|  | /* | 
|  | * arch/arm/kernel/kprobes.h | 
|  | * | 
|  | * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. | 
|  | * | 
|  | * Some contents moved here from arch/arm/include/asm/kprobes.h which is | 
|  | * Copyright (C) 2006, 2007 Motorola Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #ifndef _ARM_KERNEL_KPROBES_H | 
|  | #define _ARM_KERNEL_KPROBES_H | 
|  |  | 
|  | /* | 
|  | * These undefined instructions must be unique and | 
|  | * reserved solely for kprobes' use. | 
|  | */ | 
|  | #define KPROBE_ARM_BREAKPOINT_INSTRUCTION	0x07f001f8 | 
|  | #define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION	0xde18 | 
|  | #define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION	0xf7f0a018 | 
|  |  | 
|  |  | 
|  | enum kprobe_insn { | 
|  | INSN_REJECTED, | 
|  | INSN_GOOD, | 
|  | INSN_GOOD_NO_SLOT | 
|  | }; | 
|  |  | 
|  | typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t, | 
|  | struct arch_specific_insn *); | 
|  |  | 
|  | #ifdef CONFIG_THUMB2_KERNEL | 
|  |  | 
|  | enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t, | 
|  | struct arch_specific_insn *); | 
|  | enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t, | 
|  | struct arch_specific_insn *); | 
|  |  | 
|  | #else /* !CONFIG_THUMB2_KERNEL */ | 
|  |  | 
|  | enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t, | 
|  | struct arch_specific_insn *); | 
|  | #endif | 
|  |  | 
|  | void __init arm_kprobe_decode_init(void); | 
|  |  | 
|  | extern kprobe_check_cc * const kprobe_condition_checks[16]; | 
|  |  | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ >= 7 | 
|  |  | 
|  | /* str_pc_offset is architecturally defined from ARMv7 onwards */ | 
|  | #define str_pc_offset 8 | 
|  | #define find_str_pc_offset() | 
|  |  | 
|  | #else /* __LINUX_ARM_ARCH__ < 7 */ | 
|  |  | 
|  | /* We need a run-time check to determine str_pc_offset */ | 
|  | extern int str_pc_offset; | 
|  | void __init find_str_pc_offset(void); | 
|  |  | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Update ITSTATE after normal execution of an IT block instruction. | 
|  | * | 
|  | * The 8 IT state bits are split into two parts in CPSR: | 
|  | *	ITSTATE<1:0> are in CPSR<26:25> | 
|  | *	ITSTATE<7:2> are in CPSR<15:10> | 
|  | */ | 
|  | static inline unsigned long it_advance(unsigned long cpsr) | 
|  | { | 
|  | if ((cpsr & 0x06000400) == 0) { | 
|  | /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ | 
|  | cpsr &= ~PSR_IT_MASK; | 
|  | } else { | 
|  | /* We need to shift left ITSTATE<4:0> */ | 
|  | const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */ | 
|  | unsigned long it = cpsr & mask; | 
|  | it <<= 1; | 
|  | it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */ | 
|  | it &= mask; | 
|  | cpsr &= ~mask; | 
|  | cpsr |= it; | 
|  | } | 
|  | return cpsr; | 
|  | } | 
|  |  | 
|  | static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) | 
|  | { | 
|  | long cpsr = regs->ARM_cpsr; | 
|  | if (pcv & 0x1) { | 
|  | cpsr |= PSR_T_BIT; | 
|  | pcv &= ~0x1; | 
|  | } else { | 
|  | cpsr &= ~PSR_T_BIT; | 
|  | pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */ | 
|  | } | 
|  | regs->ARM_cpsr = cpsr; | 
|  | regs->ARM_pc = pcv; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ >= 6 | 
|  |  | 
|  | /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ | 
|  | #define load_write_pc_interworks true | 
|  | #define test_load_write_pc_interworking() | 
|  |  | 
|  | #else /* __LINUX_ARM_ARCH__ < 6 */ | 
|  |  | 
|  | /* We need run-time testing to determine if load_write_pc() should interwork. */ | 
|  | extern bool load_write_pc_interworks; | 
|  | void __init test_load_write_pc_interworking(void); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) | 
|  | { | 
|  | if (load_write_pc_interworks) | 
|  | bx_write_pc(pcv, regs); | 
|  | else | 
|  | regs->ARM_pc = pcv; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if __LINUX_ARM_ARCH__ >= 7 | 
|  |  | 
|  | #define alu_write_pc_interworks true | 
|  | #define test_alu_write_pc_interworking() | 
|  |  | 
|  | #elif __LINUX_ARM_ARCH__ <= 5 | 
|  |  | 
|  | /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ | 
|  | #define alu_write_pc_interworks false | 
|  | #define test_alu_write_pc_interworking() | 
|  |  | 
|  | #else /* __LINUX_ARM_ARCH__ == 6 */ | 
|  |  | 
|  | /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ | 
|  | extern bool alu_write_pc_interworks; | 
|  | void __init test_alu_write_pc_interworking(void); | 
|  |  | 
|  | #endif /* __LINUX_ARM_ARCH__ == 6 */ | 
|  |  | 
|  | static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) | 
|  | { | 
|  | if (alu_write_pc_interworks) | 
|  | bx_write_pc(pcv, regs); | 
|  | else | 
|  | regs->ARM_pc = pcv; | 
|  | } | 
|  |  | 
|  |  | 
|  | void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs); | 
|  | void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs); | 
|  |  | 
|  | enum kprobe_insn __kprobes | 
|  | kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi); | 
|  |  | 
|  | /* | 
|  | * Test if load/store instructions writeback the address register. | 
|  | * if P (bit 24) == 0 or W (bit 21) == 1 | 
|  | */ | 
|  | #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) | 
|  |  | 
|  | /* | 
|  | * The following definitions and macros are used to build instruction | 
|  | * decoding tables for use by kprobe_decode_insn. | 
|  | * | 
|  | * These tables are a concatenation of entries each of which consist of one of | 
|  | * the decode_* structs. All of the fields in every type of decode structure | 
|  | * are of the union type decode_item, therefore the entire decode table can be | 
|  | * viewed as an array of these and declared like: | 
|  | * | 
|  | *	static const union decode_item table_name[] = {}; | 
|  | * | 
|  | * In order to construct each entry in the table, macros are used to | 
|  | * initialise a number of sequential decode_item values in a layout which | 
|  | * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct | 
|  | * decode_simulate by initialising four decode_item objects like this... | 
|  | * | 
|  | *	{.bits = _type}, | 
|  | *	{.bits = _mask}, | 
|  | *	{.bits = _value}, | 
|  | *	{.handler = _handler}, | 
|  | * | 
|  | * Initialising a specified member of the union means that the compiler | 
|  | * will produce a warning if the argument is of an incorrect type. | 
|  | * | 
|  | * Below is a list of each of the macros used to initialise entries and a | 
|  | * description of the action performed when that entry is matched to an | 
|  | * instruction. A match is found when (instruction & mask) == value. | 
|  | * | 
|  | * DECODE_TABLE(mask, value, table) | 
|  | *	Instruction decoding jumps to parsing the new sub-table 'table'. | 
|  | * | 
|  | * DECODE_CUSTOM(mask, value, decoder) | 
|  | *	The custom function 'decoder' is called to the complete decoding | 
|  | *	of an instruction. | 
|  | * | 
|  | * DECODE_SIMULATE(mask, value, handler) | 
|  | *	Set the probes instruction handler to 'handler', this will be used | 
|  | *	to simulate the instruction when the probe is hit. Decoding returns | 
|  | *	with INSN_GOOD_NO_SLOT. | 
|  | * | 
|  | * DECODE_EMULATE(mask, value, handler) | 
|  | *	Set the probes instruction handler to 'handler', this will be used | 
|  | *	to emulate the instruction when the probe is hit. The modified | 
|  | *	instruction (see below) is placed in the probes instruction slot so it | 
|  | *	may be called by the emulation code. Decoding returns with INSN_GOOD. | 
|  | * | 
|  | * DECODE_REJECT(mask, value) | 
|  | *	Instruction decoding fails with INSN_REJECTED | 
|  | * | 
|  | * DECODE_OR(mask, value) | 
|  | *	This allows the mask/value test of multiple table entries to be | 
|  | *	logically ORed. Once an 'or' entry is matched the decoding action to | 
|  | *	be performed is that of the next entry which isn't an 'or'. E.g. | 
|  | * | 
|  | *		DECODE_OR	(mask1, value1) | 
|  | *		DECODE_OR	(mask2, value2) | 
|  | *		DECODE_SIMULATE	(mask3, value3, simulation_handler) | 
|  | * | 
|  | *	This means that if any of the three mask/value pairs match the | 
|  | *	instruction being decoded, then 'simulation_handler' will be used | 
|  | *	for it. | 
|  | * | 
|  | * Both the SIMULATE and EMULATE macros have a second form which take an | 
|  | * additional 'regs' argument. | 
|  | * | 
|  | *	DECODE_SIMULATEX(mask, value, handler, regs) | 
|  | *	DECODE_EMULATEX	(mask, value, handler, regs) | 
|  | * | 
|  | * These are used to specify what kind of CPU register is encoded in each of the | 
|  | * least significant 5 nibbles of the instruction being decoded. The regs value | 
|  | * is specified using the REGS macro, this takes any of the REG_TYPE_* values | 
|  | * from enum decode_reg_type as arguments; only the '*' part of the name is | 
|  | * given. E.g. | 
|  | * | 
|  | *	REGS(0, ANY, NOPC, 0, ANY) | 
|  | * | 
|  | * This indicates an instruction is encoded like: | 
|  | * | 
|  | *	bits 19..16	ignore | 
|  | *	bits 15..12	any register allowed here | 
|  | *	bits 11.. 8	any register except PC allowed here | 
|  | *	bits  7.. 4	ignore | 
|  | *	bits  3.. 0	any register allowed here | 
|  | * | 
|  | * This register specification is checked after a decode table entry is found to | 
|  | * match an instruction (through the mask/value test). Any invalid register then | 
|  | * found in the instruction will cause decoding to fail with INSN_REJECTED. In | 
|  | * the above example this would happen if bits 11..8 of the instruction were | 
|  | * 1111, indicating R15 or PC. | 
|  | * | 
|  | * As well as checking for legal combinations of registers, this data is also | 
|  | * used to modify the registers encoded in the instructions so that an | 
|  | * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) | 
|  | * | 
|  | * Here is a real example which matches ARM instructions of the form | 
|  | * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" | 
|  | * | 
|  | *	DECODE_EMULATEX	(0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags, | 
|  | *						 REGS(ANY, ANY, NOPC, 0, ANY)), | 
|  | *						      ^    ^    ^        ^ | 
|  | *						      Rn   Rd   Rs       Rm | 
|  | * | 
|  | * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because | 
|  | * Rs == R15 | 
|  | * | 
|  | * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the | 
|  | * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into | 
|  | * the kprobes instruction slot. This can then be called later by the handler | 
|  | * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction. | 
|  | */ | 
|  |  | 
|  | enum decode_type { | 
|  | DECODE_TYPE_END, | 
|  | DECODE_TYPE_TABLE, | 
|  | DECODE_TYPE_CUSTOM, | 
|  | DECODE_TYPE_SIMULATE, | 
|  | DECODE_TYPE_EMULATE, | 
|  | DECODE_TYPE_OR, | 
|  | DECODE_TYPE_REJECT, | 
|  | NUM_DECODE_TYPES /* Must be last enum */ | 
|  | }; | 
|  |  | 
|  | #define DECODE_TYPE_BITS	4 | 
|  | #define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1) | 
|  |  | 
|  | enum decode_reg_type { | 
|  | REG_TYPE_NONE = 0, /* Not a register, ignore */ | 
|  | REG_TYPE_ANY,	   /* Any register allowed */ | 
|  | REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ | 
|  | REG_TYPE_SP,	   /* Register must be SP */ | 
|  | REG_TYPE_PC,	   /* Register must be PC */ | 
|  | REG_TYPE_NOSP,	   /* Register must not be SP */ | 
|  | REG_TYPE_NOSPPC,   /* Register must not be SP or PC */ | 
|  | REG_TYPE_NOPC,	   /* Register must not be PC */ | 
|  | REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */ | 
|  |  | 
|  | /* The following types are used when the encoding for PC indicates | 
|  | * another instruction form. This distiction only matters for test | 
|  | * case coverage checks. | 
|  | */ | 
|  | REG_TYPE_NOPCX,	   /* Register must not be PC */ | 
|  | REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */ | 
|  |  | 
|  | /* Alias to allow '0' arg to be used in REGS macro. */ | 
|  | REG_TYPE_0 = REG_TYPE_NONE | 
|  | }; | 
|  |  | 
|  | #define REGS(r16, r12, r8, r4, r0)	\ | 
|  | ((REG_TYPE_##r16) << 16) +	\ | 
|  | ((REG_TYPE_##r12) << 12) +	\ | 
|  | ((REG_TYPE_##r8) << 8) +	\ | 
|  | ((REG_TYPE_##r4) << 4) +	\ | 
|  | (REG_TYPE_##r0) | 
|  |  | 
|  | union decode_item { | 
|  | u32			bits; | 
|  | const union decode_item	*table; | 
|  | kprobe_insn_handler_t	*handler; | 
|  | kprobe_decode_insn_t	*decoder; | 
|  | }; | 
|  |  | 
|  |  | 
|  | #define DECODE_END			\ | 
|  | {.bits = DECODE_TYPE_END} | 
|  |  | 
|  |  | 
|  | struct decode_header { | 
|  | union decode_item	type_regs; | 
|  | union decode_item	mask; | 
|  | union decode_item	value; | 
|  | }; | 
|  |  | 
|  | #define DECODE_HEADER(_type, _mask, _value, _regs)		\ | 
|  | {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\ | 
|  | {.bits = (_mask)},					\ | 
|  | {.bits = (_value)} | 
|  |  | 
|  |  | 
|  | struct decode_table { | 
|  | struct decode_header	header; | 
|  | union decode_item	table; | 
|  | }; | 
|  |  | 
|  | #define DECODE_TABLE(_mask, _value, _table)			\ | 
|  | DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\ | 
|  | {.table = (_table)} | 
|  |  | 
|  |  | 
|  | struct decode_custom { | 
|  | struct decode_header	header; | 
|  | union decode_item	decoder; | 
|  | }; | 
|  |  | 
|  | #define DECODE_CUSTOM(_mask, _value, _decoder)			\ | 
|  | DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\ | 
|  | {.decoder = (_decoder)} | 
|  |  | 
|  |  | 
|  | struct decode_simulate { | 
|  | struct decode_header	header; | 
|  | union decode_item	handler; | 
|  | }; | 
|  |  | 
|  | #define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\ | 
|  | DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\ | 
|  | {.handler = (_handler)} | 
|  |  | 
|  | #define DECODE_SIMULATE(_mask, _value, _handler)	\ | 
|  | DECODE_SIMULATEX(_mask, _value, _handler, 0) | 
|  |  | 
|  |  | 
|  | struct decode_emulate { | 
|  | struct decode_header	header; | 
|  | union decode_item	handler; | 
|  | }; | 
|  |  | 
|  | #define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\ | 
|  | DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\ | 
|  | {.handler = (_handler)} | 
|  |  | 
|  | #define DECODE_EMULATE(_mask, _value, _handler)		\ | 
|  | DECODE_EMULATEX(_mask, _value, _handler, 0) | 
|  |  | 
|  |  | 
|  | struct decode_or { | 
|  | struct decode_header	header; | 
|  | }; | 
|  |  | 
|  | #define DECODE_OR(_mask, _value)				\ | 
|  | DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) | 
|  |  | 
|  |  | 
|  | struct decode_reject { | 
|  | struct decode_header	header; | 
|  | }; | 
|  |  | 
|  | #define DECODE_REJECT(_mask, _value)				\ | 
|  | DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_THUMB2_KERNEL | 
|  | extern const union decode_item kprobe_decode_thumb16_table[]; | 
|  | extern const union decode_item kprobe_decode_thumb32_table[]; | 
|  | #else | 
|  | extern const union decode_item kprobe_decode_arm_table[]; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi, | 
|  | const union decode_item *table, bool thumb16); | 
|  |  | 
|  |  | 
|  | #endif /* _ARM_KERNEL_KPROBES_H */ |