|  | /* | 
|  | * Freescale Hypervisor Management Driver | 
|  |  | 
|  | * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. | 
|  | * Author: Timur Tabi <timur@freescale.com> | 
|  | * | 
|  | * This file is licensed under the terms of the GNU General Public License | 
|  | * version 2.  This program is licensed "as is" without any warranty of any | 
|  | * kind, whether express or implied. | 
|  | * | 
|  | * The Freescale hypervisor management driver provides several services to | 
|  | * drivers and applications related to the Freescale hypervisor: | 
|  | * | 
|  | * 1. An ioctl interface for querying and managing partitions. | 
|  | * | 
|  | * 2. A file interface to reading incoming doorbells. | 
|  | * | 
|  | * 3. An interrupt handler for shutting down the partition upon receiving the | 
|  | *    shutdown doorbell from a manager partition. | 
|  | * | 
|  | * 4. A kernel interface for receiving callbacks when a managed partition | 
|  | *    shuts down. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <asm/fsl_hcalls.h> | 
|  |  | 
|  | #include <linux/fsl_hypervisor.h> | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(failover_subscribers); | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART | 
|  | * | 
|  | * Restart a running partition | 
|  | */ | 
|  | static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_restart param; | 
|  |  | 
|  | /* Get the parameters from the user */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) | 
|  | return -EFAULT; | 
|  |  | 
|  | param.ret = fh_partition_restart(param.partition); | 
|  |  | 
|  | if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS | 
|  | * | 
|  | * Query the status of a partition | 
|  | */ | 
|  | static long ioctl_status(struct fsl_hv_ioctl_status __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_status param; | 
|  | u32 status; | 
|  |  | 
|  | /* Get the parameters from the user */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) | 
|  | return -EFAULT; | 
|  |  | 
|  | param.ret = fh_partition_get_status(param.partition, &status); | 
|  | if (!param.ret) | 
|  | param.status = status; | 
|  |  | 
|  | if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_PARTITION_START | 
|  | * | 
|  | * Start a stopped partition. | 
|  | */ | 
|  | static long ioctl_start(struct fsl_hv_ioctl_start __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_start param; | 
|  |  | 
|  | /* Get the parameters from the user */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) | 
|  | return -EFAULT; | 
|  |  | 
|  | param.ret = fh_partition_start(param.partition, param.entry_point, | 
|  | param.load); | 
|  |  | 
|  | if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP | 
|  | * | 
|  | * Stop a running partition | 
|  | */ | 
|  | static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_stop param; | 
|  |  | 
|  | /* Get the parameters from the user */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) | 
|  | return -EFAULT; | 
|  |  | 
|  | param.ret = fh_partition_stop(param.partition); | 
|  |  | 
|  | if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_MEMCPY | 
|  | * | 
|  | * The FH_MEMCPY hypercall takes an array of address/address/size structures | 
|  | * to represent the data being copied.  As a convenience to the user, this | 
|  | * ioctl takes a user-create buffer and a pointer to a guest physically | 
|  | * contiguous buffer in the remote partition, and creates the | 
|  | * address/address/size array for the hypercall. | 
|  | */ | 
|  | static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_memcpy param; | 
|  |  | 
|  | struct page **pages = NULL; | 
|  | void *sg_list_unaligned = NULL; | 
|  | struct fh_sg_list *sg_list = NULL; | 
|  |  | 
|  | unsigned int num_pages; | 
|  | unsigned long lb_offset; /* Offset within a page of the local buffer */ | 
|  |  | 
|  | unsigned int i; | 
|  | long ret = 0; | 
|  | int num_pinned; /* return value from get_user_pages() */ | 
|  | phys_addr_t remote_paddr; /* The next address in the remote buffer */ | 
|  | uint32_t count; /* The number of bytes left to copy */ | 
|  |  | 
|  | /* Get the parameters from the user */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * One partition must be local, the other must be remote.  In other | 
|  | * words, if source and target are both -1, or are both not -1, then | 
|  | * return an error. | 
|  | */ | 
|  | if ((param.source == -1) == (param.target == -1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The array of pages returned by get_user_pages() covers only | 
|  | * page-aligned memory.  Since the user buffer is probably not | 
|  | * page-aligned, we need to handle the discrepancy. | 
|  | * | 
|  | * We calculate the offset within a page of the S/G list, and make | 
|  | * adjustments accordingly.  This will result in a page list that looks | 
|  | * like this: | 
|  | * | 
|  | *      ----    <-- first page starts before the buffer | 
|  | *     |    | | 
|  | *     |////|-> ---- | 
|  | *     |////|  |    | | 
|  | *      ----   |    | | 
|  | *             |    | | 
|  | *      ----   |    | | 
|  | *     |////|  |    | | 
|  | *     |////|  |    | | 
|  | *     |////|  |    | | 
|  | *      ----   |    | | 
|  | *             |    | | 
|  | *      ----   |    | | 
|  | *     |////|  |    | | 
|  | *     |////|  |    | | 
|  | *     |////|  |    | | 
|  | *      ----   |    | | 
|  | *             |    | | 
|  | *      ----   |    | | 
|  | *     |////|  |    | | 
|  | *     |////|-> ---- | 
|  | *     |    |   <-- last page ends after the buffer | 
|  | *      ---- | 
|  | * | 
|  | * The distance between the start of the first page and the start of the | 
|  | * buffer is lb_offset.  The hashed (///) areas are the parts of the | 
|  | * page list that contain the actual buffer. | 
|  | * | 
|  | * The advantage of this approach is that the number of pages is | 
|  | * equal to the number of entries in the S/G list that we give to the | 
|  | * hypervisor. | 
|  | */ | 
|  | lb_offset = param.local_vaddr & (PAGE_SIZE - 1); | 
|  | num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Allocate the buffers we need */ | 
|  |  | 
|  | /* | 
|  | * 'pages' is an array of struct page pointers that's initialized by | 
|  | * get_user_pages(). | 
|  | */ | 
|  | pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) { | 
|  | pr_debug("fsl-hv: could not allocate page list\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sg_list is the list of fh_sg_list objects that we pass to the | 
|  | * hypervisor. | 
|  | */ | 
|  | sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + | 
|  | sizeof(struct fh_sg_list) - 1, GFP_KERNEL); | 
|  | if (!sg_list_unaligned) { | 
|  | pr_debug("fsl-hv: could not allocate S/G list\n"); | 
|  | ret = -ENOMEM; | 
|  | goto exit; | 
|  | } | 
|  | sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); | 
|  |  | 
|  | /* Get the physical addresses of the source buffer */ | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | num_pinned = get_user_pages(current, current->mm, | 
|  | param.local_vaddr - lb_offset, num_pages, | 
|  | (param.source == -1) ? READ : WRITE, | 
|  | 0, pages, NULL); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (num_pinned != num_pages) { | 
|  | /* get_user_pages() failed */ | 
|  | pr_debug("fsl-hv: could not lock source buffer\n"); | 
|  | ret = (num_pinned < 0) ? num_pinned : -EFAULT; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the fh_sg_list[] array.  The first page is special | 
|  | * because it's misaligned. | 
|  | */ | 
|  | if (param.source == -1) { | 
|  | sg_list[0].source = page_to_phys(pages[0]) + lb_offset; | 
|  | sg_list[0].target = param.remote_paddr; | 
|  | } else { | 
|  | sg_list[0].source = param.remote_paddr; | 
|  | sg_list[0].target = page_to_phys(pages[0]) + lb_offset; | 
|  | } | 
|  | sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); | 
|  |  | 
|  | remote_paddr = param.remote_paddr + sg_list[0].size; | 
|  | count = param.count - sg_list[0].size; | 
|  |  | 
|  | for (i = 1; i < num_pages; i++) { | 
|  | if (param.source == -1) { | 
|  | /* local to remote */ | 
|  | sg_list[i].source = page_to_phys(pages[i]); | 
|  | sg_list[i].target = remote_paddr; | 
|  | } else { | 
|  | /* remote to local */ | 
|  | sg_list[i].source = remote_paddr; | 
|  | sg_list[i].target = page_to_phys(pages[i]); | 
|  | } | 
|  | sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); | 
|  |  | 
|  | remote_paddr += sg_list[i].size; | 
|  | count -= sg_list[i].size; | 
|  | } | 
|  |  | 
|  | param.ret = fh_partition_memcpy(param.source, param.target, | 
|  | virt_to_phys(sg_list), num_pages); | 
|  |  | 
|  | exit: | 
|  | if (pages) { | 
|  | for (i = 0; i < num_pages; i++) | 
|  | if (pages[i]) | 
|  | put_page(pages[i]); | 
|  | } | 
|  |  | 
|  | kfree(sg_list_unaligned); | 
|  | kfree(pages); | 
|  |  | 
|  | if (!ret) | 
|  | if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl interface for FSL_HV_IOCTL_DOORBELL | 
|  | * | 
|  | * Ring a doorbell | 
|  | */ | 
|  | static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) | 
|  | { | 
|  | struct fsl_hv_ioctl_doorbell param; | 
|  |  | 
|  | /* Get the parameters from the user. */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) | 
|  | return -EFAULT; | 
|  |  | 
|  | param.ret = ev_doorbell_send(param.doorbell); | 
|  |  | 
|  | if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) | 
|  | { | 
|  | struct fsl_hv_ioctl_prop param; | 
|  | char __user *upath, *upropname; | 
|  | void __user *upropval; | 
|  | char *path = NULL, *propname = NULL; | 
|  | void *propval = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Get the parameters from the user. */ | 
|  | if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) | 
|  | return -EFAULT; | 
|  |  | 
|  | upath = (char __user *)(uintptr_t)param.path; | 
|  | upropname = (char __user *)(uintptr_t)param.propname; | 
|  | upropval = (void __user *)(uintptr_t)param.propval; | 
|  |  | 
|  | path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); | 
|  | if (IS_ERR(path)) { | 
|  | ret = PTR_ERR(path); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); | 
|  | if (IS_ERR(propname)) { | 
|  | ret = PTR_ERR(propname); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (param.proplen > FH_DTPROP_MAX_PROPLEN) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | propval = kmalloc(param.proplen, GFP_KERNEL); | 
|  | if (!propval) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (set) { | 
|  | if (copy_from_user(propval, upropval, param.proplen)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | param.ret = fh_partition_set_dtprop(param.handle, | 
|  | virt_to_phys(path), | 
|  | virt_to_phys(propname), | 
|  | virt_to_phys(propval), | 
|  | param.proplen); | 
|  | } else { | 
|  | param.ret = fh_partition_get_dtprop(param.handle, | 
|  | virt_to_phys(path), | 
|  | virt_to_phys(propname), | 
|  | virt_to_phys(propval), | 
|  | ¶m.proplen); | 
|  |  | 
|  | if (param.ret == 0) { | 
|  | if (copy_to_user(upropval, propval, param.proplen) || | 
|  | put_user(param.proplen, &p->proplen)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (put_user(param.ret, &p->ret)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out: | 
|  | kfree(path); | 
|  | kfree(propval); | 
|  | kfree(propname); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ioctl main entry point | 
|  | */ | 
|  | static long fsl_hv_ioctl(struct file *file, unsigned int cmd, | 
|  | unsigned long argaddr) | 
|  | { | 
|  | void __user *arg = (void __user *)argaddr; | 
|  | long ret; | 
|  |  | 
|  | switch (cmd) { | 
|  | case FSL_HV_IOCTL_PARTITION_RESTART: | 
|  | ret = ioctl_restart(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_PARTITION_GET_STATUS: | 
|  | ret = ioctl_status(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_PARTITION_START: | 
|  | ret = ioctl_start(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_PARTITION_STOP: | 
|  | ret = ioctl_stop(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_MEMCPY: | 
|  | ret = ioctl_memcpy(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_DOORBELL: | 
|  | ret = ioctl_doorbell(arg); | 
|  | break; | 
|  | case FSL_HV_IOCTL_GETPROP: | 
|  | ret = ioctl_dtprop(arg, 0); | 
|  | break; | 
|  | case FSL_HV_IOCTL_SETPROP: | 
|  | ret = ioctl_dtprop(arg, 1); | 
|  | break; | 
|  | default: | 
|  | pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", | 
|  | _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), | 
|  | _IOC_SIZE(cmd)); | 
|  | return -ENOTTY; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Linked list of processes that have us open */ | 
|  | static struct list_head db_list; | 
|  |  | 
|  | /* spinlock for db_list */ | 
|  | static DEFINE_SPINLOCK(db_list_lock); | 
|  |  | 
|  | /* The size of the doorbell event queue.  This must be a power of two. */ | 
|  | #define QSIZE	16 | 
|  |  | 
|  | /* Returns the next head/tail pointer, wrapping around the queue if necessary */ | 
|  | #define nextp(x) (((x) + 1) & (QSIZE - 1)) | 
|  |  | 
|  | /* Per-open data structure */ | 
|  | struct doorbell_queue { | 
|  | struct list_head list; | 
|  | spinlock_t lock; | 
|  | wait_queue_head_t wait; | 
|  | unsigned int head; | 
|  | unsigned int tail; | 
|  | uint32_t q[QSIZE]; | 
|  | }; | 
|  |  | 
|  | /* Linked list of ISRs that we registered */ | 
|  | struct list_head isr_list; | 
|  |  | 
|  | /* Per-ISR data structure */ | 
|  | struct doorbell_isr { | 
|  | struct list_head list; | 
|  | unsigned int irq; | 
|  | uint32_t doorbell;	/* The doorbell handle */ | 
|  | uint32_t partition;	/* The partition handle, if used */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Add a doorbell to all of the doorbell queues | 
|  | */ | 
|  | static void fsl_hv_queue_doorbell(uint32_t doorbell) | 
|  | { | 
|  | struct doorbell_queue *dbq; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Prevent another core from modifying db_list */ | 
|  | spin_lock_irqsave(&db_list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(dbq, &db_list, list) { | 
|  | if (dbq->head != nextp(dbq->tail)) { | 
|  | dbq->q[dbq->tail] = doorbell; | 
|  | /* | 
|  | * This memory barrier eliminates the need to grab | 
|  | * the spinlock for dbq. | 
|  | */ | 
|  | smp_wmb(); | 
|  | dbq->tail = nextp(dbq->tail); | 
|  | wake_up_interruptible(&dbq->wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&db_list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt handler for all doorbells | 
|  | * | 
|  | * We use the same interrupt handler for all doorbells.  Whenever a doorbell | 
|  | * is rung, and we receive an interrupt, we just put the handle for that | 
|  | * doorbell (passed to us as *data) into all of the queues. | 
|  | */ | 
|  | static irqreturn_t fsl_hv_isr(int irq, void *data) | 
|  | { | 
|  | fsl_hv_queue_doorbell((uintptr_t) data); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * State change thread function | 
|  | * | 
|  | * The state change notification arrives in an interrupt, but we can't call | 
|  | * blocking_notifier_call_chain() in an interrupt handler.  We could call | 
|  | * atomic_notifier_call_chain(), but that would require the clients' call-back | 
|  | * function to run in interrupt context.  Since we don't want to impose that | 
|  | * restriction on the clients, we use a threaded IRQ to process the | 
|  | * notification in kernel context. | 
|  | */ | 
|  | static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) | 
|  | { | 
|  | struct doorbell_isr *dbisr = data; | 
|  |  | 
|  | blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, | 
|  | NULL); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt handler for state-change doorbells | 
|  | */ | 
|  | static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) | 
|  | { | 
|  | unsigned int status; | 
|  | struct doorbell_isr *dbisr = data; | 
|  | int ret; | 
|  |  | 
|  | /* It's still a doorbell, so add it to all the queues. */ | 
|  | fsl_hv_queue_doorbell(dbisr->doorbell); | 
|  |  | 
|  | /* Determine the new state, and if it's stopped, notify the clients. */ | 
|  | ret = fh_partition_get_status(dbisr->partition, &status); | 
|  | if (!ret && (status == FH_PARTITION_STOPPED)) | 
|  | return IRQ_WAKE_THREAD; | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a bitmask indicating whether a read will block | 
|  | */ | 
|  | static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p) | 
|  | { | 
|  | struct doorbell_queue *dbq = filp->private_data; | 
|  | unsigned long flags; | 
|  | unsigned int mask; | 
|  |  | 
|  | spin_lock_irqsave(&dbq->lock, flags); | 
|  |  | 
|  | poll_wait(filp, &dbq->wait, p); | 
|  | mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM); | 
|  |  | 
|  | spin_unlock_irqrestore(&dbq->lock, flags); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the handles for any incoming doorbells | 
|  | * | 
|  | * If there are doorbell handles in the queue for this open instance, then | 
|  | * return them to the caller as an array of 32-bit integers.  Otherwise, | 
|  | * block until there is at least one handle to return. | 
|  | */ | 
|  | static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, | 
|  | loff_t *off) | 
|  | { | 
|  | struct doorbell_queue *dbq = filp->private_data; | 
|  | uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ | 
|  | unsigned long flags; | 
|  | ssize_t count = 0; | 
|  |  | 
|  | /* Make sure we stop when the user buffer is full. */ | 
|  | while (len >= sizeof(uint32_t)) { | 
|  | uint32_t dbell;	/* Local copy of doorbell queue data */ | 
|  |  | 
|  | spin_lock_irqsave(&dbq->lock, flags); | 
|  |  | 
|  | /* | 
|  | * If the queue is empty, then either we're done or we need | 
|  | * to block.  If the application specified O_NONBLOCK, then | 
|  | * we return the appropriate error code. | 
|  | */ | 
|  | if (dbq->head == dbq->tail) { | 
|  | spin_unlock_irqrestore(&dbq->lock, flags); | 
|  | if (count) | 
|  | break; | 
|  | if (filp->f_flags & O_NONBLOCK) | 
|  | return -EAGAIN; | 
|  | if (wait_event_interruptible(dbq->wait, | 
|  | dbq->head != dbq->tail)) | 
|  | return -ERESTARTSYS; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even though we have an smp_wmb() in the ISR, the core | 
|  | * might speculatively execute the "dbell = ..." below while | 
|  | * it's evaluating the if-statement above.  In that case, the | 
|  | * value put into dbell could be stale if the core accepts the | 
|  | * speculation. To prevent that, we need a read memory barrier | 
|  | * here as well. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* Copy the data to a temporary local buffer, because | 
|  | * we can't call copy_to_user() from inside a spinlock | 
|  | */ | 
|  | dbell = dbq->q[dbq->head]; | 
|  | dbq->head = nextp(dbq->head); | 
|  |  | 
|  | spin_unlock_irqrestore(&dbq->lock, flags); | 
|  |  | 
|  | if (put_user(dbell, p)) | 
|  | return -EFAULT; | 
|  | p++; | 
|  | count += sizeof(uint32_t); | 
|  | len -= sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the driver and prepare for reading doorbells. | 
|  | * | 
|  | * Every time an application opens the driver, we create a doorbell queue | 
|  | * for that file handle.  This queue is used for any incoming doorbells. | 
|  | */ | 
|  | static int fsl_hv_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct doorbell_queue *dbq; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); | 
|  | if (!dbq) { | 
|  | pr_err("fsl-hv: out of memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&dbq->lock); | 
|  | init_waitqueue_head(&dbq->wait); | 
|  |  | 
|  | spin_lock_irqsave(&db_list_lock, flags); | 
|  | list_add(&dbq->list, &db_list); | 
|  | spin_unlock_irqrestore(&db_list_lock, flags); | 
|  |  | 
|  | filp->private_data = dbq; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close the driver | 
|  | */ | 
|  | static int fsl_hv_close(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct doorbell_queue *dbq = filp->private_data; | 
|  | unsigned long flags; | 
|  |  | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&db_list_lock, flags); | 
|  | list_del(&dbq->list); | 
|  | spin_unlock_irqrestore(&db_list_lock, flags); | 
|  |  | 
|  | kfree(dbq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations fsl_hv_fops = { | 
|  | .owner = THIS_MODULE, | 
|  | .open = fsl_hv_open, | 
|  | .release = fsl_hv_close, | 
|  | .poll = fsl_hv_poll, | 
|  | .read = fsl_hv_read, | 
|  | .unlocked_ioctl = fsl_hv_ioctl, | 
|  | .compat_ioctl = fsl_hv_ioctl, | 
|  | }; | 
|  |  | 
|  | static struct miscdevice fsl_hv_misc_dev = { | 
|  | MISC_DYNAMIC_MINOR, | 
|  | "fsl-hv", | 
|  | &fsl_hv_fops | 
|  | }; | 
|  |  | 
|  | static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) | 
|  | { | 
|  | orderly_poweroff(false); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the handle of the parent of the given node | 
|  | * | 
|  | * The handle is the value of the 'hv-handle' property | 
|  | */ | 
|  | static int get_parent_handle(struct device_node *np) | 
|  | { | 
|  | struct device_node *parent; | 
|  | const uint32_t *prop; | 
|  | uint32_t handle; | 
|  | int len; | 
|  |  | 
|  | parent = of_get_parent(np); | 
|  | if (!parent) | 
|  | /* It's not really possible for this to fail */ | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * The proper name for the handle property is "hv-handle", but some | 
|  | * older versions of the hypervisor used "reg". | 
|  | */ | 
|  | prop = of_get_property(parent, "hv-handle", &len); | 
|  | if (!prop) | 
|  | prop = of_get_property(parent, "reg", &len); | 
|  |  | 
|  | if (!prop || (len != sizeof(uint32_t))) { | 
|  | /* This can happen only if the node is malformed */ | 
|  | of_node_put(parent); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | handle = be32_to_cpup(prop); | 
|  | of_node_put(parent); | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register a callback for failover events | 
|  | * | 
|  | * This function is called by device drivers to register their callback | 
|  | * functions for fail-over events. | 
|  | */ | 
|  | int fsl_hv_failover_register(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&failover_subscribers, nb); | 
|  | } | 
|  | EXPORT_SYMBOL(fsl_hv_failover_register); | 
|  |  | 
|  | /* | 
|  | * Unregister a callback for failover events | 
|  | */ | 
|  | int fsl_hv_failover_unregister(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&failover_subscribers, nb); | 
|  | } | 
|  | EXPORT_SYMBOL(fsl_hv_failover_unregister); | 
|  |  | 
|  | /* | 
|  | * Return TRUE if we're running under FSL hypervisor | 
|  | * | 
|  | * This function checks to see if we're running under the Freescale | 
|  | * hypervisor, and returns zero if we're not, or non-zero if we are. | 
|  | * | 
|  | * First, it checks if MSR[GS]==1, which means we're running under some | 
|  | * hypervisor.  Then it checks if there is a hypervisor node in the device | 
|  | * tree.  Currently, that means there needs to be a node in the root called | 
|  | * "hypervisor" and which has a property named "fsl,hv-version". | 
|  | */ | 
|  | static int has_fsl_hypervisor(void) | 
|  | { | 
|  | struct device_node *node; | 
|  | int ret; | 
|  |  | 
|  | if (!(mfmsr() & MSR_GS)) | 
|  | return 0; | 
|  |  | 
|  | node = of_find_node_by_path("/hypervisor"); | 
|  | if (!node) | 
|  | return 0; | 
|  |  | 
|  | ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; | 
|  |  | 
|  | of_node_put(node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freescale hypervisor management driver init | 
|  | * | 
|  | * This function is called when this module is loaded. | 
|  | * | 
|  | * Register ourselves as a miscellaneous driver.  This will register the | 
|  | * fops structure and create the right sysfs entries for udev. | 
|  | */ | 
|  | static int __init fsl_hypervisor_init(void) | 
|  | { | 
|  | struct device_node *np; | 
|  | struct doorbell_isr *dbisr, *n; | 
|  | int ret; | 
|  |  | 
|  | pr_info("Freescale hypervisor management driver\n"); | 
|  |  | 
|  | if (!has_fsl_hypervisor()) { | 
|  | pr_info("fsl-hv: no hypervisor found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ret = misc_register(&fsl_hv_misc_dev); | 
|  | if (ret) { | 
|  | pr_err("fsl-hv: cannot register device\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&db_list); | 
|  | INIT_LIST_HEAD(&isr_list); | 
|  |  | 
|  | for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { | 
|  | unsigned int irq; | 
|  | const uint32_t *handle; | 
|  |  | 
|  | handle = of_get_property(np, "interrupts", NULL); | 
|  | irq = irq_of_parse_and_map(np, 0); | 
|  | if (!handle || (irq == NO_IRQ)) { | 
|  | pr_err("fsl-hv: no 'interrupts' property in %s node\n", | 
|  | np->full_name); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); | 
|  | if (!dbisr) | 
|  | goto out_of_memory; | 
|  |  | 
|  | dbisr->irq = irq; | 
|  | dbisr->doorbell = be32_to_cpup(handle); | 
|  |  | 
|  | if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { | 
|  | /* The shutdown doorbell gets its own ISR */ | 
|  | ret = request_irq(irq, fsl_hv_shutdown_isr, 0, | 
|  | np->name, NULL); | 
|  | } else if (of_device_is_compatible(np, | 
|  | "fsl,hv-state-change-doorbell")) { | 
|  | /* | 
|  | * The state change doorbell triggers a notification if | 
|  | * the state of the managed partition changes to | 
|  | * "stopped". We need a separate interrupt handler for | 
|  | * that, and we also need to know the handle of the | 
|  | * target partition, not just the handle of the | 
|  | * doorbell. | 
|  | */ | 
|  | dbisr->partition = ret = get_parent_handle(np); | 
|  | if (ret < 0) { | 
|  | pr_err("fsl-hv: node %s has missing or " | 
|  | "malformed parent\n", np->full_name); | 
|  | kfree(dbisr); | 
|  | continue; | 
|  | } | 
|  | ret = request_threaded_irq(irq, fsl_hv_state_change_isr, | 
|  | fsl_hv_state_change_thread, | 
|  | 0, np->name, dbisr); | 
|  | } else | 
|  | ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); | 
|  |  | 
|  | if (ret < 0) { | 
|  | pr_err("fsl-hv: could not request irq %u for node %s\n", | 
|  | irq, np->full_name); | 
|  | kfree(dbisr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_add(&dbisr->list, &isr_list); | 
|  |  | 
|  | pr_info("fsl-hv: registered handler for doorbell %u\n", | 
|  | dbisr->doorbell); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_of_memory: | 
|  | list_for_each_entry_safe(dbisr, n, &isr_list, list) { | 
|  | free_irq(dbisr->irq, dbisr); | 
|  | list_del(&dbisr->list); | 
|  | kfree(dbisr); | 
|  | } | 
|  |  | 
|  | misc_deregister(&fsl_hv_misc_dev); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Freescale hypervisor management driver termination | 
|  | * | 
|  | * This function is called when this driver is unloaded. | 
|  | */ | 
|  | static void __exit fsl_hypervisor_exit(void) | 
|  | { | 
|  | struct doorbell_isr *dbisr, *n; | 
|  |  | 
|  | list_for_each_entry_safe(dbisr, n, &isr_list, list) { | 
|  | free_irq(dbisr->irq, dbisr); | 
|  | list_del(&dbisr->list); | 
|  | kfree(dbisr); | 
|  | } | 
|  |  | 
|  | misc_deregister(&fsl_hv_misc_dev); | 
|  | } | 
|  |  | 
|  | module_init(fsl_hypervisor_init); | 
|  | module_exit(fsl_hypervisor_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | 
|  | MODULE_DESCRIPTION("Freescale hypervisor management driver"); | 
|  | MODULE_LICENSE("GPL v2"); |