| /* | 
 |  * Generic ring buffer | 
 |  * | 
 |  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> | 
 |  */ | 
 | #include <linux/ring_buffer.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/module.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/sched.h>	/* used for sched_clock() (for now) */ | 
 | #include <linux/init.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/list.h> | 
 | #include <linux/fs.h> | 
 |  | 
 | #include "trace.h" | 
 |  | 
 | /* Global flag to disable all recording to ring buffers */ | 
 | static int ring_buffers_off __read_mostly; | 
 |  | 
 | /** | 
 |  * tracing_on - enable all tracing buffers | 
 |  * | 
 |  * This function enables all tracing buffers that may have been | 
 |  * disabled with tracing_off. | 
 |  */ | 
 | void tracing_on(void) | 
 | { | 
 | 	ring_buffers_off = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * tracing_off - turn off all tracing buffers | 
 |  * | 
 |  * This function stops all tracing buffers from recording data. | 
 |  * It does not disable any overhead the tracers themselves may | 
 |  * be causing. This function simply causes all recording to | 
 |  * the ring buffers to fail. | 
 |  */ | 
 | void tracing_off(void) | 
 | { | 
 | 	ring_buffers_off = 1; | 
 | } | 
 |  | 
 | /* Up this if you want to test the TIME_EXTENTS and normalization */ | 
 | #define DEBUG_SHIFT 0 | 
 |  | 
 | /* FIXME!!! */ | 
 | u64 ring_buffer_time_stamp(int cpu) | 
 | { | 
 | 	u64 time; | 
 |  | 
 | 	preempt_disable_notrace(); | 
 | 	/* shift to debug/test normalization and TIME_EXTENTS */ | 
 | 	time = sched_clock() << DEBUG_SHIFT; | 
 | 	preempt_enable_notrace(); | 
 |  | 
 | 	return time; | 
 | } | 
 |  | 
 | void ring_buffer_normalize_time_stamp(int cpu, u64 *ts) | 
 | { | 
 | 	/* Just stupid testing the normalize function and deltas */ | 
 | 	*ts >>= DEBUG_SHIFT; | 
 | } | 
 |  | 
 | #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event)) | 
 | #define RB_ALIGNMENT_SHIFT	2 | 
 | #define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT) | 
 | #define RB_MAX_SMALL_DATA	28 | 
 |  | 
 | enum { | 
 | 	RB_LEN_TIME_EXTEND = 8, | 
 | 	RB_LEN_TIME_STAMP = 16, | 
 | }; | 
 |  | 
 | /* inline for ring buffer fast paths */ | 
 | static inline unsigned | 
 | rb_event_length(struct ring_buffer_event *event) | 
 | { | 
 | 	unsigned length; | 
 |  | 
 | 	switch (event->type) { | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		/* undefined */ | 
 | 		return -1; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		return RB_LEN_TIME_EXTEND; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		return RB_LEN_TIME_STAMP; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		if (event->len) | 
 | 			length = event->len << RB_ALIGNMENT_SHIFT; | 
 | 		else | 
 | 			length = event->array[0]; | 
 | 		return length + RB_EVNT_HDR_SIZE; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	/* not hit */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_event_length - return the length of the event | 
 |  * @event: the event to get the length of | 
 |  */ | 
 | unsigned ring_buffer_event_length(struct ring_buffer_event *event) | 
 | { | 
 | 	return rb_event_length(event); | 
 | } | 
 |  | 
 | /* inline for ring buffer fast paths */ | 
 | static inline void * | 
 | rb_event_data(struct ring_buffer_event *event) | 
 | { | 
 | 	BUG_ON(event->type != RINGBUF_TYPE_DATA); | 
 | 	/* If length is in len field, then array[0] has the data */ | 
 | 	if (event->len) | 
 | 		return (void *)&event->array[0]; | 
 | 	/* Otherwise length is in array[0] and array[1] has the data */ | 
 | 	return (void *)&event->array[1]; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_event_data - return the data of the event | 
 |  * @event: the event to get the data from | 
 |  */ | 
 | void *ring_buffer_event_data(struct ring_buffer_event *event) | 
 | { | 
 | 	return rb_event_data(event); | 
 | } | 
 |  | 
 | #define for_each_buffer_cpu(buffer, cpu)		\ | 
 | 	for_each_cpu_mask(cpu, buffer->cpumask) | 
 |  | 
 | #define TS_SHIFT	27 | 
 | #define TS_MASK		((1ULL << TS_SHIFT) - 1) | 
 | #define TS_DELTA_TEST	(~TS_MASK) | 
 |  | 
 | /* | 
 |  * This hack stolen from mm/slob.c. | 
 |  * We can store per page timing information in the page frame of the page. | 
 |  * Thanks to Peter Zijlstra for suggesting this idea. | 
 |  */ | 
 | struct buffer_page { | 
 | 	u64		 time_stamp;	/* page time stamp */ | 
 | 	local_t		 write;		/* index for next write */ | 
 | 	local_t		 commit;	/* write commited index */ | 
 | 	unsigned	 read;		/* index for next read */ | 
 | 	struct list_head list;		/* list of free pages */ | 
 | 	void *page;			/* Actual data page */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing | 
 |  * this issue out. | 
 |  */ | 
 | static inline void free_buffer_page(struct buffer_page *bpage) | 
 | { | 
 | 	if (bpage->page) | 
 | 		free_page((unsigned long)bpage->page); | 
 | 	kfree(bpage); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to fit the time_stamp delta into 27 bits. | 
 |  */ | 
 | static inline int test_time_stamp(u64 delta) | 
 | { | 
 | 	if (delta & TS_DELTA_TEST) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define BUF_PAGE_SIZE PAGE_SIZE | 
 |  | 
 | /* | 
 |  * head_page == tail_page && head == tail then buffer is empty. | 
 |  */ | 
 | struct ring_buffer_per_cpu { | 
 | 	int				cpu; | 
 | 	struct ring_buffer		*buffer; | 
 | 	spinlock_t			lock; | 
 | 	struct lock_class_key		lock_key; | 
 | 	struct list_head		pages; | 
 | 	struct buffer_page		*head_page;	/* read from head */ | 
 | 	struct buffer_page		*tail_page;	/* write to tail */ | 
 | 	struct buffer_page		*commit_page;	/* commited pages */ | 
 | 	struct buffer_page		*reader_page; | 
 | 	unsigned long			overrun; | 
 | 	unsigned long			entries; | 
 | 	u64				write_stamp; | 
 | 	u64				read_stamp; | 
 | 	atomic_t			record_disabled; | 
 | }; | 
 |  | 
 | struct ring_buffer { | 
 | 	unsigned long			size; | 
 | 	unsigned			pages; | 
 | 	unsigned			flags; | 
 | 	int				cpus; | 
 | 	cpumask_t			cpumask; | 
 | 	atomic_t			record_disabled; | 
 |  | 
 | 	struct mutex			mutex; | 
 |  | 
 | 	struct ring_buffer_per_cpu	**buffers; | 
 | }; | 
 |  | 
 | struct ring_buffer_iter { | 
 | 	struct ring_buffer_per_cpu	*cpu_buffer; | 
 | 	unsigned long			head; | 
 | 	struct buffer_page		*head_page; | 
 | 	u64				read_stamp; | 
 | }; | 
 |  | 
 | #define RB_WARN_ON(buffer, cond)				\ | 
 | 	do {							\ | 
 | 		if (unlikely(cond)) {				\ | 
 | 			atomic_inc(&buffer->record_disabled);	\ | 
 | 			WARN_ON(1);				\ | 
 | 		}						\ | 
 | 	} while (0) | 
 |  | 
 | #define RB_WARN_ON_RET(buffer, cond)				\ | 
 | 	do {							\ | 
 | 		if (unlikely(cond)) {				\ | 
 | 			atomic_inc(&buffer->record_disabled);	\ | 
 | 			WARN_ON(1);				\ | 
 | 			return -1;				\ | 
 | 		}						\ | 
 | 	} while (0) | 
 |  | 
 | #define RB_WARN_ON_ONCE(buffer, cond)				\ | 
 | 	do {							\ | 
 | 		static int once;				\ | 
 | 		if (unlikely(cond) && !once) {			\ | 
 | 			once++;					\ | 
 | 			atomic_inc(&buffer->record_disabled);	\ | 
 | 			WARN_ON(1);				\ | 
 | 		}						\ | 
 | 	} while (0) | 
 |  | 
 | /** | 
 |  * check_pages - integrity check of buffer pages | 
 |  * @cpu_buffer: CPU buffer with pages to test | 
 |  * | 
 |  * As a safty measure we check to make sure the data pages have not | 
 |  * been corrupted. | 
 |  */ | 
 | static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct list_head *head = &cpu_buffer->pages; | 
 | 	struct buffer_page *page, *tmp; | 
 |  | 
 | 	RB_WARN_ON_RET(cpu_buffer, head->next->prev != head); | 
 | 	RB_WARN_ON_RET(cpu_buffer, head->prev->next != head); | 
 |  | 
 | 	list_for_each_entry_safe(page, tmp, head, list) { | 
 | 		RB_WARN_ON_RET(cpu_buffer, | 
 | 			       page->list.next->prev != &page->list); | 
 | 		RB_WARN_ON_RET(cpu_buffer, | 
 | 			       page->list.prev->next != &page->list); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 			     unsigned nr_pages) | 
 | { | 
 | 	struct list_head *head = &cpu_buffer->pages; | 
 | 	struct buffer_page *page, *tmp; | 
 | 	unsigned long addr; | 
 | 	LIST_HEAD(pages); | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()), | 
 | 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); | 
 | 		if (!page) | 
 | 			goto free_pages; | 
 | 		list_add(&page->list, &pages); | 
 |  | 
 | 		addr = __get_free_page(GFP_KERNEL); | 
 | 		if (!addr) | 
 | 			goto free_pages; | 
 | 		page->page = (void *)addr; | 
 | 	} | 
 |  | 
 | 	list_splice(&pages, head); | 
 |  | 
 | 	rb_check_pages(cpu_buffer); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  free_pages: | 
 | 	list_for_each_entry_safe(page, tmp, &pages, list) { | 
 | 		list_del_init(&page->list); | 
 | 		free_buffer_page(page); | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct ring_buffer_per_cpu * | 
 | rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct buffer_page *page; | 
 | 	unsigned long addr; | 
 | 	int ret; | 
 |  | 
 | 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), | 
 | 				  GFP_KERNEL, cpu_to_node(cpu)); | 
 | 	if (!cpu_buffer) | 
 | 		return NULL; | 
 |  | 
 | 	cpu_buffer->cpu = cpu; | 
 | 	cpu_buffer->buffer = buffer; | 
 | 	spin_lock_init(&cpu_buffer->lock); | 
 | 	INIT_LIST_HEAD(&cpu_buffer->pages); | 
 |  | 
 | 	page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()), | 
 | 			    GFP_KERNEL, cpu_to_node(cpu)); | 
 | 	if (!page) | 
 | 		goto fail_free_buffer; | 
 |  | 
 | 	cpu_buffer->reader_page = page; | 
 | 	addr = __get_free_page(GFP_KERNEL); | 
 | 	if (!addr) | 
 | 		goto fail_free_reader; | 
 | 	page->page = (void *)addr; | 
 |  | 
 | 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list); | 
 |  | 
 | 	ret = rb_allocate_pages(cpu_buffer, buffer->pages); | 
 | 	if (ret < 0) | 
 | 		goto fail_free_reader; | 
 |  | 
 | 	cpu_buffer->head_page | 
 | 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list); | 
 | 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; | 
 |  | 
 | 	return cpu_buffer; | 
 |  | 
 |  fail_free_reader: | 
 | 	free_buffer_page(cpu_buffer->reader_page); | 
 |  | 
 |  fail_free_buffer: | 
 | 	kfree(cpu_buffer); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct list_head *head = &cpu_buffer->pages; | 
 | 	struct buffer_page *page, *tmp; | 
 |  | 
 | 	list_del_init(&cpu_buffer->reader_page->list); | 
 | 	free_buffer_page(cpu_buffer->reader_page); | 
 |  | 
 | 	list_for_each_entry_safe(page, tmp, head, list) { | 
 | 		list_del_init(&page->list); | 
 | 		free_buffer_page(page); | 
 | 	} | 
 | 	kfree(cpu_buffer); | 
 | } | 
 |  | 
 | /* | 
 |  * Causes compile errors if the struct buffer_page gets bigger | 
 |  * than the struct page. | 
 |  */ | 
 | extern int ring_buffer_page_too_big(void); | 
 |  | 
 | /** | 
 |  * ring_buffer_alloc - allocate a new ring_buffer | 
 |  * @size: the size in bytes that is needed. | 
 |  * @flags: attributes to set for the ring buffer. | 
 |  * | 
 |  * Currently the only flag that is available is the RB_FL_OVERWRITE | 
 |  * flag. This flag means that the buffer will overwrite old data | 
 |  * when the buffer wraps. If this flag is not set, the buffer will | 
 |  * drop data when the tail hits the head. | 
 |  */ | 
 | struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags) | 
 | { | 
 | 	struct ring_buffer *buffer; | 
 | 	int bsize; | 
 | 	int cpu; | 
 |  | 
 | 	/* Paranoid! Optimizes out when all is well */ | 
 | 	if (sizeof(struct buffer_page) > sizeof(struct page)) | 
 | 		ring_buffer_page_too_big(); | 
 |  | 
 |  | 
 | 	/* keep it in its own cache line */ | 
 | 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), | 
 | 			 GFP_KERNEL); | 
 | 	if (!buffer) | 
 | 		return NULL; | 
 |  | 
 | 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | 
 | 	buffer->flags = flags; | 
 |  | 
 | 	/* need at least two pages */ | 
 | 	if (buffer->pages == 1) | 
 | 		buffer->pages++; | 
 |  | 
 | 	buffer->cpumask = cpu_possible_map; | 
 | 	buffer->cpus = nr_cpu_ids; | 
 |  | 
 | 	bsize = sizeof(void *) * nr_cpu_ids; | 
 | 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), | 
 | 				  GFP_KERNEL); | 
 | 	if (!buffer->buffers) | 
 | 		goto fail_free_buffer; | 
 |  | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		buffer->buffers[cpu] = | 
 | 			rb_allocate_cpu_buffer(buffer, cpu); | 
 | 		if (!buffer->buffers[cpu]) | 
 | 			goto fail_free_buffers; | 
 | 	} | 
 |  | 
 | 	mutex_init(&buffer->mutex); | 
 |  | 
 | 	return buffer; | 
 |  | 
 |  fail_free_buffers: | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		if (buffer->buffers[cpu]) | 
 | 			rb_free_cpu_buffer(buffer->buffers[cpu]); | 
 | 	} | 
 | 	kfree(buffer->buffers); | 
 |  | 
 |  fail_free_buffer: | 
 | 	kfree(buffer); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_free - free a ring buffer. | 
 |  * @buffer: the buffer to free. | 
 |  */ | 
 | void | 
 | ring_buffer_free(struct ring_buffer *buffer) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_buffer_cpu(buffer, cpu) | 
 | 		rb_free_cpu_buffer(buffer->buffers[cpu]); | 
 |  | 
 | 	kfree(buffer); | 
 | } | 
 |  | 
 | static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); | 
 |  | 
 | static void | 
 | rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) | 
 | { | 
 | 	struct buffer_page *page; | 
 | 	struct list_head *p; | 
 | 	unsigned i; | 
 |  | 
 | 	atomic_inc(&cpu_buffer->record_disabled); | 
 | 	synchronize_sched(); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		BUG_ON(list_empty(&cpu_buffer->pages)); | 
 | 		p = cpu_buffer->pages.next; | 
 | 		page = list_entry(p, struct buffer_page, list); | 
 | 		list_del_init(&page->list); | 
 | 		free_buffer_page(page); | 
 | 	} | 
 | 	BUG_ON(list_empty(&cpu_buffer->pages)); | 
 |  | 
 | 	rb_reset_cpu(cpu_buffer); | 
 |  | 
 | 	rb_check_pages(cpu_buffer); | 
 |  | 
 | 	atomic_dec(&cpu_buffer->record_disabled); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		struct list_head *pages, unsigned nr_pages) | 
 | { | 
 | 	struct buffer_page *page; | 
 | 	struct list_head *p; | 
 | 	unsigned i; | 
 |  | 
 | 	atomic_inc(&cpu_buffer->record_disabled); | 
 | 	synchronize_sched(); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		BUG_ON(list_empty(pages)); | 
 | 		p = pages->next; | 
 | 		page = list_entry(p, struct buffer_page, list); | 
 | 		list_del_init(&page->list); | 
 | 		list_add_tail(&page->list, &cpu_buffer->pages); | 
 | 	} | 
 | 	rb_reset_cpu(cpu_buffer); | 
 |  | 
 | 	rb_check_pages(cpu_buffer); | 
 |  | 
 | 	atomic_dec(&cpu_buffer->record_disabled); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_resize - resize the ring buffer | 
 |  * @buffer: the buffer to resize. | 
 |  * @size: the new size. | 
 |  * | 
 |  * The tracer is responsible for making sure that the buffer is | 
 |  * not being used while changing the size. | 
 |  * Note: We may be able to change the above requirement by using | 
 |  *  RCU synchronizations. | 
 |  * | 
 |  * Minimum size is 2 * BUF_PAGE_SIZE. | 
 |  * | 
 |  * Returns -1 on failure. | 
 |  */ | 
 | int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	unsigned nr_pages, rm_pages, new_pages; | 
 | 	struct buffer_page *page, *tmp; | 
 | 	unsigned long buffer_size; | 
 | 	unsigned long addr; | 
 | 	LIST_HEAD(pages); | 
 | 	int i, cpu; | 
 |  | 
 | 	/* | 
 | 	 * Always succeed at resizing a non-existent buffer: | 
 | 	 */ | 
 | 	if (!buffer) | 
 | 		return size; | 
 |  | 
 | 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | 
 | 	size *= BUF_PAGE_SIZE; | 
 | 	buffer_size = buffer->pages * BUF_PAGE_SIZE; | 
 |  | 
 | 	/* we need a minimum of two pages */ | 
 | 	if (size < BUF_PAGE_SIZE * 2) | 
 | 		size = BUF_PAGE_SIZE * 2; | 
 |  | 
 | 	if (size == buffer_size) | 
 | 		return size; | 
 |  | 
 | 	mutex_lock(&buffer->mutex); | 
 |  | 
 | 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); | 
 |  | 
 | 	if (size < buffer_size) { | 
 |  | 
 | 		/* easy case, just free pages */ | 
 | 		BUG_ON(nr_pages >= buffer->pages); | 
 |  | 
 | 		rm_pages = buffer->pages - nr_pages; | 
 |  | 
 | 		for_each_buffer_cpu(buffer, cpu) { | 
 | 			cpu_buffer = buffer->buffers[cpu]; | 
 | 			rb_remove_pages(cpu_buffer, rm_pages); | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This is a bit more difficult. We only want to add pages | 
 | 	 * when we can allocate enough for all CPUs. We do this | 
 | 	 * by allocating all the pages and storing them on a local | 
 | 	 * link list. If we succeed in our allocation, then we | 
 | 	 * add these pages to the cpu_buffers. Otherwise we just free | 
 | 	 * them all and return -ENOMEM; | 
 | 	 */ | 
 | 	BUG_ON(nr_pages <= buffer->pages); | 
 | 	new_pages = nr_pages - buffer->pages; | 
 |  | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		for (i = 0; i < new_pages; i++) { | 
 | 			page = kzalloc_node(ALIGN(sizeof(*page), | 
 | 						  cache_line_size()), | 
 | 					    GFP_KERNEL, cpu_to_node(cpu)); | 
 | 			if (!page) | 
 | 				goto free_pages; | 
 | 			list_add(&page->list, &pages); | 
 | 			addr = __get_free_page(GFP_KERNEL); | 
 | 			if (!addr) | 
 | 				goto free_pages; | 
 | 			page->page = (void *)addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		cpu_buffer = buffer->buffers[cpu]; | 
 | 		rb_insert_pages(cpu_buffer, &pages, new_pages); | 
 | 	} | 
 |  | 
 | 	BUG_ON(!list_empty(&pages)); | 
 |  | 
 |  out: | 
 | 	buffer->pages = nr_pages; | 
 | 	mutex_unlock(&buffer->mutex); | 
 |  | 
 | 	return size; | 
 |  | 
 |  free_pages: | 
 | 	list_for_each_entry_safe(page, tmp, &pages, list) { | 
 | 		list_del_init(&page->list); | 
 | 		free_buffer_page(page); | 
 | 	} | 
 | 	mutex_unlock(&buffer->mutex); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static inline int rb_null_event(struct ring_buffer_event *event) | 
 | { | 
 | 	return event->type == RINGBUF_TYPE_PADDING; | 
 | } | 
 |  | 
 | static inline void *__rb_page_index(struct buffer_page *page, unsigned index) | 
 | { | 
 | 	return page->page + index; | 
 | } | 
 |  | 
 | static inline struct ring_buffer_event * | 
 | rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	return __rb_page_index(cpu_buffer->reader_page, | 
 | 			       cpu_buffer->reader_page->read); | 
 | } | 
 |  | 
 | static inline struct ring_buffer_event * | 
 | rb_head_event(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	return __rb_page_index(cpu_buffer->head_page, | 
 | 			       cpu_buffer->head_page->read); | 
 | } | 
 |  | 
 | static inline struct ring_buffer_event * | 
 | rb_iter_head_event(struct ring_buffer_iter *iter) | 
 | { | 
 | 	return __rb_page_index(iter->head_page, iter->head); | 
 | } | 
 |  | 
 | static inline unsigned rb_page_write(struct buffer_page *bpage) | 
 | { | 
 | 	return local_read(&bpage->write); | 
 | } | 
 |  | 
 | static inline unsigned rb_page_commit(struct buffer_page *bpage) | 
 | { | 
 | 	return local_read(&bpage->commit); | 
 | } | 
 |  | 
 | /* Size is determined by what has been commited */ | 
 | static inline unsigned rb_page_size(struct buffer_page *bpage) | 
 | { | 
 | 	return rb_page_commit(bpage); | 
 | } | 
 |  | 
 | static inline unsigned | 
 | rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	return rb_page_commit(cpu_buffer->commit_page); | 
 | } | 
 |  | 
 | static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	return rb_page_commit(cpu_buffer->head_page); | 
 | } | 
 |  | 
 | /* | 
 |  * When the tail hits the head and the buffer is in overwrite mode, | 
 |  * the head jumps to the next page and all content on the previous | 
 |  * page is discarded. But before doing so, we update the overrun | 
 |  * variable of the buffer. | 
 |  */ | 
 | static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct ring_buffer_event *event; | 
 | 	unsigned long head; | 
 |  | 
 | 	for (head = 0; head < rb_head_size(cpu_buffer); | 
 | 	     head += rb_event_length(event)) { | 
 |  | 
 | 		event = __rb_page_index(cpu_buffer->head_page, head); | 
 | 		BUG_ON(rb_null_event(event)); | 
 | 		/* Only count data entries */ | 
 | 		if (event->type != RINGBUF_TYPE_DATA) | 
 | 			continue; | 
 | 		cpu_buffer->overrun++; | 
 | 		cpu_buffer->entries--; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 			       struct buffer_page **page) | 
 | { | 
 | 	struct list_head *p = (*page)->list.next; | 
 |  | 
 | 	if (p == &cpu_buffer->pages) | 
 | 		p = p->next; | 
 |  | 
 | 	*page = list_entry(p, struct buffer_page, list); | 
 | } | 
 |  | 
 | static inline unsigned | 
 | rb_event_index(struct ring_buffer_event *event) | 
 | { | 
 | 	unsigned long addr = (unsigned long)event; | 
 |  | 
 | 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE); | 
 | } | 
 |  | 
 | static inline int | 
 | rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 	     struct ring_buffer_event *event) | 
 | { | 
 | 	unsigned long addr = (unsigned long)event; | 
 | 	unsigned long index; | 
 |  | 
 | 	index = rb_event_index(event); | 
 | 	addr &= PAGE_MASK; | 
 |  | 
 | 	return cpu_buffer->commit_page->page == (void *)addr && | 
 | 		rb_commit_index(cpu_buffer) == index; | 
 | } | 
 |  | 
 | static inline void | 
 | rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		    struct ring_buffer_event *event) | 
 | { | 
 | 	unsigned long addr = (unsigned long)event; | 
 | 	unsigned long index; | 
 |  | 
 | 	index = rb_event_index(event); | 
 | 	addr &= PAGE_MASK; | 
 |  | 
 | 	while (cpu_buffer->commit_page->page != (void *)addr) { | 
 | 		RB_WARN_ON(cpu_buffer, | 
 | 			   cpu_buffer->commit_page == cpu_buffer->tail_page); | 
 | 		cpu_buffer->commit_page->commit = | 
 | 			cpu_buffer->commit_page->write; | 
 | 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); | 
 | 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp; | 
 | 	} | 
 |  | 
 | 	/* Now set the commit to the event's index */ | 
 | 	local_set(&cpu_buffer->commit_page->commit, index); | 
 | } | 
 |  | 
 | static inline void | 
 | rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	/* | 
 | 	 * We only race with interrupts and NMIs on this CPU. | 
 | 	 * If we own the commit event, then we can commit | 
 | 	 * all others that interrupted us, since the interruptions | 
 | 	 * are in stack format (they finish before they come | 
 | 	 * back to us). This allows us to do a simple loop to | 
 | 	 * assign the commit to the tail. | 
 | 	 */ | 
 | 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) { | 
 | 		cpu_buffer->commit_page->commit = | 
 | 			cpu_buffer->commit_page->write; | 
 | 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); | 
 | 		cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp; | 
 | 		/* add barrier to keep gcc from optimizing too much */ | 
 | 		barrier(); | 
 | 	} | 
 | 	while (rb_commit_index(cpu_buffer) != | 
 | 	       rb_page_write(cpu_buffer->commit_page)) { | 
 | 		cpu_buffer->commit_page->commit = | 
 | 			cpu_buffer->commit_page->write; | 
 | 		barrier(); | 
 | 	} | 
 | } | 
 |  | 
 | static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp; | 
 | 	cpu_buffer->reader_page->read = 0; | 
 | } | 
 |  | 
 | static inline void rb_inc_iter(struct ring_buffer_iter *iter) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | 
 |  | 
 | 	/* | 
 | 	 * The iterator could be on the reader page (it starts there). | 
 | 	 * But the head could have moved, since the reader was | 
 | 	 * found. Check for this case and assign the iterator | 
 | 	 * to the head page instead of next. | 
 | 	 */ | 
 | 	if (iter->head_page == cpu_buffer->reader_page) | 
 | 		iter->head_page = cpu_buffer->head_page; | 
 | 	else | 
 | 		rb_inc_page(cpu_buffer, &iter->head_page); | 
 |  | 
 | 	iter->read_stamp = iter->head_page->time_stamp; | 
 | 	iter->head = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_update_event - update event type and data | 
 |  * @event: the even to update | 
 |  * @type: the type of event | 
 |  * @length: the size of the event field in the ring buffer | 
 |  * | 
 |  * Update the type and data fields of the event. The length | 
 |  * is the actual size that is written to the ring buffer, | 
 |  * and with this, we can determine what to place into the | 
 |  * data field. | 
 |  */ | 
 | static inline void | 
 | rb_update_event(struct ring_buffer_event *event, | 
 | 			 unsigned type, unsigned length) | 
 | { | 
 | 	event->type = type; | 
 |  | 
 | 	switch (type) { | 
 |  | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		break; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		event->len = | 
 | 			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1)) | 
 | 			>> RB_ALIGNMENT_SHIFT; | 
 | 		break; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		event->len = | 
 | 			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1)) | 
 | 			>> RB_ALIGNMENT_SHIFT; | 
 | 		break; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		length -= RB_EVNT_HDR_SIZE; | 
 | 		if (length > RB_MAX_SMALL_DATA) { | 
 | 			event->len = 0; | 
 | 			event->array[0] = length; | 
 | 		} else | 
 | 			event->len = | 
 | 				(length + (RB_ALIGNMENT-1)) | 
 | 				>> RB_ALIGNMENT_SHIFT; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline unsigned rb_calculate_event_length(unsigned length) | 
 | { | 
 | 	struct ring_buffer_event event; /* Used only for sizeof array */ | 
 |  | 
 | 	/* zero length can cause confusions */ | 
 | 	if (!length) | 
 | 		length = 1; | 
 |  | 
 | 	if (length > RB_MAX_SMALL_DATA) | 
 | 		length += sizeof(event.array[0]); | 
 |  | 
 | 	length += RB_EVNT_HDR_SIZE; | 
 | 	length = ALIGN(length, RB_ALIGNMENT); | 
 |  | 
 | 	return length; | 
 | } | 
 |  | 
 | static struct ring_buffer_event * | 
 | __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		  unsigned type, unsigned long length, u64 *ts) | 
 | { | 
 | 	struct buffer_page *tail_page, *head_page, *reader_page; | 
 | 	unsigned long tail, write; | 
 | 	struct ring_buffer *buffer = cpu_buffer->buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	unsigned long flags; | 
 |  | 
 | 	tail_page = cpu_buffer->tail_page; | 
 | 	write = local_add_return(length, &tail_page->write); | 
 | 	tail = write - length; | 
 |  | 
 | 	/* See if we shot pass the end of this buffer page */ | 
 | 	if (write > BUF_PAGE_SIZE) { | 
 | 		struct buffer_page *next_page = tail_page; | 
 |  | 
 | 		spin_lock_irqsave(&cpu_buffer->lock, flags); | 
 |  | 
 | 		rb_inc_page(cpu_buffer, &next_page); | 
 |  | 
 | 		head_page = cpu_buffer->head_page; | 
 | 		reader_page = cpu_buffer->reader_page; | 
 |  | 
 | 		/* we grabbed the lock before incrementing */ | 
 | 		RB_WARN_ON(cpu_buffer, next_page == reader_page); | 
 |  | 
 | 		/* | 
 | 		 * If for some reason, we had an interrupt storm that made | 
 | 		 * it all the way around the buffer, bail, and warn | 
 | 		 * about it. | 
 | 		 */ | 
 | 		if (unlikely(next_page == cpu_buffer->commit_page)) { | 
 | 			WARN_ON_ONCE(1); | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		if (next_page == head_page) { | 
 | 			if (!(buffer->flags & RB_FL_OVERWRITE)) { | 
 | 				/* reset write */ | 
 | 				if (tail <= BUF_PAGE_SIZE) | 
 | 					local_set(&tail_page->write, tail); | 
 | 				goto out_unlock; | 
 | 			} | 
 |  | 
 | 			/* tail_page has not moved yet? */ | 
 | 			if (tail_page == cpu_buffer->tail_page) { | 
 | 				/* count overflows */ | 
 | 				rb_update_overflow(cpu_buffer); | 
 |  | 
 | 				rb_inc_page(cpu_buffer, &head_page); | 
 | 				cpu_buffer->head_page = head_page; | 
 | 				cpu_buffer->head_page->read = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the tail page is still the same as what we think | 
 | 		 * it is, then it is up to us to update the tail | 
 | 		 * pointer. | 
 | 		 */ | 
 | 		if (tail_page == cpu_buffer->tail_page) { | 
 | 			local_set(&next_page->write, 0); | 
 | 			local_set(&next_page->commit, 0); | 
 | 			cpu_buffer->tail_page = next_page; | 
 |  | 
 | 			/* reread the time stamp */ | 
 | 			*ts = ring_buffer_time_stamp(cpu_buffer->cpu); | 
 | 			cpu_buffer->tail_page->time_stamp = *ts; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The actual tail page has moved forward. | 
 | 		 */ | 
 | 		if (tail < BUF_PAGE_SIZE) { | 
 | 			/* Mark the rest of the page with padding */ | 
 | 			event = __rb_page_index(tail_page, tail); | 
 | 			event->type = RINGBUF_TYPE_PADDING; | 
 | 		} | 
 |  | 
 | 		if (tail <= BUF_PAGE_SIZE) | 
 | 			/* Set the write back to the previous setting */ | 
 | 			local_set(&tail_page->write, tail); | 
 |  | 
 | 		/* | 
 | 		 * If this was a commit entry that failed, | 
 | 		 * increment that too | 
 | 		 */ | 
 | 		if (tail_page == cpu_buffer->commit_page && | 
 | 		    tail == rb_commit_index(cpu_buffer)) { | 
 | 			rb_set_commit_to_write(cpu_buffer); | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(&cpu_buffer->lock, flags); | 
 |  | 
 | 		/* fail and let the caller try again */ | 
 | 		return ERR_PTR(-EAGAIN); | 
 | 	} | 
 |  | 
 | 	/* We reserved something on the buffer */ | 
 |  | 
 | 	BUG_ON(write > BUF_PAGE_SIZE); | 
 |  | 
 | 	event = __rb_page_index(tail_page, tail); | 
 | 	rb_update_event(event, type, length); | 
 |  | 
 | 	/* | 
 | 	 * If this is a commit and the tail is zero, then update | 
 | 	 * this page's time stamp. | 
 | 	 */ | 
 | 	if (!tail && rb_is_commit(cpu_buffer, event)) | 
 | 		cpu_buffer->commit_page->time_stamp = *ts; | 
 |  | 
 | 	return event; | 
 |  | 
 |  out_unlock: | 
 | 	spin_unlock_irqrestore(&cpu_buffer->lock, flags); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int | 
 | rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		  u64 *ts, u64 *delta) | 
 | { | 
 | 	struct ring_buffer_event *event; | 
 | 	static int once; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(*delta > (1ULL << 59) && !once++)) { | 
 | 		printk(KERN_WARNING "Delta way too big! %llu" | 
 | 		       " ts=%llu write stamp = %llu\n", | 
 | 		       (unsigned long long)*delta, | 
 | 		       (unsigned long long)*ts, | 
 | 		       (unsigned long long)cpu_buffer->write_stamp); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The delta is too big, we to add a | 
 | 	 * new timestamp. | 
 | 	 */ | 
 | 	event = __rb_reserve_next(cpu_buffer, | 
 | 				  RINGBUF_TYPE_TIME_EXTEND, | 
 | 				  RB_LEN_TIME_EXTEND, | 
 | 				  ts); | 
 | 	if (!event) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (PTR_ERR(event) == -EAGAIN) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* Only a commited time event can update the write stamp */ | 
 | 	if (rb_is_commit(cpu_buffer, event)) { | 
 | 		/* | 
 | 		 * If this is the first on the page, then we need to | 
 | 		 * update the page itself, and just put in a zero. | 
 | 		 */ | 
 | 		if (rb_event_index(event)) { | 
 | 			event->time_delta = *delta & TS_MASK; | 
 | 			event->array[0] = *delta >> TS_SHIFT; | 
 | 		} else { | 
 | 			cpu_buffer->commit_page->time_stamp = *ts; | 
 | 			event->time_delta = 0; | 
 | 			event->array[0] = 0; | 
 | 		} | 
 | 		cpu_buffer->write_stamp = *ts; | 
 | 		/* let the caller know this was the commit */ | 
 | 		ret = 1; | 
 | 	} else { | 
 | 		/* Darn, this is just wasted space */ | 
 | 		event->time_delta = 0; | 
 | 		event->array[0] = 0; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	*delta = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct ring_buffer_event * | 
 | rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		      unsigned type, unsigned long length) | 
 | { | 
 | 	struct ring_buffer_event *event; | 
 | 	u64 ts, delta; | 
 | 	int commit = 0; | 
 | 	int nr_loops = 0; | 
 |  | 
 |  again: | 
 | 	/* | 
 | 	 * We allow for interrupts to reenter here and do a trace. | 
 | 	 * If one does, it will cause this original code to loop | 
 | 	 * back here. Even with heavy interrupts happening, this | 
 | 	 * should only happen a few times in a row. If this happens | 
 | 	 * 1000 times in a row, there must be either an interrupt | 
 | 	 * storm or we have something buggy. | 
 | 	 * Bail! | 
 | 	 */ | 
 | 	if (unlikely(++nr_loops > 1000)) { | 
 | 		RB_WARN_ON(cpu_buffer, 1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ts = ring_buffer_time_stamp(cpu_buffer->cpu); | 
 |  | 
 | 	/* | 
 | 	 * Only the first commit can update the timestamp. | 
 | 	 * Yes there is a race here. If an interrupt comes in | 
 | 	 * just after the conditional and it traces too, then it | 
 | 	 * will also check the deltas. More than one timestamp may | 
 | 	 * also be made. But only the entry that did the actual | 
 | 	 * commit will be something other than zero. | 
 | 	 */ | 
 | 	if (cpu_buffer->tail_page == cpu_buffer->commit_page && | 
 | 	    rb_page_write(cpu_buffer->tail_page) == | 
 | 	    rb_commit_index(cpu_buffer)) { | 
 |  | 
 | 		delta = ts - cpu_buffer->write_stamp; | 
 |  | 
 | 		/* make sure this delta is calculated here */ | 
 | 		barrier(); | 
 |  | 
 | 		/* Did the write stamp get updated already? */ | 
 | 		if (unlikely(ts < cpu_buffer->write_stamp)) | 
 | 			delta = 0; | 
 |  | 
 | 		if (test_time_stamp(delta)) { | 
 |  | 
 | 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); | 
 |  | 
 | 			if (commit == -EBUSY) | 
 | 				return NULL; | 
 |  | 
 | 			if (commit == -EAGAIN) | 
 | 				goto again; | 
 |  | 
 | 			RB_WARN_ON(cpu_buffer, commit < 0); | 
 | 		} | 
 | 	} else | 
 | 		/* Non commits have zero deltas */ | 
 | 		delta = 0; | 
 |  | 
 | 	event = __rb_reserve_next(cpu_buffer, type, length, &ts); | 
 | 	if (PTR_ERR(event) == -EAGAIN) | 
 | 		goto again; | 
 |  | 
 | 	if (!event) { | 
 | 		if (unlikely(commit)) | 
 | 			/* | 
 | 			 * Ouch! We needed a timestamp and it was commited. But | 
 | 			 * we didn't get our event reserved. | 
 | 			 */ | 
 | 			rb_set_commit_to_write(cpu_buffer); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the timestamp was commited, make the commit our entry | 
 | 	 * now so that we will update it when needed. | 
 | 	 */ | 
 | 	if (commit) | 
 | 		rb_set_commit_event(cpu_buffer, event); | 
 | 	else if (!rb_is_commit(cpu_buffer, event)) | 
 | 		delta = 0; | 
 |  | 
 | 	event->time_delta = delta; | 
 |  | 
 | 	return event; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(int, rb_need_resched); | 
 |  | 
 | /** | 
 |  * ring_buffer_lock_reserve - reserve a part of the buffer | 
 |  * @buffer: the ring buffer to reserve from | 
 |  * @length: the length of the data to reserve (excluding event header) | 
 |  * @flags: a pointer to save the interrupt flags | 
 |  * | 
 |  * Returns a reseverd event on the ring buffer to copy directly to. | 
 |  * The user of this interface will need to get the body to write into | 
 |  * and can use the ring_buffer_event_data() interface. | 
 |  * | 
 |  * The length is the length of the data needed, not the event length | 
 |  * which also includes the event header. | 
 |  * | 
 |  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. | 
 |  * If NULL is returned, then nothing has been allocated or locked. | 
 |  */ | 
 | struct ring_buffer_event * | 
 | ring_buffer_lock_reserve(struct ring_buffer *buffer, | 
 | 			 unsigned long length, | 
 | 			 unsigned long *flags) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	int cpu, resched; | 
 |  | 
 | 	if (ring_buffers_off) | 
 | 		return NULL; | 
 |  | 
 | 	if (atomic_read(&buffer->record_disabled)) | 
 | 		return NULL; | 
 |  | 
 | 	/* If we are tracing schedule, we don't want to recurse */ | 
 | 	resched = need_resched(); | 
 | 	preempt_disable_notrace(); | 
 |  | 
 | 	cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		goto out; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 |  | 
 | 	if (atomic_read(&cpu_buffer->record_disabled)) | 
 | 		goto out; | 
 |  | 
 | 	length = rb_calculate_event_length(length); | 
 | 	if (length > BUF_PAGE_SIZE) | 
 | 		goto out; | 
 |  | 
 | 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length); | 
 | 	if (!event) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Need to store resched state on this cpu. | 
 | 	 * Only the first needs to. | 
 | 	 */ | 
 |  | 
 | 	if (preempt_count() == 1) | 
 | 		per_cpu(rb_need_resched, cpu) = resched; | 
 |  | 
 | 	return event; | 
 |  | 
 |  out: | 
 | 	if (resched) | 
 | 		preempt_enable_notrace(); | 
 | 	else | 
 | 		preempt_enable_notrace(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		      struct ring_buffer_event *event) | 
 | { | 
 | 	cpu_buffer->entries++; | 
 |  | 
 | 	/* Only process further if we own the commit */ | 
 | 	if (!rb_is_commit(cpu_buffer, event)) | 
 | 		return; | 
 |  | 
 | 	cpu_buffer->write_stamp += event->time_delta; | 
 |  | 
 | 	rb_set_commit_to_write(cpu_buffer); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_unlock_commit - commit a reserved | 
 |  * @buffer: The buffer to commit to | 
 |  * @event: The event pointer to commit. | 
 |  * @flags: the interrupt flags received from ring_buffer_lock_reserve. | 
 |  * | 
 |  * This commits the data to the ring buffer, and releases any locks held. | 
 |  * | 
 |  * Must be paired with ring_buffer_lock_reserve. | 
 |  */ | 
 | int ring_buffer_unlock_commit(struct ring_buffer *buffer, | 
 | 			      struct ring_buffer_event *event, | 
 | 			      unsigned long flags) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 |  | 
 | 	rb_commit(cpu_buffer, event); | 
 |  | 
 | 	/* | 
 | 	 * Only the last preempt count needs to restore preemption. | 
 | 	 */ | 
 | 	if (preempt_count() == 1) { | 
 | 		if (per_cpu(rb_need_resched, cpu)) | 
 | 			preempt_enable_no_resched_notrace(); | 
 | 		else | 
 | 			preempt_enable_notrace(); | 
 | 	} else | 
 | 		preempt_enable_no_resched_notrace(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_write - write data to the buffer without reserving | 
 |  * @buffer: The ring buffer to write to. | 
 |  * @length: The length of the data being written (excluding the event header) | 
 |  * @data: The data to write to the buffer. | 
 |  * | 
 |  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as | 
 |  * one function. If you already have the data to write to the buffer, it | 
 |  * may be easier to simply call this function. | 
 |  * | 
 |  * Note, like ring_buffer_lock_reserve, the length is the length of the data | 
 |  * and not the length of the event which would hold the header. | 
 |  */ | 
 | int ring_buffer_write(struct ring_buffer *buffer, | 
 | 			unsigned long length, | 
 | 			void *data) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	unsigned long event_length; | 
 | 	void *body; | 
 | 	int ret = -EBUSY; | 
 | 	int cpu, resched; | 
 |  | 
 | 	if (ring_buffers_off) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (atomic_read(&buffer->record_disabled)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	resched = need_resched(); | 
 | 	preempt_disable_notrace(); | 
 |  | 
 | 	cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		goto out; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 |  | 
 | 	if (atomic_read(&cpu_buffer->record_disabled)) | 
 | 		goto out; | 
 |  | 
 | 	event_length = rb_calculate_event_length(length); | 
 | 	event = rb_reserve_next_event(cpu_buffer, | 
 | 				      RINGBUF_TYPE_DATA, event_length); | 
 | 	if (!event) | 
 | 		goto out; | 
 |  | 
 | 	body = rb_event_data(event); | 
 |  | 
 | 	memcpy(body, data, length); | 
 |  | 
 | 	rb_commit(cpu_buffer, event); | 
 |  | 
 | 	ret = 0; | 
 |  out: | 
 | 	if (resched) | 
 | 		preempt_enable_no_resched_notrace(); | 
 | 	else | 
 | 		preempt_enable_notrace(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct buffer_page *reader = cpu_buffer->reader_page; | 
 | 	struct buffer_page *head = cpu_buffer->head_page; | 
 | 	struct buffer_page *commit = cpu_buffer->commit_page; | 
 |  | 
 | 	return reader->read == rb_page_commit(reader) && | 
 | 		(commit == reader || | 
 | 		 (commit == head && | 
 | 		  head->read == rb_page_commit(commit))); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_record_disable - stop all writes into the buffer | 
 |  * @buffer: The ring buffer to stop writes to. | 
 |  * | 
 |  * This prevents all writes to the buffer. Any attempt to write | 
 |  * to the buffer after this will fail and return NULL. | 
 |  * | 
 |  * The caller should call synchronize_sched() after this. | 
 |  */ | 
 | void ring_buffer_record_disable(struct ring_buffer *buffer) | 
 | { | 
 | 	atomic_inc(&buffer->record_disabled); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_record_enable - enable writes to the buffer | 
 |  * @buffer: The ring buffer to enable writes | 
 |  * | 
 |  * Note, multiple disables will need the same number of enables | 
 |  * to truely enable the writing (much like preempt_disable). | 
 |  */ | 
 | void ring_buffer_record_enable(struct ring_buffer *buffer) | 
 | { | 
 | 	atomic_dec(&buffer->record_disabled); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer | 
 |  * @buffer: The ring buffer to stop writes to. | 
 |  * @cpu: The CPU buffer to stop | 
 |  * | 
 |  * This prevents all writes to the buffer. Any attempt to write | 
 |  * to the buffer after this will fail and return NULL. | 
 |  * | 
 |  * The caller should call synchronize_sched() after this. | 
 |  */ | 
 | void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	atomic_inc(&cpu_buffer->record_disabled); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_record_enable_cpu - enable writes to the buffer | 
 |  * @buffer: The ring buffer to enable writes | 
 |  * @cpu: The CPU to enable. | 
 |  * | 
 |  * Note, multiple disables will need the same number of enables | 
 |  * to truely enable the writing (much like preempt_disable). | 
 |  */ | 
 | void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	atomic_dec(&cpu_buffer->record_disabled); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer | 
 |  * @buffer: The ring buffer | 
 |  * @cpu: The per CPU buffer to get the entries from. | 
 |  */ | 
 | unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return 0; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	return cpu_buffer->entries; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer | 
 |  * @buffer: The ring buffer | 
 |  * @cpu: The per CPU buffer to get the number of overruns from | 
 |  */ | 
 | unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return 0; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	return cpu_buffer->overrun; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_entries - get the number of entries in a buffer | 
 |  * @buffer: The ring buffer | 
 |  * | 
 |  * Returns the total number of entries in the ring buffer | 
 |  * (all CPU entries) | 
 |  */ | 
 | unsigned long ring_buffer_entries(struct ring_buffer *buffer) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	unsigned long entries = 0; | 
 | 	int cpu; | 
 |  | 
 | 	/* if you care about this being correct, lock the buffer */ | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		cpu_buffer = buffer->buffers[cpu]; | 
 | 		entries += cpu_buffer->entries; | 
 | 	} | 
 |  | 
 | 	return entries; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_overrun_cpu - get the number of overruns in buffer | 
 |  * @buffer: The ring buffer | 
 |  * | 
 |  * Returns the total number of overruns in the ring buffer | 
 |  * (all CPU entries) | 
 |  */ | 
 | unsigned long ring_buffer_overruns(struct ring_buffer *buffer) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	unsigned long overruns = 0; | 
 | 	int cpu; | 
 |  | 
 | 	/* if you care about this being correct, lock the buffer */ | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		cpu_buffer = buffer->buffers[cpu]; | 
 | 		overruns += cpu_buffer->overrun; | 
 | 	} | 
 |  | 
 | 	return overruns; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_iter_reset - reset an iterator | 
 |  * @iter: The iterator to reset | 
 |  * | 
 |  * Resets the iterator, so that it will start from the beginning | 
 |  * again. | 
 |  */ | 
 | void ring_buffer_iter_reset(struct ring_buffer_iter *iter) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | 
 |  | 
 | 	/* Iterator usage is expected to have record disabled */ | 
 | 	if (list_empty(&cpu_buffer->reader_page->list)) { | 
 | 		iter->head_page = cpu_buffer->head_page; | 
 | 		iter->head = cpu_buffer->head_page->read; | 
 | 	} else { | 
 | 		iter->head_page = cpu_buffer->reader_page; | 
 | 		iter->head = cpu_buffer->reader_page->read; | 
 | 	} | 
 | 	if (iter->head) | 
 | 		iter->read_stamp = cpu_buffer->read_stamp; | 
 | 	else | 
 | 		iter->read_stamp = iter->head_page->time_stamp; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_iter_empty - check if an iterator has no more to read | 
 |  * @iter: The iterator to check | 
 |  */ | 
 | int ring_buffer_iter_empty(struct ring_buffer_iter *iter) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	cpu_buffer = iter->cpu_buffer; | 
 |  | 
 | 	return iter->head_page == cpu_buffer->commit_page && | 
 | 		iter->head == rb_commit_index(cpu_buffer); | 
 | } | 
 |  | 
 | static void | 
 | rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, | 
 | 		     struct ring_buffer_event *event) | 
 | { | 
 | 	u64 delta; | 
 |  | 
 | 	switch (event->type) { | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		delta = event->array[0]; | 
 | 		delta <<= TS_SHIFT; | 
 | 		delta += event->time_delta; | 
 | 		cpu_buffer->read_stamp += delta; | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		/* FIXME: not implemented */ | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		cpu_buffer->read_stamp += event->time_delta; | 
 | 		return; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | static void | 
 | rb_update_iter_read_stamp(struct ring_buffer_iter *iter, | 
 | 			  struct ring_buffer_event *event) | 
 | { | 
 | 	u64 delta; | 
 |  | 
 | 	switch (event->type) { | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		delta = event->array[0]; | 
 | 		delta <<= TS_SHIFT; | 
 | 		delta += event->time_delta; | 
 | 		iter->read_stamp += delta; | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		/* FIXME: not implemented */ | 
 | 		return; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		iter->read_stamp += event->time_delta; | 
 | 		return; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | static struct buffer_page * | 
 | rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct buffer_page *reader = NULL; | 
 | 	unsigned long flags; | 
 | 	int nr_loops = 0; | 
 |  | 
 | 	spin_lock_irqsave(&cpu_buffer->lock, flags); | 
 |  | 
 |  again: | 
 | 	/* | 
 | 	 * This should normally only loop twice. But because the | 
 | 	 * start of the reader inserts an empty page, it causes | 
 | 	 * a case where we will loop three times. There should be no | 
 | 	 * reason to loop four times (that I know of). | 
 | 	 */ | 
 | 	if (unlikely(++nr_loops > 3)) { | 
 | 		RB_WARN_ON(cpu_buffer, 1); | 
 | 		reader = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	reader = cpu_buffer->reader_page; | 
 |  | 
 | 	/* If there's more to read, return this page */ | 
 | 	if (cpu_buffer->reader_page->read < rb_page_size(reader)) | 
 | 		goto out; | 
 |  | 
 | 	/* Never should we have an index greater than the size */ | 
 | 	RB_WARN_ON(cpu_buffer, | 
 | 		   cpu_buffer->reader_page->read > rb_page_size(reader)); | 
 |  | 
 | 	/* check if we caught up to the tail */ | 
 | 	reader = NULL; | 
 | 	if (cpu_buffer->commit_page == cpu_buffer->reader_page) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Splice the empty reader page into the list around the head. | 
 | 	 * Reset the reader page to size zero. | 
 | 	 */ | 
 |  | 
 | 	reader = cpu_buffer->head_page; | 
 | 	cpu_buffer->reader_page->list.next = reader->list.next; | 
 | 	cpu_buffer->reader_page->list.prev = reader->list.prev; | 
 |  | 
 | 	local_set(&cpu_buffer->reader_page->write, 0); | 
 | 	local_set(&cpu_buffer->reader_page->commit, 0); | 
 |  | 
 | 	/* Make the reader page now replace the head */ | 
 | 	reader->list.prev->next = &cpu_buffer->reader_page->list; | 
 | 	reader->list.next->prev = &cpu_buffer->reader_page->list; | 
 |  | 
 | 	/* | 
 | 	 * If the tail is on the reader, then we must set the head | 
 | 	 * to the inserted page, otherwise we set it one before. | 
 | 	 */ | 
 | 	cpu_buffer->head_page = cpu_buffer->reader_page; | 
 |  | 
 | 	if (cpu_buffer->commit_page != reader) | 
 | 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page); | 
 |  | 
 | 	/* Finally update the reader page to the new head */ | 
 | 	cpu_buffer->reader_page = reader; | 
 | 	rb_reset_reader_page(cpu_buffer); | 
 |  | 
 | 	goto again; | 
 |  | 
 |  out: | 
 | 	spin_unlock_irqrestore(&cpu_buffer->lock, flags); | 
 |  | 
 | 	return reader; | 
 | } | 
 |  | 
 | static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	struct ring_buffer_event *event; | 
 | 	struct buffer_page *reader; | 
 | 	unsigned length; | 
 |  | 
 | 	reader = rb_get_reader_page(cpu_buffer); | 
 |  | 
 | 	/* This function should not be called when buffer is empty */ | 
 | 	BUG_ON(!reader); | 
 |  | 
 | 	event = rb_reader_event(cpu_buffer); | 
 |  | 
 | 	if (event->type == RINGBUF_TYPE_DATA) | 
 | 		cpu_buffer->entries--; | 
 |  | 
 | 	rb_update_read_stamp(cpu_buffer, event); | 
 |  | 
 | 	length = rb_event_length(event); | 
 | 	cpu_buffer->reader_page->read += length; | 
 | } | 
 |  | 
 | static void rb_advance_iter(struct ring_buffer_iter *iter) | 
 | { | 
 | 	struct ring_buffer *buffer; | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	unsigned length; | 
 |  | 
 | 	cpu_buffer = iter->cpu_buffer; | 
 | 	buffer = cpu_buffer->buffer; | 
 |  | 
 | 	/* | 
 | 	 * Check if we are at the end of the buffer. | 
 | 	 */ | 
 | 	if (iter->head >= rb_page_size(iter->head_page)) { | 
 | 		BUG_ON(iter->head_page == cpu_buffer->commit_page); | 
 | 		rb_inc_iter(iter); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	event = rb_iter_head_event(iter); | 
 |  | 
 | 	length = rb_event_length(event); | 
 |  | 
 | 	/* | 
 | 	 * This should not be called to advance the header if we are | 
 | 	 * at the tail of the buffer. | 
 | 	 */ | 
 | 	BUG_ON((iter->head_page == cpu_buffer->commit_page) && | 
 | 	       (iter->head + length > rb_commit_index(cpu_buffer))); | 
 |  | 
 | 	rb_update_iter_read_stamp(iter, event); | 
 |  | 
 | 	iter->head += length; | 
 |  | 
 | 	/* check for end of page padding */ | 
 | 	if ((iter->head >= rb_page_size(iter->head_page)) && | 
 | 	    (iter->head_page != cpu_buffer->commit_page)) | 
 | 		rb_advance_iter(iter); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_peek - peek at the next event to be read | 
 |  * @buffer: The ring buffer to read | 
 |  * @cpu: The cpu to peak at | 
 |  * @ts: The timestamp counter of this event. | 
 |  * | 
 |  * This will return the event that will be read next, but does | 
 |  * not consume the data. | 
 |  */ | 
 | struct ring_buffer_event * | 
 | ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	struct buffer_page *reader; | 
 | 	int nr_loops = 0; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return NULL; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 |  | 
 |  again: | 
 | 	/* | 
 | 	 * We repeat when a timestamp is encountered. It is possible | 
 | 	 * to get multiple timestamps from an interrupt entering just | 
 | 	 * as one timestamp is about to be written. The max times | 
 | 	 * that this can happen is the number of nested interrupts we | 
 | 	 * can have.  Nesting 10 deep of interrupts is clearly | 
 | 	 * an anomaly. | 
 | 	 */ | 
 | 	if (unlikely(++nr_loops > 10)) { | 
 | 		RB_WARN_ON(cpu_buffer, 1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	reader = rb_get_reader_page(cpu_buffer); | 
 | 	if (!reader) | 
 | 		return NULL; | 
 |  | 
 | 	event = rb_reader_event(cpu_buffer); | 
 |  | 
 | 	switch (event->type) { | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		RB_WARN_ON(cpu_buffer, 1); | 
 | 		rb_advance_reader(cpu_buffer); | 
 | 		return NULL; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		/* Internal data, OK to advance */ | 
 | 		rb_advance_reader(cpu_buffer); | 
 | 		goto again; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		/* FIXME: not implemented */ | 
 | 		rb_advance_reader(cpu_buffer); | 
 | 		goto again; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		if (ts) { | 
 | 			*ts = cpu_buffer->read_stamp + event->time_delta; | 
 | 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); | 
 | 		} | 
 | 		return event; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_iter_peek - peek at the next event to be read | 
 |  * @iter: The ring buffer iterator | 
 |  * @ts: The timestamp counter of this event. | 
 |  * | 
 |  * This will return the event that will be read next, but does | 
 |  * not increment the iterator. | 
 |  */ | 
 | struct ring_buffer_event * | 
 | ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) | 
 | { | 
 | 	struct ring_buffer *buffer; | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 | 	int nr_loops = 0; | 
 |  | 
 | 	if (ring_buffer_iter_empty(iter)) | 
 | 		return NULL; | 
 |  | 
 | 	cpu_buffer = iter->cpu_buffer; | 
 | 	buffer = cpu_buffer->buffer; | 
 |  | 
 |  again: | 
 | 	/* | 
 | 	 * We repeat when a timestamp is encountered. It is possible | 
 | 	 * to get multiple timestamps from an interrupt entering just | 
 | 	 * as one timestamp is about to be written. The max times | 
 | 	 * that this can happen is the number of nested interrupts we | 
 | 	 * can have. Nesting 10 deep of interrupts is clearly | 
 | 	 * an anomaly. | 
 | 	 */ | 
 | 	if (unlikely(++nr_loops > 10)) { | 
 | 		RB_WARN_ON(cpu_buffer, 1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (rb_per_cpu_empty(cpu_buffer)) | 
 | 		return NULL; | 
 |  | 
 | 	event = rb_iter_head_event(iter); | 
 |  | 
 | 	switch (event->type) { | 
 | 	case RINGBUF_TYPE_PADDING: | 
 | 		rb_inc_iter(iter); | 
 | 		goto again; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_EXTEND: | 
 | 		/* Internal data, OK to advance */ | 
 | 		rb_advance_iter(iter); | 
 | 		goto again; | 
 |  | 
 | 	case RINGBUF_TYPE_TIME_STAMP: | 
 | 		/* FIXME: not implemented */ | 
 | 		rb_advance_iter(iter); | 
 | 		goto again; | 
 |  | 
 | 	case RINGBUF_TYPE_DATA: | 
 | 		if (ts) { | 
 | 			*ts = iter->read_stamp + event->time_delta; | 
 | 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts); | 
 | 		} | 
 | 		return event; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_consume - return an event and consume it | 
 |  * @buffer: The ring buffer to get the next event from | 
 |  * | 
 |  * Returns the next event in the ring buffer, and that event is consumed. | 
 |  * Meaning, that sequential reads will keep returning a different event, | 
 |  * and eventually empty the ring buffer if the producer is slower. | 
 |  */ | 
 | struct ring_buffer_event * | 
 | ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_event *event; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return NULL; | 
 |  | 
 | 	event = ring_buffer_peek(buffer, cpu, ts); | 
 | 	if (!event) | 
 | 		return NULL; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	rb_advance_reader(cpu_buffer); | 
 |  | 
 | 	return event; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_read_start - start a non consuming read of the buffer | 
 |  * @buffer: The ring buffer to read from | 
 |  * @cpu: The cpu buffer to iterate over | 
 |  * | 
 |  * This starts up an iteration through the buffer. It also disables | 
 |  * the recording to the buffer until the reading is finished. | 
 |  * This prevents the reading from being corrupted. This is not | 
 |  * a consuming read, so a producer is not expected. | 
 |  * | 
 |  * Must be paired with ring_buffer_finish. | 
 |  */ | 
 | struct ring_buffer_iter * | 
 | ring_buffer_read_start(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	struct ring_buffer_iter *iter; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return NULL; | 
 |  | 
 | 	iter = kmalloc(sizeof(*iter), GFP_KERNEL); | 
 | 	if (!iter) | 
 | 		return NULL; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 |  | 
 | 	iter->cpu_buffer = cpu_buffer; | 
 |  | 
 | 	atomic_inc(&cpu_buffer->record_disabled); | 
 | 	synchronize_sched(); | 
 |  | 
 | 	spin_lock_irqsave(&cpu_buffer->lock, flags); | 
 | 	ring_buffer_iter_reset(iter); | 
 | 	spin_unlock_irqrestore(&cpu_buffer->lock, flags); | 
 |  | 
 | 	return iter; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_finish - finish reading the iterator of the buffer | 
 |  * @iter: The iterator retrieved by ring_buffer_start | 
 |  * | 
 |  * This re-enables the recording to the buffer, and frees the | 
 |  * iterator. | 
 |  */ | 
 | void | 
 | ring_buffer_read_finish(struct ring_buffer_iter *iter) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; | 
 |  | 
 | 	atomic_dec(&cpu_buffer->record_disabled); | 
 | 	kfree(iter); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_read - read the next item in the ring buffer by the iterator | 
 |  * @iter: The ring buffer iterator | 
 |  * @ts: The time stamp of the event read. | 
 |  * | 
 |  * This reads the next event in the ring buffer and increments the iterator. | 
 |  */ | 
 | struct ring_buffer_event * | 
 | ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) | 
 | { | 
 | 	struct ring_buffer_event *event; | 
 |  | 
 | 	event = ring_buffer_iter_peek(iter, ts); | 
 | 	if (!event) | 
 | 		return NULL; | 
 |  | 
 | 	rb_advance_iter(iter); | 
 |  | 
 | 	return event; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_size - return the size of the ring buffer (in bytes) | 
 |  * @buffer: The ring buffer. | 
 |  */ | 
 | unsigned long ring_buffer_size(struct ring_buffer *buffer) | 
 | { | 
 | 	return BUF_PAGE_SIZE * buffer->pages; | 
 | } | 
 |  | 
 | static void | 
 | rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) | 
 | { | 
 | 	cpu_buffer->head_page | 
 | 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list); | 
 | 	local_set(&cpu_buffer->head_page->write, 0); | 
 | 	local_set(&cpu_buffer->head_page->commit, 0); | 
 |  | 
 | 	cpu_buffer->head_page->read = 0; | 
 |  | 
 | 	cpu_buffer->tail_page = cpu_buffer->head_page; | 
 | 	cpu_buffer->commit_page = cpu_buffer->head_page; | 
 |  | 
 | 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list); | 
 | 	local_set(&cpu_buffer->reader_page->write, 0); | 
 | 	local_set(&cpu_buffer->reader_page->commit, 0); | 
 | 	cpu_buffer->reader_page->read = 0; | 
 |  | 
 | 	cpu_buffer->overrun = 0; | 
 | 	cpu_buffer->entries = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer | 
 |  * @buffer: The ring buffer to reset a per cpu buffer of | 
 |  * @cpu: The CPU buffer to be reset | 
 |  */ | 
 | void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&cpu_buffer->lock, flags); | 
 |  | 
 | 	rb_reset_cpu(cpu_buffer); | 
 |  | 
 | 	spin_unlock_irqrestore(&cpu_buffer->lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_reset - reset a ring buffer | 
 |  * @buffer: The ring buffer to reset all cpu buffers | 
 |  */ | 
 | void ring_buffer_reset(struct ring_buffer *buffer) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_buffer_cpu(buffer, cpu) | 
 | 		ring_buffer_reset_cpu(buffer, cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * rind_buffer_empty - is the ring buffer empty? | 
 |  * @buffer: The ring buffer to test | 
 |  */ | 
 | int ring_buffer_empty(struct ring_buffer *buffer) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 | 	int cpu; | 
 |  | 
 | 	/* yes this is racy, but if you don't like the race, lock the buffer */ | 
 | 	for_each_buffer_cpu(buffer, cpu) { | 
 | 		cpu_buffer = buffer->buffers[cpu]; | 
 | 		if (!rb_per_cpu_empty(cpu_buffer)) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? | 
 |  * @buffer: The ring buffer | 
 |  * @cpu: The CPU buffer to test | 
 |  */ | 
 | int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer->cpumask)) | 
 | 		return 1; | 
 |  | 
 | 	cpu_buffer = buffer->buffers[cpu]; | 
 | 	return rb_per_cpu_empty(cpu_buffer); | 
 | } | 
 |  | 
 | /** | 
 |  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers | 
 |  * @buffer_a: One buffer to swap with | 
 |  * @buffer_b: The other buffer to swap with | 
 |  * | 
 |  * This function is useful for tracers that want to take a "snapshot" | 
 |  * of a CPU buffer and has another back up buffer lying around. | 
 |  * it is expected that the tracer handles the cpu buffer not being | 
 |  * used at the moment. | 
 |  */ | 
 | int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, | 
 | 			 struct ring_buffer *buffer_b, int cpu) | 
 | { | 
 | 	struct ring_buffer_per_cpu *cpu_buffer_a; | 
 | 	struct ring_buffer_per_cpu *cpu_buffer_b; | 
 |  | 
 | 	if (!cpu_isset(cpu, buffer_a->cpumask) || | 
 | 	    !cpu_isset(cpu, buffer_b->cpumask)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* At least make sure the two buffers are somewhat the same */ | 
 | 	if (buffer_a->size != buffer_b->size || | 
 | 	    buffer_a->pages != buffer_b->pages) | 
 | 		return -EINVAL; | 
 |  | 
 | 	cpu_buffer_a = buffer_a->buffers[cpu]; | 
 | 	cpu_buffer_b = buffer_b->buffers[cpu]; | 
 |  | 
 | 	/* | 
 | 	 * We can't do a synchronize_sched here because this | 
 | 	 * function can be called in atomic context. | 
 | 	 * Normally this will be called from the same CPU as cpu. | 
 | 	 * If not it's up to the caller to protect this. | 
 | 	 */ | 
 | 	atomic_inc(&cpu_buffer_a->record_disabled); | 
 | 	atomic_inc(&cpu_buffer_b->record_disabled); | 
 |  | 
 | 	buffer_a->buffers[cpu] = cpu_buffer_b; | 
 | 	buffer_b->buffers[cpu] = cpu_buffer_a; | 
 |  | 
 | 	cpu_buffer_b->buffer = buffer_a; | 
 | 	cpu_buffer_a->buffer = buffer_b; | 
 |  | 
 | 	atomic_dec(&cpu_buffer_a->record_disabled); | 
 | 	atomic_dec(&cpu_buffer_b->record_disabled); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t | 
 | rb_simple_read(struct file *filp, char __user *ubuf, | 
 | 	       size_t cnt, loff_t *ppos) | 
 | { | 
 | 	int *p = filp->private_data; | 
 | 	char buf[64]; | 
 | 	int r; | 
 |  | 
 | 	/* !ring_buffers_off == tracing_on */ | 
 | 	r = sprintf(buf, "%d\n", !*p); | 
 |  | 
 | 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); | 
 | } | 
 |  | 
 | static ssize_t | 
 | rb_simple_write(struct file *filp, const char __user *ubuf, | 
 | 		size_t cnt, loff_t *ppos) | 
 | { | 
 | 	int *p = filp->private_data; | 
 | 	char buf[64]; | 
 | 	long val; | 
 | 	int ret; | 
 |  | 
 | 	if (cnt >= sizeof(buf)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&buf, ubuf, cnt)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	buf[cnt] = 0; | 
 |  | 
 | 	ret = strict_strtoul(buf, 10, &val); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* !ring_buffers_off == tracing_on */ | 
 | 	*p = !val; | 
 |  | 
 | 	(*ppos)++; | 
 |  | 
 | 	return cnt; | 
 | } | 
 |  | 
 | static struct file_operations rb_simple_fops = { | 
 | 	.open		= tracing_open_generic, | 
 | 	.read		= rb_simple_read, | 
 | 	.write		= rb_simple_write, | 
 | }; | 
 |  | 
 |  | 
 | static __init int rb_init_debugfs(void) | 
 | { | 
 | 	struct dentry *d_tracer; | 
 | 	struct dentry *entry; | 
 |  | 
 | 	d_tracer = tracing_init_dentry(); | 
 |  | 
 | 	entry = debugfs_create_file("tracing_on", 0644, d_tracer, | 
 | 				    &ring_buffers_off, &rb_simple_fops); | 
 | 	if (!entry) | 
 | 		pr_warning("Could not create debugfs 'tracing_on' entry\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | fs_initcall(rb_init_debugfs); |