invalidate_inode_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	if (!mapping) | 
 | 		return 0; | 
 | 	if (PageDirty(page) || PageWriteback(page)) | 
 | 		return 0; | 
 | 	if (page_mapped(page)) | 
 | 		return 0; | 
 | 	return invalidate_complete_page(mapping, page); | 
 | } | 
 |  | 
 | /** | 
 |  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * @lend: offset to which to truncate | 
 |  * | 
 |  * Truncate the page cache, removing the pages that are between | 
 |  * specified offsets (and zeroing out partial page | 
 |  * (if lstart is not page aligned)). | 
 |  * | 
 |  * Truncate takes two passes - the first pass is nonblocking.  It will not | 
 |  * block on page locks and it will not block on writeback.  The second pass | 
 |  * will wait.  This is to prevent as much IO as possible in the affected region. | 
 |  * The first pass will remove most pages, so the search cost of the second pass | 
 |  * is low. | 
 |  * | 
 |  * When looking at page->index outside the page lock we need to be careful to | 
 |  * copy it into a local to avoid races (it could change at any time). | 
 |  * | 
 |  * We pass down the cache-hot hint to the page freeing code.  Even if the | 
 |  * mapping is large, it is probably the case that the final pages are the most | 
 |  * recently touched, and freeing happens in ascending file offset order. | 
 |  */ | 
 | void truncate_inode_pages_range(struct address_space *mapping, | 
 | 				loff_t lstart, loff_t lend) | 
 | { | 
 | 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; | 
 | 	pgoff_t end; | 
 | 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t next; | 
 | 	int i; | 
 |  | 
 | 	cleancache_flush_inode(mapping); | 
 | 	if (mapping->nrpages == 0) | 
 | 		return; | 
 |  | 
 | 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); | 
 | 	end = (lend >> PAGE_CACHE_SHIFT); | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	next = start; | 
 | 	while (next <= end && | 
 | 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			pgoff_t page_index = page->index; | 
 |  | 
 | 			if (page_index > end) { | 
 | 				next = page_index; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (page_index > next) | 
 | 				next = page_index; | 
 | 			next++; | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 | 			if (PageWriteback(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			truncate_inode_page(mapping, page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	if (partial) { | 
 | 		struct page *page = find_lock_page(mapping, start - 1); | 
 | 		if (page) { | 
 | 			wait_on_page_writeback(page); | 
 | 			truncate_partial_page(page, partial); | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	next = start; | 
 | 	for ( ; ; ) { | 
 | 		cond_resched(); | 
 | 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
 | 			if (next == start) | 
 | 				break; | 
 | 			next = start; | 
 | 			continue; | 
 | 		} | 
 | 		if (pvec.pages[0]->index > end) { | 
 | 			pagevec_release(&pvec); | 
 | 			break; | 
 | 		} | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (page->index > end) | 
 | 				break; | 
 | 			lock_page(page); | 
 | 			wait_on_page_writeback(page); | 
 | 			truncate_inode_page(mapping, page); | 
 | 			if (page->index > next) | 
 | 				next = page->index; | 
 | 			next++; | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 	} | 
 | 	cleancache_flush_inode(mapping); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages_range); | 
 |  | 
 | /** | 
 |  * truncate_inode_pages - truncate *all* the pages from an offset | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * | 
 |  * Called under (and serialised by) inode->i_mutex. | 
 |  * | 
 |  * Note: When this function returns, there can be a page in the process of | 
 |  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus | 
 |  * mapping->nrpages can be non-zero when this function returns even after | 
 |  * truncation of the whole mapping. | 
 |  */ | 
 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | 
 | { | 
 | 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages); | 
 |  | 
 | /** | 
 |  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode | 
 |  * @mapping: the address_space which holds the pages to invalidate | 
 |  * @start: the offset 'from' which to invalidate | 
 |  * @end: the offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * This function only removes the unlocked pages, if you want to | 
 |  * remove all the pages of one inode, you must call truncate_inode_pages. | 
 |  * | 
 |  * invalidate_mapping_pages() will not block on IO activity. It will not | 
 |  * invalidate pages which are dirty, locked, under writeback or mapped into | 
 |  * pagetables. | 
 |  */ | 
 | unsigned long invalidate_mapping_pages(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t next = start; | 
 | 	unsigned long ret; | 
 | 	unsigned long count = 0; | 
 | 	int i; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (next <= end && | 
 | 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			pgoff_t index; | 
 | 			int lock_failed; | 
 |  | 
 | 			lock_failed = !trylock_page(page); | 
 |  | 
 | 			/* | 
 | 			 * We really shouldn't be looking at the ->index of an | 
 | 			 * unlocked page.  But we're not allowed to lock these | 
 | 			 * pages.  So we rely upon nobody altering the ->index | 
 | 			 * of this (pinned-by-us) page. | 
 | 			 */ | 
 | 			index = page->index; | 
 | 			if (index > next) | 
 | 				next = index; | 
 | 			next++; | 
 | 			if (lock_failed) | 
 | 				continue; | 
 |  | 
 | 			ret = invalidate_inode_page(page); | 
 | 			unlock_page(page); | 
 | 			/* | 
 | 			 * Invalidation is a hint that the page is no longer | 
 | 			 * of interest and try to speed up its reclaim. | 
 | 			 */ | 
 | 			if (!ret) | 
 | 				deactivate_page(page); | 
 | 			count += ret; | 
 | 			if (next > end) | 
 | 				break; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return count; | 
 | } | 
 | EXPORT_SYMBOL(invalidate_mapping_pages); | 
 |  | 
 | /* | 
 |  * This is like invalidate_complete_page(), except it ignores the page's | 
 |  * refcount.  We do this because invalidate_inode_pages2() needs stronger | 
 |  * invalidation guarantees, and cannot afford to leave pages behind because | 
 |  * shrink_page_list() has a temp ref on them, or because they're transiently | 
 |  * sitting in the lru_cache_add() pagevecs. | 
 |  */ | 
 | static int | 
 | invalidate_complete_page2(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (page->mapping != mapping) | 
 | 		return 0; | 
 |  | 
 | 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 | 	if (PageDirty(page)) | 
 | 		goto failed; | 
 |  | 
 | 	clear_page_mlock(page); | 
 | 	BUG_ON(page_has_private(page)); | 
 | 	__delete_from_page_cache(page); | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	mem_cgroup_uncharge_cache_page(page); | 
 |  | 
 | 	if (mapping->a_ops->freepage) | 
 | 		mapping->a_ops->freepage(page); | 
 |  | 
 | 	page_cache_release(page);	/* pagecache ref */ | 
 | 	return 1; | 
 | failed: | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_launder_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (!PageDirty(page)) | 
 | 		return 0; | 
 | 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) | 
 | 		return 0; | 
 | 	return mapping->a_ops->launder_page(page); | 
 | } | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2_range - remove range of pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * @start: the page offset 'from' which to invalidate | 
 |  * @end: the page offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Returns -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2_range(struct address_space *mapping, | 
 | 				  pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t next; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int ret2 = 0; | 
 | 	int did_range_unmap = 0; | 
 | 	int wrapped = 0; | 
 |  | 
 | 	cleancache_flush_inode(mapping); | 
 | 	pagevec_init(&pvec, 0); | 
 | 	next = start; | 
 | 	while (next <= end && !wrapped && | 
 | 		pagevec_lookup(&pvec, mapping, next, | 
 | 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { | 
 | 		mem_cgroup_uncharge_start(); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			pgoff_t page_index; | 
 |  | 
 | 			lock_page(page); | 
 | 			if (page->mapping != mapping) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			page_index = page->index; | 
 | 			next = page_index + 1; | 
 | 			if (next == 0) | 
 | 				wrapped = 1; | 
 | 			if (page_index > end) { | 
 | 				unlock_page(page); | 
 | 				break; | 
 | 			} | 
 | 			wait_on_page_writeback(page); | 
 | 			if (page_mapped(page)) { | 
 | 				if (!did_range_unmap) { | 
 | 					/* | 
 | 					 * Zap the rest of the file in one hit. | 
 | 					 */ | 
 | 					unmap_mapping_range(mapping, | 
 | 					   (loff_t)page_index<<PAGE_CACHE_SHIFT, | 
 | 					   (loff_t)(end - page_index + 1) | 
 | 							<< PAGE_CACHE_SHIFT, | 
 | 					    0); | 
 | 					did_range_unmap = 1; | 
 | 				} else { | 
 | 					/* | 
 | 					 * Just zap this page | 
 | 					 */ | 
 | 					unmap_mapping_range(mapping, | 
 | 					  (loff_t)page_index<<PAGE_CACHE_SHIFT, | 
 | 					  PAGE_CACHE_SIZE, 0); | 
 | 				} | 
 | 			} | 
 | 			BUG_ON(page_mapped(page)); | 
 | 			ret2 = do_launder_page(mapping, page); | 
 | 			if (ret2 == 0) { | 
 | 				if (!invalidate_complete_page2(mapping, page)) | 
 | 					ret2 = -EBUSY; | 
 | 			} | 
 | 			if (ret2 < 0) | 
 | 				ret = ret2; | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		mem_cgroup_uncharge_end(); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	cleancache_flush_inode(mapping); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2 - remove all pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Returns -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2(struct address_space *mapping) | 
 | { | 
 | 	return invalidate_inode_pages2_range(mapping, 0, -1); | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); | 
 |  | 
 | /** | 
 |  * truncate_pagecache - unmap and remove pagecache that has been truncated | 
 |  * @inode: inode | 
 |  * @old: old file offset | 
 |  * @new: new file offset | 
 |  * | 
 |  * inode's new i_size must already be written before truncate_pagecache | 
 |  * is called. | 
 |  * | 
 |  * This function should typically be called before the filesystem | 
 |  * releases resources associated with the freed range (eg. deallocates | 
 |  * blocks). This way, pagecache will always stay logically coherent | 
 |  * with on-disk format, and the filesystem would not have to deal with | 
 |  * situations such as writepage being called for a page that has already | 
 |  * had its underlying blocks deallocated. | 
 |  */ | 
 | void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 |  | 
 | 	/* | 
 | 	 * unmap_mapping_range is called twice, first simply for | 
 | 	 * efficiency so that truncate_inode_pages does fewer | 
 | 	 * single-page unmaps.  However after this first call, and | 
 | 	 * before truncate_inode_pages finishes, it is possible for | 
 | 	 * private pages to be COWed, which remain after | 
 | 	 * truncate_inode_pages finishes, hence the second | 
 | 	 * unmap_mapping_range call must be made for correctness. | 
 | 	 */ | 
 | 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); | 
 | 	truncate_inode_pages(mapping, new); | 
 | 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_pagecache); | 
 |  | 
 | /** | 
 |  * truncate_setsize - update inode and pagecache for a new file size | 
 |  * @inode: inode | 
 |  * @newsize: new file size | 
 |  * | 
 |  * truncate_setsize updates i_size and performs pagecache truncation (if | 
 |  * necessary) to @newsize. It will be typically be called from the filesystem's | 
 |  * setattr function when ATTR_SIZE is passed in. | 
 |  * | 
 |  * Must be called with inode_mutex held and before all filesystem specific | 
 |  * block truncation has been performed. | 
 |  */ | 
 | void truncate_setsize(struct inode *inode, loff_t newsize) | 
 | { | 
 | 	loff_t oldsize; | 
 |  | 
 | 	oldsize = inode->i_size; | 
 | 	i_size_write(inode, newsize); | 
 |  | 
 | 	truncate_pagecache(inode, oldsize, newsize); | 
 | } | 
 | EXPORT_SYMBOL(truncate_setsize); | 
 |  | 
 | /** | 
 |  * vmtruncate - unmap mappings "freed" by truncate() syscall | 
 |  * @inode: inode of the file used | 
 |  * @offset: file offset to start truncating | 
 |  * | 
 |  * This function is deprecated and truncate_setsize or truncate_pagecache | 
 |  * should be used instead, together with filesystem specific block truncation. | 
 |  */ | 
 | int vmtruncate(struct inode *inode, loff_t offset) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = inode_newsize_ok(inode, offset); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	truncate_setsize(inode, offset); | 
 | 	if (inode->i_op->truncate) | 
 | 		inode->i_op->truncate(inode); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(vmtruncate); | 
 |  | 
 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 |  | 
 | 	/* | 
 | 	 * If the underlying filesystem is not going to provide | 
 | 	 * a way to truncate a range of blocks (punch a hole) - | 
 | 	 * we should return failure right now. | 
 | 	 */ | 
 | 	if (!inode->i_op->truncate_range) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	down_write(&inode->i_alloc_sem); | 
 | 	unmap_mapping_range(mapping, offset, (end - offset), 1); | 
 | 	inode->i_op->truncate_range(inode, offset, end); | 
 | 	/* unmap again to remove racily COWed private pages */ | 
 | 	unmap_mapping_range(mapping, offset, (end - offset), 1); | 
 | 	up_write(&inode->i_alloc_sem); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	return 0; | 
 | } |