|  | /* | 
|  | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | 
|  | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | 
|  | * | 
|  | * Right now, I am very wasteful with the buffers.  I allocate memory | 
|  | * pages and then divide them into 2K frame buffers.  This way I know I | 
|  | * have buffers large enough to hold one frame within one buffer descriptor. | 
|  | * Once I get this working, I will use 64 or 128 byte CPM buffers, which | 
|  | * will be much more memory efficient and will easily handle lots of | 
|  | * small packets. | 
|  | * | 
|  | * Much better multiple PHY support by Magnus Damm. | 
|  | * Copyright (c) 2000 Ericsson Radio Systems AB. | 
|  | * | 
|  | * Support for FEC controller of ColdFire processors. | 
|  | * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) | 
|  | * | 
|  | * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) | 
|  | * Copyright (c) 2004-2006 Macq Electronique SA. | 
|  | * | 
|  | * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/phy.h> | 
|  | #include <linux/fec.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_gpio.h> | 
|  | #include <linux/of_net.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | #ifndef CONFIG_ARM | 
|  | #include <asm/coldfire.h> | 
|  | #include <asm/mcfsim.h> | 
|  | #endif | 
|  |  | 
|  | #include "fec.h" | 
|  |  | 
|  | #if defined(CONFIG_ARM) | 
|  | #define FEC_ALIGNMENT	0xf | 
|  | #else | 
|  | #define FEC_ALIGNMENT	0x3 | 
|  | #endif | 
|  |  | 
|  | #define DRIVER_NAME	"fec" | 
|  |  | 
|  | /* Controller is ENET-MAC */ | 
|  | #define FEC_QUIRK_ENET_MAC		(1 << 0) | 
|  | /* Controller needs driver to swap frame */ | 
|  | #define FEC_QUIRK_SWAP_FRAME		(1 << 1) | 
|  | /* Controller uses gasket */ | 
|  | #define FEC_QUIRK_USE_GASKET		(1 << 2) | 
|  | /* Controller has GBIT support */ | 
|  | #define FEC_QUIRK_HAS_GBIT		(1 << 3) | 
|  |  | 
|  | static struct platform_device_id fec_devtype[] = { | 
|  | { | 
|  | /* keep it for coldfire */ | 
|  | .name = DRIVER_NAME, | 
|  | .driver_data = 0, | 
|  | }, { | 
|  | .name = "imx25-fec", | 
|  | .driver_data = FEC_QUIRK_USE_GASKET, | 
|  | }, { | 
|  | .name = "imx27-fec", | 
|  | .driver_data = 0, | 
|  | }, { | 
|  | .name = "imx28-fec", | 
|  | .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME, | 
|  | }, { | 
|  | .name = "imx6q-fec", | 
|  | .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT, | 
|  | }, { | 
|  | /* sentinel */ | 
|  | } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(platform, fec_devtype); | 
|  |  | 
|  | enum imx_fec_type { | 
|  | IMX25_FEC = 1,	/* runs on i.mx25/50/53 */ | 
|  | IMX27_FEC,	/* runs on i.mx27/35/51 */ | 
|  | IMX28_FEC, | 
|  | IMX6Q_FEC, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id fec_dt_ids[] = { | 
|  | { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, | 
|  | { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, | 
|  | { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, | 
|  | { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, fec_dt_ids); | 
|  |  | 
|  | static unsigned char macaddr[ETH_ALEN]; | 
|  | module_param_array(macaddr, byte, NULL, 0); | 
|  | MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); | 
|  |  | 
|  | #if defined(CONFIG_M5272) | 
|  | /* | 
|  | * Some hardware gets it MAC address out of local flash memory. | 
|  | * if this is non-zero then assume it is the address to get MAC from. | 
|  | */ | 
|  | #if defined(CONFIG_NETtel) | 
|  | #define	FEC_FLASHMAC	0xf0006006 | 
|  | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | 
|  | #define	FEC_FLASHMAC	0xf0006000 | 
|  | #elif defined(CONFIG_CANCam) | 
|  | #define	FEC_FLASHMAC	0xf0020000 | 
|  | #elif defined (CONFIG_M5272C3) | 
|  | #define	FEC_FLASHMAC	(0xffe04000 + 4) | 
|  | #elif defined(CONFIG_MOD5272) | 
|  | #define FEC_FLASHMAC	0xffc0406b | 
|  | #else | 
|  | #define	FEC_FLASHMAC	0 | 
|  | #endif | 
|  | #endif /* CONFIG_M5272 */ | 
|  |  | 
|  | /* The number of Tx and Rx buffers.  These are allocated from the page | 
|  | * pool.  The code may assume these are power of two, so it it best | 
|  | * to keep them that size. | 
|  | * We don't need to allocate pages for the transmitter.  We just use | 
|  | * the skbuffer directly. | 
|  | */ | 
|  | #define FEC_ENET_RX_PAGES	8 | 
|  | #define FEC_ENET_RX_FRSIZE	2048 | 
|  | #define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE) | 
|  | #define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | 
|  | #define FEC_ENET_TX_FRSIZE	2048 | 
|  | #define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE) | 
|  | #define TX_RING_SIZE		16	/* Must be power of two */ | 
|  | #define TX_RING_MOD_MASK	15	/*   for this to work */ | 
|  |  | 
|  | #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) | 
|  | #error "FEC: descriptor ring size constants too large" | 
|  | #endif | 
|  |  | 
|  | /* Interrupt events/masks. */ | 
|  | #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */ | 
|  | #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */ | 
|  | #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */ | 
|  | #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */ | 
|  | #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */ | 
|  | #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */ | 
|  | #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */ | 
|  | #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */ | 
|  | #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */ | 
|  | #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */ | 
|  |  | 
|  | #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII) | 
|  |  | 
|  | /* The FEC stores dest/src/type, data, and checksum for receive packets. | 
|  | */ | 
|  | #define PKT_MAXBUF_SIZE		1518 | 
|  | #define PKT_MINBUF_SIZE		64 | 
|  | #define PKT_MAXBLR_SIZE		1520 | 
|  |  | 
|  | /* This device has up to three irqs on some platforms */ | 
|  | #define FEC_IRQ_NUM		3 | 
|  |  | 
|  | /* | 
|  | * The 5270/5271/5280/5282/532x RX control register also contains maximum frame | 
|  | * size bits. Other FEC hardware does not, so we need to take that into | 
|  | * account when setting it. | 
|  | */ | 
|  | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ | 
|  | defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) | 
|  | #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16) | 
|  | #else | 
|  | #define	OPT_FRAME_SIZE	0 | 
|  | #endif | 
|  |  | 
|  | /* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and | 
|  | * tx_bd_base always point to the base of the buffer descriptors.  The | 
|  | * cur_rx and cur_tx point to the currently available buffer. | 
|  | * The dirty_tx tracks the current buffer that is being sent by the | 
|  | * controller.  The cur_tx and dirty_tx are equal under both completely | 
|  | * empty and completely full conditions.  The empty/ready indicator in | 
|  | * the buffer descriptor determines the actual condition. | 
|  | */ | 
|  | struct fec_enet_private { | 
|  | /* Hardware registers of the FEC device */ | 
|  | void __iomem *hwp; | 
|  |  | 
|  | struct net_device *netdev; | 
|  |  | 
|  | struct clk *clk; | 
|  |  | 
|  | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | 
|  | unsigned char *tx_bounce[TX_RING_SIZE]; | 
|  | struct	sk_buff* tx_skbuff[TX_RING_SIZE]; | 
|  | struct	sk_buff* rx_skbuff[RX_RING_SIZE]; | 
|  | ushort	skb_cur; | 
|  | ushort	skb_dirty; | 
|  |  | 
|  | /* CPM dual port RAM relative addresses */ | 
|  | dma_addr_t	bd_dma; | 
|  | /* Address of Rx and Tx buffers */ | 
|  | struct bufdesc	*rx_bd_base; | 
|  | struct bufdesc	*tx_bd_base; | 
|  | /* The next free ring entry */ | 
|  | struct bufdesc	*cur_rx, *cur_tx; | 
|  | /* The ring entries to be free()ed */ | 
|  | struct bufdesc	*dirty_tx; | 
|  |  | 
|  | uint	tx_full; | 
|  | /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */ | 
|  | spinlock_t hw_lock; | 
|  |  | 
|  | struct	platform_device *pdev; | 
|  |  | 
|  | int	opened; | 
|  | int	dev_id; | 
|  |  | 
|  | /* Phylib and MDIO interface */ | 
|  | struct	mii_bus *mii_bus; | 
|  | struct	phy_device *phy_dev; | 
|  | int	mii_timeout; | 
|  | uint	phy_speed; | 
|  | phy_interface_t	phy_interface; | 
|  | int	link; | 
|  | int	full_duplex; | 
|  | struct	completion mdio_done; | 
|  | int	irq[FEC_IRQ_NUM]; | 
|  | }; | 
|  |  | 
|  | /* FEC MII MMFR bits definition */ | 
|  | #define FEC_MMFR_ST		(1 << 30) | 
|  | #define FEC_MMFR_OP_READ	(2 << 28) | 
|  | #define FEC_MMFR_OP_WRITE	(1 << 28) | 
|  | #define FEC_MMFR_PA(v)		((v & 0x1f) << 23) | 
|  | #define FEC_MMFR_RA(v)		((v & 0x1f) << 18) | 
|  | #define FEC_MMFR_TA		(2 << 16) | 
|  | #define FEC_MMFR_DATA(v)	(v & 0xffff) | 
|  |  | 
|  | #define FEC_MII_TIMEOUT		30000 /* us */ | 
|  |  | 
|  | /* Transmitter timeout */ | 
|  | #define TX_TIMEOUT (2 * HZ) | 
|  |  | 
|  | static int mii_cnt; | 
|  |  | 
|  | static void *swap_buffer(void *bufaddr, int len) | 
|  | { | 
|  | int i; | 
|  | unsigned int *buf = bufaddr; | 
|  |  | 
|  | for (i = 0; i < (len + 3) / 4; i++, buf++) | 
|  | *buf = cpu_to_be32(*buf); | 
|  |  | 
|  | return bufaddr; | 
|  | } | 
|  |  | 
|  | static netdev_tx_t | 
|  | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | struct bufdesc *bdp; | 
|  | void *bufaddr; | 
|  | unsigned short	status; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!fep->link) { | 
|  | /* Link is down or autonegotiation is in progress. */ | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&fep->hw_lock, flags); | 
|  | /* Fill in a Tx ring entry */ | 
|  | bdp = fep->cur_tx; | 
|  |  | 
|  | status = bdp->cbd_sc; | 
|  |  | 
|  | if (status & BD_ENET_TX_READY) { | 
|  | /* Ooops.  All transmit buffers are full.  Bail out. | 
|  | * This should not happen, since ndev->tbusy should be set. | 
|  | */ | 
|  | printk("%s: tx queue full!.\n", ndev->name); | 
|  | spin_unlock_irqrestore(&fep->hw_lock, flags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | /* Clear all of the status flags */ | 
|  | status &= ~BD_ENET_TX_STATS; | 
|  |  | 
|  | /* Set buffer length and buffer pointer */ | 
|  | bufaddr = skb->data; | 
|  | bdp->cbd_datlen = skb->len; | 
|  |  | 
|  | /* | 
|  | * On some FEC implementations data must be aligned on | 
|  | * 4-byte boundaries. Use bounce buffers to copy data | 
|  | * and get it aligned. Ugh. | 
|  | */ | 
|  | if (((unsigned long) bufaddr) & FEC_ALIGNMENT) { | 
|  | unsigned int index; | 
|  | index = bdp - fep->tx_bd_base; | 
|  | memcpy(fep->tx_bounce[index], skb->data, skb->len); | 
|  | bufaddr = fep->tx_bounce[index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some design made an incorrect assumption on endian mode of | 
|  | * the system that it's running on. As the result, driver has to | 
|  | * swap every frame going to and coming from the controller. | 
|  | */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) | 
|  | swap_buffer(bufaddr, skb->len); | 
|  |  | 
|  | /* Save skb pointer */ | 
|  | fep->tx_skbuff[fep->skb_cur] = skb; | 
|  |  | 
|  | ndev->stats.tx_bytes += skb->len; | 
|  | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | 
|  |  | 
|  | /* Push the data cache so the CPM does not get stale memory | 
|  | * data. | 
|  | */ | 
|  | bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr, | 
|  | FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
|  |  | 
|  | /* Send it on its way.  Tell FEC it's ready, interrupt when done, | 
|  | * it's the last BD of the frame, and to put the CRC on the end. | 
|  | */ | 
|  | status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | 
|  | | BD_ENET_TX_LAST | BD_ENET_TX_TC); | 
|  | bdp->cbd_sc = status; | 
|  |  | 
|  | /* Trigger transmission start */ | 
|  | writel(0, fep->hwp + FEC_X_DES_ACTIVE); | 
|  |  | 
|  | /* If this was the last BD in the ring, start at the beginning again. */ | 
|  | if (status & BD_ENET_TX_WRAP) | 
|  | bdp = fep->tx_bd_base; | 
|  | else | 
|  | bdp++; | 
|  |  | 
|  | if (bdp == fep->dirty_tx) { | 
|  | fep->tx_full = 1; | 
|  | netif_stop_queue(ndev); | 
|  | } | 
|  |  | 
|  | fep->cur_tx = bdp; | 
|  |  | 
|  | skb_tx_timestamp(skb); | 
|  |  | 
|  | spin_unlock_irqrestore(&fep->hw_lock, flags); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* This function is called to start or restart the FEC during a link | 
|  | * change.  This only happens when switching between half and full | 
|  | * duplex. | 
|  | */ | 
|  | static void | 
|  | fec_restart(struct net_device *ndev, int duplex) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | int i; | 
|  | u32 temp_mac[2]; | 
|  | u32 rcntl = OPT_FRAME_SIZE | 0x04; | 
|  | u32 ecntl = 0x2; /* ETHEREN */ | 
|  |  | 
|  | /* Whack a reset.  We should wait for this. */ | 
|  | writel(1, fep->hwp + FEC_ECNTRL); | 
|  | udelay(10); | 
|  |  | 
|  | /* | 
|  | * enet-mac reset will reset mac address registers too, | 
|  | * so need to reconfigure it. | 
|  | */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { | 
|  | memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); | 
|  | writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); | 
|  | writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); | 
|  | } | 
|  |  | 
|  | /* Clear any outstanding interrupt. */ | 
|  | writel(0xffc00000, fep->hwp + FEC_IEVENT); | 
|  |  | 
|  | /* Reset all multicast.	*/ | 
|  | writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
|  | writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
|  | #ifndef CONFIG_M5272 | 
|  | writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); | 
|  | writel(0, fep->hwp + FEC_HASH_TABLE_LOW); | 
|  | #endif | 
|  |  | 
|  | /* Set maximum receive buffer size. */ | 
|  | writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE); | 
|  |  | 
|  | /* Set receive and transmit descriptor base. */ | 
|  | writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); | 
|  | writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, | 
|  | fep->hwp + FEC_X_DES_START); | 
|  |  | 
|  | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | 
|  | fep->cur_rx = fep->rx_bd_base; | 
|  |  | 
|  | /* Reset SKB transmit buffers. */ | 
|  | fep->skb_cur = fep->skb_dirty = 0; | 
|  | for (i = 0; i <= TX_RING_MOD_MASK; i++) { | 
|  | if (fep->tx_skbuff[i]) { | 
|  | dev_kfree_skb_any(fep->tx_skbuff[i]); | 
|  | fep->tx_skbuff[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable MII mode */ | 
|  | if (duplex) { | 
|  | /* FD enable */ | 
|  | writel(0x04, fep->hwp + FEC_X_CNTRL); | 
|  | } else { | 
|  | /* No Rcv on Xmit */ | 
|  | rcntl |= 0x02; | 
|  | writel(0x0, fep->hwp + FEC_X_CNTRL); | 
|  | } | 
|  |  | 
|  | fep->full_duplex = duplex; | 
|  |  | 
|  | /* Set MII speed */ | 
|  | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
|  |  | 
|  | /* | 
|  | * The phy interface and speed need to get configured | 
|  | * differently on enet-mac. | 
|  | */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { | 
|  | /* Enable flow control and length check */ | 
|  | rcntl |= 0x40000000 | 0x00000020; | 
|  |  | 
|  | /* RGMII, RMII or MII */ | 
|  | if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII) | 
|  | rcntl |= (1 << 6); | 
|  | else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) | 
|  | rcntl |= (1 << 8); | 
|  | else | 
|  | rcntl &= ~(1 << 8); | 
|  |  | 
|  | /* 1G, 100M or 10M */ | 
|  | if (fep->phy_dev) { | 
|  | if (fep->phy_dev->speed == SPEED_1000) | 
|  | ecntl |= (1 << 5); | 
|  | else if (fep->phy_dev->speed == SPEED_100) | 
|  | rcntl &= ~(1 << 9); | 
|  | else | 
|  | rcntl |= (1 << 9); | 
|  | } | 
|  | } else { | 
|  | #ifdef FEC_MIIGSK_ENR | 
|  | if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) { | 
|  | u32 cfgr; | 
|  | /* disable the gasket and wait */ | 
|  | writel(0, fep->hwp + FEC_MIIGSK_ENR); | 
|  | while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) | 
|  | udelay(1); | 
|  |  | 
|  | /* | 
|  | * configure the gasket: | 
|  | *   RMII, 50 MHz, no loopback, no echo | 
|  | *   MII, 25 MHz, no loopback, no echo | 
|  | */ | 
|  | cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) | 
|  | ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; | 
|  | if (fep->phy_dev && fep->phy_dev->speed == SPEED_10) | 
|  | cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; | 
|  | writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); | 
|  |  | 
|  | /* re-enable the gasket */ | 
|  | writel(2, fep->hwp + FEC_MIIGSK_ENR); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | writel(rcntl, fep->hwp + FEC_R_CNTRL); | 
|  |  | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { | 
|  | /* enable ENET endian swap */ | 
|  | ecntl |= (1 << 8); | 
|  | /* enable ENET store and forward mode */ | 
|  | writel(1 << 8, fep->hwp + FEC_X_WMRK); | 
|  | } | 
|  |  | 
|  | /* And last, enable the transmit and receive processing */ | 
|  | writel(ecntl, fep->hwp + FEC_ECNTRL); | 
|  | writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
|  |  | 
|  | /* Enable interrupts we wish to service */ | 
|  | writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fec_stop(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); | 
|  |  | 
|  | /* We cannot expect a graceful transmit stop without link !!! */ | 
|  | if (fep->link) { | 
|  | writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ | 
|  | udelay(10); | 
|  | if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) | 
|  | printk("fec_stop : Graceful transmit stop did not complete !\n"); | 
|  | } | 
|  |  | 
|  | /* Whack a reset.  We should wait for this. */ | 
|  | writel(1, fep->hwp + FEC_ECNTRL); | 
|  | udelay(10); | 
|  | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
|  | writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); | 
|  |  | 
|  | /* We have to keep ENET enabled to have MII interrupt stay working */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) { | 
|  | writel(2, fep->hwp + FEC_ECNTRL); | 
|  | writel(rmii_mode, fep->hwp + FEC_R_CNTRL); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | fec_timeout(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | ndev->stats.tx_errors++; | 
|  |  | 
|  | fec_restart(ndev, fep->full_duplex); | 
|  | netif_wake_queue(ndev); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fec_enet_tx(struct net_device *ndev) | 
|  | { | 
|  | struct	fec_enet_private *fep; | 
|  | struct bufdesc *bdp; | 
|  | unsigned short status; | 
|  | struct	sk_buff	*skb; | 
|  |  | 
|  | fep = netdev_priv(ndev); | 
|  | spin_lock(&fep->hw_lock); | 
|  | bdp = fep->dirty_tx; | 
|  |  | 
|  | while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { | 
|  | if (bdp == fep->cur_tx && fep->tx_full == 0) | 
|  | break; | 
|  |  | 
|  | dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, | 
|  | FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE); | 
|  | bdp->cbd_bufaddr = 0; | 
|  |  | 
|  | skb = fep->tx_skbuff[fep->skb_dirty]; | 
|  | /* Check for errors. */ | 
|  | if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | | 
|  | BD_ENET_TX_RL | BD_ENET_TX_UN | | 
|  | BD_ENET_TX_CSL)) { | 
|  | ndev->stats.tx_errors++; | 
|  | if (status & BD_ENET_TX_HB)  /* No heartbeat */ | 
|  | ndev->stats.tx_heartbeat_errors++; | 
|  | if (status & BD_ENET_TX_LC)  /* Late collision */ | 
|  | ndev->stats.tx_window_errors++; | 
|  | if (status & BD_ENET_TX_RL)  /* Retrans limit */ | 
|  | ndev->stats.tx_aborted_errors++; | 
|  | if (status & BD_ENET_TX_UN)  /* Underrun */ | 
|  | ndev->stats.tx_fifo_errors++; | 
|  | if (status & BD_ENET_TX_CSL) /* Carrier lost */ | 
|  | ndev->stats.tx_carrier_errors++; | 
|  | } else { | 
|  | ndev->stats.tx_packets++; | 
|  | } | 
|  |  | 
|  | if (status & BD_ENET_TX_READY) | 
|  | printk("HEY! Enet xmit interrupt and TX_READY.\n"); | 
|  |  | 
|  | /* Deferred means some collisions occurred during transmit, | 
|  | * but we eventually sent the packet OK. | 
|  | */ | 
|  | if (status & BD_ENET_TX_DEF) | 
|  | ndev->stats.collisions++; | 
|  |  | 
|  | /* Free the sk buffer associated with this last transmit */ | 
|  | dev_kfree_skb_any(skb); | 
|  | fep->tx_skbuff[fep->skb_dirty] = NULL; | 
|  | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | 
|  |  | 
|  | /* Update pointer to next buffer descriptor to be transmitted */ | 
|  | if (status & BD_ENET_TX_WRAP) | 
|  | bdp = fep->tx_bd_base; | 
|  | else | 
|  | bdp++; | 
|  |  | 
|  | /* Since we have freed up a buffer, the ring is no longer full | 
|  | */ | 
|  | if (fep->tx_full) { | 
|  | fep->tx_full = 0; | 
|  | if (netif_queue_stopped(ndev)) | 
|  | netif_wake_queue(ndev); | 
|  | } | 
|  | } | 
|  | fep->dirty_tx = bdp; | 
|  | spin_unlock(&fep->hw_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* During a receive, the cur_rx points to the current incoming buffer. | 
|  | * When we update through the ring, if the next incoming buffer has | 
|  | * not been given to the system, we just set the empty indicator, | 
|  | * effectively tossing the packet. | 
|  | */ | 
|  | static void | 
|  | fec_enet_rx(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | struct bufdesc *bdp; | 
|  | unsigned short status; | 
|  | struct	sk_buff	*skb; | 
|  | ushort	pkt_len; | 
|  | __u8 *data; | 
|  |  | 
|  | #ifdef CONFIG_M532x | 
|  | flush_cache_all(); | 
|  | #endif | 
|  |  | 
|  | spin_lock(&fep->hw_lock); | 
|  |  | 
|  | /* First, grab all of the stats for the incoming packet. | 
|  | * These get messed up if we get called due to a busy condition. | 
|  | */ | 
|  | bdp = fep->cur_rx; | 
|  |  | 
|  | while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { | 
|  |  | 
|  | /* Since we have allocated space to hold a complete frame, | 
|  | * the last indicator should be set. | 
|  | */ | 
|  | if ((status & BD_ENET_RX_LAST) == 0) | 
|  | printk("FEC ENET: rcv is not +last\n"); | 
|  |  | 
|  | if (!fep->opened) | 
|  | goto rx_processing_done; | 
|  |  | 
|  | /* Check for errors. */ | 
|  | if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | 
|  | BD_ENET_RX_CR | BD_ENET_RX_OV)) { | 
|  | ndev->stats.rx_errors++; | 
|  | if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | 
|  | /* Frame too long or too short. */ | 
|  | ndev->stats.rx_length_errors++; | 
|  | } | 
|  | if (status & BD_ENET_RX_NO)	/* Frame alignment */ | 
|  | ndev->stats.rx_frame_errors++; | 
|  | if (status & BD_ENET_RX_CR)	/* CRC Error */ | 
|  | ndev->stats.rx_crc_errors++; | 
|  | if (status & BD_ENET_RX_OV)	/* FIFO overrun */ | 
|  | ndev->stats.rx_fifo_errors++; | 
|  | } | 
|  |  | 
|  | /* Report late collisions as a frame error. | 
|  | * On this error, the BD is closed, but we don't know what we | 
|  | * have in the buffer.  So, just drop this frame on the floor. | 
|  | */ | 
|  | if (status & BD_ENET_RX_CL) { | 
|  | ndev->stats.rx_errors++; | 
|  | ndev->stats.rx_frame_errors++; | 
|  | goto rx_processing_done; | 
|  | } | 
|  |  | 
|  | /* Process the incoming frame. */ | 
|  | ndev->stats.rx_packets++; | 
|  | pkt_len = bdp->cbd_datlen; | 
|  | ndev->stats.rx_bytes += pkt_len; | 
|  | data = (__u8*)__va(bdp->cbd_bufaddr); | 
|  |  | 
|  | dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, | 
|  | FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); | 
|  |  | 
|  | if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) | 
|  | swap_buffer(data, pkt_len); | 
|  |  | 
|  | /* This does 16 byte alignment, exactly what we need. | 
|  | * The packet length includes FCS, but we don't want to | 
|  | * include that when passing upstream as it messes up | 
|  | * bridging applications. | 
|  | */ | 
|  | skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN); | 
|  |  | 
|  | if (unlikely(!skb)) { | 
|  | printk("%s: Memory squeeze, dropping packet.\n", | 
|  | ndev->name); | 
|  | ndev->stats.rx_dropped++; | 
|  | } else { | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | skb_put(skb, pkt_len - 4);	/* Make room */ | 
|  | skb_copy_to_linear_data(skb, data, pkt_len - 4); | 
|  | skb->protocol = eth_type_trans(skb, ndev); | 
|  | if (!skb_defer_rx_timestamp(skb)) | 
|  | netif_rx(skb); | 
|  | } | 
|  |  | 
|  | bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data, | 
|  | FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE); | 
|  | rx_processing_done: | 
|  | /* Clear the status flags for this buffer */ | 
|  | status &= ~BD_ENET_RX_STATS; | 
|  |  | 
|  | /* Mark the buffer empty */ | 
|  | status |= BD_ENET_RX_EMPTY; | 
|  | bdp->cbd_sc = status; | 
|  |  | 
|  | /* Update BD pointer to next entry */ | 
|  | if (status & BD_ENET_RX_WRAP) | 
|  | bdp = fep->rx_bd_base; | 
|  | else | 
|  | bdp++; | 
|  | /* Doing this here will keep the FEC running while we process | 
|  | * incoming frames.  On a heavily loaded network, we should be | 
|  | * able to keep up at the expense of system resources. | 
|  | */ | 
|  | writel(0, fep->hwp + FEC_R_DES_ACTIVE); | 
|  | } | 
|  | fep->cur_rx = bdp; | 
|  |  | 
|  | spin_unlock(&fep->hw_lock); | 
|  | } | 
|  |  | 
|  | static irqreturn_t | 
|  | fec_enet_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct net_device *ndev = dev_id; | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | uint int_events; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  |  | 
|  | do { | 
|  | int_events = readl(fep->hwp + FEC_IEVENT); | 
|  | writel(int_events, fep->hwp + FEC_IEVENT); | 
|  |  | 
|  | if (int_events & FEC_ENET_RXF) { | 
|  | ret = IRQ_HANDLED; | 
|  | fec_enet_rx(ndev); | 
|  | } | 
|  |  | 
|  | /* Transmit OK, or non-fatal error. Update the buffer | 
|  | * descriptors. FEC handles all errors, we just discover | 
|  | * them as part of the transmit process. | 
|  | */ | 
|  | if (int_events & FEC_ENET_TXF) { | 
|  | ret = IRQ_HANDLED; | 
|  | fec_enet_tx(ndev); | 
|  | } | 
|  |  | 
|  | if (int_events & FEC_ENET_MII) { | 
|  | ret = IRQ_HANDLED; | 
|  | complete(&fep->mdio_done); | 
|  | } | 
|  | } while (int_events); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  | static void __inline__ fec_get_mac(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct fec_platform_data *pdata = fep->pdev->dev.platform_data; | 
|  | unsigned char *iap, tmpaddr[ETH_ALEN]; | 
|  |  | 
|  | /* | 
|  | * try to get mac address in following order: | 
|  | * | 
|  | * 1) module parameter via kernel command line in form | 
|  | *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 | 
|  | */ | 
|  | iap = macaddr; | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | /* | 
|  | * 2) from device tree data | 
|  | */ | 
|  | if (!is_valid_ether_addr(iap)) { | 
|  | struct device_node *np = fep->pdev->dev.of_node; | 
|  | if (np) { | 
|  | const char *mac = of_get_mac_address(np); | 
|  | if (mac) | 
|  | iap = (unsigned char *) mac; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * 3) from flash or fuse (via platform data) | 
|  | */ | 
|  | if (!is_valid_ether_addr(iap)) { | 
|  | #ifdef CONFIG_M5272 | 
|  | if (FEC_FLASHMAC) | 
|  | iap = (unsigned char *)FEC_FLASHMAC; | 
|  | #else | 
|  | if (pdata) | 
|  | iap = (unsigned char *)&pdata->mac; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 4) FEC mac registers set by bootloader | 
|  | */ | 
|  | if (!is_valid_ether_addr(iap)) { | 
|  | *((unsigned long *) &tmpaddr[0]) = | 
|  | be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW)); | 
|  | *((unsigned short *) &tmpaddr[4]) = | 
|  | be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); | 
|  | iap = &tmpaddr[0]; | 
|  | } | 
|  |  | 
|  | memcpy(ndev->dev_addr, iap, ETH_ALEN); | 
|  |  | 
|  | /* Adjust MAC if using macaddr */ | 
|  | if (iap == macaddr) | 
|  | ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; | 
|  | } | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * Phy section | 
|  | */ | 
|  | static void fec_enet_adjust_link(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct phy_device *phy_dev = fep->phy_dev; | 
|  | unsigned long flags; | 
|  |  | 
|  | int status_change = 0; | 
|  |  | 
|  | spin_lock_irqsave(&fep->hw_lock, flags); | 
|  |  | 
|  | /* Prevent a state halted on mii error */ | 
|  | if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { | 
|  | phy_dev->state = PHY_RESUMING; | 
|  | goto spin_unlock; | 
|  | } | 
|  |  | 
|  | /* Duplex link change */ | 
|  | if (phy_dev->link) { | 
|  | if (fep->full_duplex != phy_dev->duplex) { | 
|  | fec_restart(ndev, phy_dev->duplex); | 
|  | /* prevent unnecessary second fec_restart() below */ | 
|  | fep->link = phy_dev->link; | 
|  | status_change = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Link on or off change */ | 
|  | if (phy_dev->link != fep->link) { | 
|  | fep->link = phy_dev->link; | 
|  | if (phy_dev->link) | 
|  | fec_restart(ndev, phy_dev->duplex); | 
|  | else | 
|  | fec_stop(ndev); | 
|  | status_change = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock: | 
|  | spin_unlock_irqrestore(&fep->hw_lock, flags); | 
|  |  | 
|  | if (status_change) | 
|  | phy_print_status(phy_dev); | 
|  | } | 
|  |  | 
|  | static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) | 
|  | { | 
|  | struct fec_enet_private *fep = bus->priv; | 
|  | unsigned long time_left; | 
|  |  | 
|  | fep->mii_timeout = 0; | 
|  | init_completion(&fep->mdio_done); | 
|  |  | 
|  | /* start a read op */ | 
|  | writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | | 
|  | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | | 
|  | FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); | 
|  |  | 
|  | /* wait for end of transfer */ | 
|  | time_left = wait_for_completion_timeout(&fep->mdio_done, | 
|  | usecs_to_jiffies(FEC_MII_TIMEOUT)); | 
|  | if (time_left == 0) { | 
|  | fep->mii_timeout = 1; | 
|  | printk(KERN_ERR "FEC: MDIO read timeout\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* return value */ | 
|  | return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); | 
|  | } | 
|  |  | 
|  | static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, | 
|  | u16 value) | 
|  | { | 
|  | struct fec_enet_private *fep = bus->priv; | 
|  | unsigned long time_left; | 
|  |  | 
|  | fep->mii_timeout = 0; | 
|  | init_completion(&fep->mdio_done); | 
|  |  | 
|  | /* start a write op */ | 
|  | writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | | 
|  | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | | 
|  | FEC_MMFR_TA | FEC_MMFR_DATA(value), | 
|  | fep->hwp + FEC_MII_DATA); | 
|  |  | 
|  | /* wait for end of transfer */ | 
|  | time_left = wait_for_completion_timeout(&fep->mdio_done, | 
|  | usecs_to_jiffies(FEC_MII_TIMEOUT)); | 
|  | if (time_left == 0) { | 
|  | fep->mii_timeout = 1; | 
|  | printk(KERN_ERR "FEC: MDIO write timeout\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fec_enet_mdio_reset(struct mii_bus *bus) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fec_enet_mii_probe(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | struct phy_device *phy_dev = NULL; | 
|  | char mdio_bus_id[MII_BUS_ID_SIZE]; | 
|  | char phy_name[MII_BUS_ID_SIZE + 3]; | 
|  | int phy_id; | 
|  | int dev_id = fep->dev_id; | 
|  |  | 
|  | fep->phy_dev = NULL; | 
|  |  | 
|  | /* check for attached phy */ | 
|  | for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { | 
|  | if ((fep->mii_bus->phy_mask & (1 << phy_id))) | 
|  | continue; | 
|  | if (fep->mii_bus->phy_map[phy_id] == NULL) | 
|  | continue; | 
|  | if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) | 
|  | continue; | 
|  | if (dev_id--) | 
|  | continue; | 
|  | strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (phy_id >= PHY_MAX_ADDR) { | 
|  | printk(KERN_INFO | 
|  | "%s: no PHY, assuming direct connection to switch\n", | 
|  | ndev->name); | 
|  | strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); | 
|  | phy_id = 0; | 
|  | } | 
|  |  | 
|  | snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id); | 
|  | phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0, | 
|  | fep->phy_interface); | 
|  | if (IS_ERR(phy_dev)) { | 
|  | printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name); | 
|  | return PTR_ERR(phy_dev); | 
|  | } | 
|  |  | 
|  | /* mask with MAC supported features */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) | 
|  | phy_dev->supported &= PHY_GBIT_FEATURES; | 
|  | else | 
|  | phy_dev->supported &= PHY_BASIC_FEATURES; | 
|  |  | 
|  | phy_dev->advertising = phy_dev->supported; | 
|  |  | 
|  | fep->phy_dev = phy_dev; | 
|  | fep->link = 0; | 
|  | fep->full_duplex = 0; | 
|  |  | 
|  | printk(KERN_INFO | 
|  | "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", | 
|  | ndev->name, | 
|  | fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), | 
|  | fep->phy_dev->irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fec_enet_mii_init(struct platform_device *pdev) | 
|  | { | 
|  | static struct mii_bus *fec0_mii_bus; | 
|  | struct net_device *ndev = platform_get_drvdata(pdev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | const struct platform_device_id *id_entry = | 
|  | platform_get_device_id(fep->pdev); | 
|  | int err = -ENXIO, i; | 
|  |  | 
|  | /* | 
|  | * The dual fec interfaces are not equivalent with enet-mac. | 
|  | * Here are the differences: | 
|  | * | 
|  | *  - fec0 supports MII & RMII modes while fec1 only supports RMII | 
|  | *  - fec0 acts as the 1588 time master while fec1 is slave | 
|  | *  - external phys can only be configured by fec0 | 
|  | * | 
|  | * That is to say fec1 can not work independently. It only works | 
|  | * when fec0 is working. The reason behind this design is that the | 
|  | * second interface is added primarily for Switch mode. | 
|  | * | 
|  | * Because of the last point above, both phys are attached on fec0 | 
|  | * mdio interface in board design, and need to be configured by | 
|  | * fec0 mii_bus. | 
|  | */ | 
|  | if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) { | 
|  | /* fec1 uses fec0 mii_bus */ | 
|  | if (mii_cnt && fec0_mii_bus) { | 
|  | fep->mii_bus = fec0_mii_bus; | 
|  | mii_cnt++; | 
|  | return 0; | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | fep->mii_timeout = 0; | 
|  |  | 
|  | /* | 
|  | * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) | 
|  | * | 
|  | * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while | 
|  | * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28 | 
|  | * Reference Manual has an error on this, and gets fixed on i.MX6Q | 
|  | * document. | 
|  | */ | 
|  | fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000); | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) | 
|  | fep->phy_speed--; | 
|  | fep->phy_speed <<= 1; | 
|  | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); | 
|  |  | 
|  | fep->mii_bus = mdiobus_alloc(); | 
|  | if (fep->mii_bus == NULL) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | fep->mii_bus->name = "fec_enet_mii_bus"; | 
|  | fep->mii_bus->read = fec_enet_mdio_read; | 
|  | fep->mii_bus->write = fec_enet_mdio_write; | 
|  | fep->mii_bus->reset = fec_enet_mdio_reset; | 
|  | snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", | 
|  | pdev->name, fep->dev_id + 1); | 
|  | fep->mii_bus->priv = fep; | 
|  | fep->mii_bus->parent = &pdev->dev; | 
|  |  | 
|  | fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); | 
|  | if (!fep->mii_bus->irq) { | 
|  | err = -ENOMEM; | 
|  | goto err_out_free_mdiobus; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PHY_MAX_ADDR; i++) | 
|  | fep->mii_bus->irq[i] = PHY_POLL; | 
|  |  | 
|  | if (mdiobus_register(fep->mii_bus)) | 
|  | goto err_out_free_mdio_irq; | 
|  |  | 
|  | mii_cnt++; | 
|  |  | 
|  | /* save fec0 mii_bus */ | 
|  | if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) | 
|  | fec0_mii_bus = fep->mii_bus; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_free_mdio_irq: | 
|  | kfree(fep->mii_bus->irq); | 
|  | err_out_free_mdiobus: | 
|  | mdiobus_free(fep->mii_bus); | 
|  | err_out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void fec_enet_mii_remove(struct fec_enet_private *fep) | 
|  | { | 
|  | if (--mii_cnt == 0) { | 
|  | mdiobus_unregister(fep->mii_bus); | 
|  | kfree(fep->mii_bus->irq); | 
|  | mdiobus_free(fep->mii_bus); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fec_enet_get_settings(struct net_device *ndev, | 
|  | struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct phy_device *phydev = fep->phy_dev; | 
|  |  | 
|  | if (!phydev) | 
|  | return -ENODEV; | 
|  |  | 
|  | return phy_ethtool_gset(phydev, cmd); | 
|  | } | 
|  |  | 
|  | static int fec_enet_set_settings(struct net_device *ndev, | 
|  | struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct phy_device *phydev = fep->phy_dev; | 
|  |  | 
|  | if (!phydev) | 
|  | return -ENODEV; | 
|  |  | 
|  | return phy_ethtool_sset(phydev, cmd); | 
|  | } | 
|  |  | 
|  | static void fec_enet_get_drvinfo(struct net_device *ndev, | 
|  | struct ethtool_drvinfo *info) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | strcpy(info->driver, fep->pdev->dev.driver->name); | 
|  | strcpy(info->version, "Revision: 1.0"); | 
|  | strcpy(info->bus_info, dev_name(&ndev->dev)); | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops fec_enet_ethtool_ops = { | 
|  | .get_settings		= fec_enet_get_settings, | 
|  | .set_settings		= fec_enet_set_settings, | 
|  | .get_drvinfo		= fec_enet_get_drvinfo, | 
|  | .get_link		= ethtool_op_get_link, | 
|  | }; | 
|  |  | 
|  | static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct phy_device *phydev = fep->phy_dev; | 
|  |  | 
|  | if (!netif_running(ndev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!phydev) | 
|  | return -ENODEV; | 
|  |  | 
|  | return phy_mii_ioctl(phydev, rq, cmd); | 
|  | } | 
|  |  | 
|  | static void fec_enet_free_buffers(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | int i; | 
|  | struct sk_buff *skb; | 
|  | struct bufdesc	*bdp; | 
|  |  | 
|  | bdp = fep->rx_bd_base; | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | skb = fep->rx_skbuff[i]; | 
|  |  | 
|  | if (bdp->cbd_bufaddr) | 
|  | dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, | 
|  | FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
|  | if (skb) | 
|  | dev_kfree_skb(skb); | 
|  | bdp++; | 
|  | } | 
|  |  | 
|  | bdp = fep->tx_bd_base; | 
|  | for (i = 0; i < TX_RING_SIZE; i++) | 
|  | kfree(fep->tx_bounce[i]); | 
|  | } | 
|  |  | 
|  | static int fec_enet_alloc_buffers(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | int i; | 
|  | struct sk_buff *skb; | 
|  | struct bufdesc	*bdp; | 
|  |  | 
|  | bdp = fep->rx_bd_base; | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); | 
|  | if (!skb) { | 
|  | fec_enet_free_buffers(ndev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | fep->rx_skbuff[i] = skb; | 
|  |  | 
|  | bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, | 
|  | FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE); | 
|  | bdp->cbd_sc = BD_ENET_RX_EMPTY; | 
|  | bdp++; | 
|  | } | 
|  |  | 
|  | /* Set the last buffer to wrap. */ | 
|  | bdp--; | 
|  | bdp->cbd_sc |= BD_SC_WRAP; | 
|  |  | 
|  | bdp = fep->tx_bd_base; | 
|  | for (i = 0; i < TX_RING_SIZE; i++) { | 
|  | fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); | 
|  |  | 
|  | bdp->cbd_sc = 0; | 
|  | bdp->cbd_bufaddr = 0; | 
|  | bdp++; | 
|  | } | 
|  |  | 
|  | /* Set the last buffer to wrap. */ | 
|  | bdp--; | 
|  | bdp->cbd_sc |= BD_SC_WRAP; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | fec_enet_open(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | int ret; | 
|  |  | 
|  | /* I should reset the ring buffers here, but I don't yet know | 
|  | * a simple way to do that. | 
|  | */ | 
|  |  | 
|  | ret = fec_enet_alloc_buffers(ndev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Probe and connect to PHY when open the interface */ | 
|  | ret = fec_enet_mii_probe(ndev); | 
|  | if (ret) { | 
|  | fec_enet_free_buffers(ndev); | 
|  | return ret; | 
|  | } | 
|  | phy_start(fep->phy_dev); | 
|  | netif_start_queue(ndev); | 
|  | fep->opened = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | fec_enet_close(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | /* Don't know what to do yet. */ | 
|  | fep->opened = 0; | 
|  | netif_stop_queue(ndev); | 
|  | fec_stop(ndev); | 
|  |  | 
|  | if (fep->phy_dev) { | 
|  | phy_stop(fep->phy_dev); | 
|  | phy_disconnect(fep->phy_dev); | 
|  | } | 
|  |  | 
|  | fec_enet_free_buffers(ndev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set or clear the multicast filter for this adaptor. | 
|  | * Skeleton taken from sunlance driver. | 
|  | * The CPM Ethernet implementation allows Multicast as well as individual | 
|  | * MAC address filtering.  Some of the drivers check to make sure it is | 
|  | * a group multicast address, and discard those that are not.  I guess I | 
|  | * will do the same for now, but just remove the test if you want | 
|  | * individual filtering as well (do the upper net layers want or support | 
|  | * this kind of feature?). | 
|  | */ | 
|  |  | 
|  | #define HASH_BITS	6		/* #bits in hash */ | 
|  | #define CRC32_POLY	0xEDB88320 | 
|  |  | 
|  | static void set_multicast_list(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct netdev_hw_addr *ha; | 
|  | unsigned int i, bit, data, crc, tmp; | 
|  | unsigned char hash; | 
|  |  | 
|  | if (ndev->flags & IFF_PROMISC) { | 
|  | tmp = readl(fep->hwp + FEC_R_CNTRL); | 
|  | tmp |= 0x8; | 
|  | writel(tmp, fep->hwp + FEC_R_CNTRL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tmp = readl(fep->hwp + FEC_R_CNTRL); | 
|  | tmp &= ~0x8; | 
|  | writel(tmp, fep->hwp + FEC_R_CNTRL); | 
|  |  | 
|  | if (ndev->flags & IFF_ALLMULTI) { | 
|  | /* Catch all multicast addresses, so set the | 
|  | * filter to all 1's | 
|  | */ | 
|  | writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
|  | writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Clear filter and add the addresses in hash register | 
|  | */ | 
|  | writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
|  | writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
|  |  | 
|  | netdev_for_each_mc_addr(ha, ndev) { | 
|  | /* calculate crc32 value of mac address */ | 
|  | crc = 0xffffffff; | 
|  |  | 
|  | for (i = 0; i < ndev->addr_len; i++) { | 
|  | data = ha->addr[i]; | 
|  | for (bit = 0; bit < 8; bit++, data >>= 1) { | 
|  | crc = (crc >> 1) ^ | 
|  | (((crc ^ data) & 1) ? CRC32_POLY : 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* only upper 6 bits (HASH_BITS) are used | 
|  | * which point to specific bit in he hash registers | 
|  | */ | 
|  | hash = (crc >> (32 - HASH_BITS)) & 0x3f; | 
|  |  | 
|  | if (hash > 31) { | 
|  | tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
|  | tmp |= 1 << (hash - 32); | 
|  | writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); | 
|  | } else { | 
|  | tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
|  | tmp |= 1 << hash; | 
|  | writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set a MAC change in hardware. */ | 
|  | static int | 
|  | fec_set_mac_address(struct net_device *ndev, void *p) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); | 
|  |  | 
|  | writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | | 
|  | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), | 
|  | fep->hwp + FEC_ADDR_LOW); | 
|  | writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), | 
|  | fep->hwp + FEC_ADDR_HIGH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* | 
|  | * fec_poll_controller: FEC Poll controller function | 
|  | * @dev: The FEC network adapter | 
|  | * | 
|  | * Polled functionality used by netconsole and others in non interrupt mode | 
|  | * | 
|  | */ | 
|  | void fec_poll_controller(struct net_device *dev) | 
|  | { | 
|  | int i; | 
|  | struct fec_enet_private *fep = netdev_priv(dev); | 
|  |  | 
|  | for (i = 0; i < FEC_IRQ_NUM; i++) { | 
|  | if (fep->irq[i] > 0) { | 
|  | disable_irq(fep->irq[i]); | 
|  | fec_enet_interrupt(fep->irq[i], dev); | 
|  | enable_irq(fep->irq[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct net_device_ops fec_netdev_ops = { | 
|  | .ndo_open		= fec_enet_open, | 
|  | .ndo_stop		= fec_enet_close, | 
|  | .ndo_start_xmit		= fec_enet_start_xmit, | 
|  | .ndo_set_rx_mode	= set_multicast_list, | 
|  | .ndo_change_mtu		= eth_change_mtu, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | .ndo_tx_timeout		= fec_timeout, | 
|  | .ndo_set_mac_address	= fec_set_mac_address, | 
|  | .ndo_do_ioctl		= fec_enet_ioctl, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= fec_poll_controller, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * XXX:  We need to clean up on failure exits here. | 
|  | * | 
|  | */ | 
|  | static int fec_enet_init(struct net_device *ndev) | 
|  | { | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct bufdesc *cbd_base; | 
|  | struct bufdesc *bdp; | 
|  | int i; | 
|  |  | 
|  | /* Allocate memory for buffer descriptors. */ | 
|  | cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma, | 
|  | GFP_KERNEL); | 
|  | if (!cbd_base) { | 
|  | printk("FEC: allocate descriptor memory failed?\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&fep->hw_lock); | 
|  |  | 
|  | fep->netdev = ndev; | 
|  |  | 
|  | /* Get the Ethernet address */ | 
|  | fec_get_mac(ndev); | 
|  |  | 
|  | /* Set receive and transmit descriptor base. */ | 
|  | fep->rx_bd_base = cbd_base; | 
|  | fep->tx_bd_base = cbd_base + RX_RING_SIZE; | 
|  |  | 
|  | /* The FEC Ethernet specific entries in the device structure */ | 
|  | ndev->watchdog_timeo = TX_TIMEOUT; | 
|  | ndev->netdev_ops = &fec_netdev_ops; | 
|  | ndev->ethtool_ops = &fec_enet_ethtool_ops; | 
|  |  | 
|  | /* Initialize the receive buffer descriptors. */ | 
|  | bdp = fep->rx_bd_base; | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  |  | 
|  | /* Initialize the BD for every fragment in the page. */ | 
|  | bdp->cbd_sc = 0; | 
|  | bdp++; | 
|  | } | 
|  |  | 
|  | /* Set the last buffer to wrap */ | 
|  | bdp--; | 
|  | bdp->cbd_sc |= BD_SC_WRAP; | 
|  |  | 
|  | /* ...and the same for transmit */ | 
|  | bdp = fep->tx_bd_base; | 
|  | for (i = 0; i < TX_RING_SIZE; i++) { | 
|  |  | 
|  | /* Initialize the BD for every fragment in the page. */ | 
|  | bdp->cbd_sc = 0; | 
|  | bdp->cbd_bufaddr = 0; | 
|  | bdp++; | 
|  | } | 
|  |  | 
|  | /* Set the last buffer to wrap */ | 
|  | bdp--; | 
|  | bdp->cbd_sc |= BD_SC_WRAP; | 
|  |  | 
|  | fec_restart(ndev, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  |  | 
|  | if (np) | 
|  | return of_get_phy_mode(np); | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static void __devinit fec_reset_phy(struct platform_device *pdev) | 
|  | { | 
|  | int err, phy_reset; | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  |  | 
|  | if (!np) | 
|  | return; | 
|  |  | 
|  | phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); | 
|  | err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset"); | 
|  | if (err) { | 
|  | pr_debug("FEC: failed to get gpio phy-reset: %d\n", err); | 
|  | return; | 
|  | } | 
|  | msleep(1); | 
|  | gpio_set_value(phy_reset, 1); | 
|  | } | 
|  | #else /* CONFIG_OF */ | 
|  | static inline int fec_get_phy_mode_dt(struct platform_device *pdev) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static inline void fec_reset_phy(struct platform_device *pdev) | 
|  | { | 
|  | /* | 
|  | * In case of platform probe, the reset has been done | 
|  | * by machine code. | 
|  | */ | 
|  | } | 
|  | #endif /* CONFIG_OF */ | 
|  |  | 
|  | static int __devinit | 
|  | fec_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct fec_enet_private *fep; | 
|  | struct fec_platform_data *pdata; | 
|  | struct net_device *ndev; | 
|  | int i, irq, ret = 0; | 
|  | struct resource *r; | 
|  | const struct of_device_id *of_id; | 
|  | static int dev_id; | 
|  |  | 
|  | of_id = of_match_device(fec_dt_ids, &pdev->dev); | 
|  | if (of_id) | 
|  | pdev->id_entry = of_id->data; | 
|  |  | 
|  | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!r) | 
|  | return -ENXIO; | 
|  |  | 
|  | r = request_mem_region(r->start, resource_size(r), pdev->name); | 
|  | if (!r) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Init network device */ | 
|  | ndev = alloc_etherdev(sizeof(struct fec_enet_private)); | 
|  | if (!ndev) { | 
|  | ret = -ENOMEM; | 
|  | goto failed_alloc_etherdev; | 
|  | } | 
|  |  | 
|  | SET_NETDEV_DEV(ndev, &pdev->dev); | 
|  |  | 
|  | /* setup board info structure */ | 
|  | fep = netdev_priv(ndev); | 
|  |  | 
|  | fep->hwp = ioremap(r->start, resource_size(r)); | 
|  | fep->pdev = pdev; | 
|  | fep->dev_id = dev_id++; | 
|  |  | 
|  | if (!fep->hwp) { | 
|  | ret = -ENOMEM; | 
|  | goto failed_ioremap; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, ndev); | 
|  |  | 
|  | ret = fec_get_phy_mode_dt(pdev); | 
|  | if (ret < 0) { | 
|  | pdata = pdev->dev.platform_data; | 
|  | if (pdata) | 
|  | fep->phy_interface = pdata->phy; | 
|  | else | 
|  | fep->phy_interface = PHY_INTERFACE_MODE_MII; | 
|  | } else { | 
|  | fep->phy_interface = ret; | 
|  | } | 
|  |  | 
|  | fec_reset_phy(pdev); | 
|  |  | 
|  | for (i = 0; i < FEC_IRQ_NUM; i++) { | 
|  | irq = platform_get_irq(pdev, i); | 
|  | if (irq < 0) { | 
|  | if (i) | 
|  | break; | 
|  | ret = irq; | 
|  | goto failed_irq; | 
|  | } | 
|  | ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev); | 
|  | if (ret) { | 
|  | while (--i >= 0) { | 
|  | irq = platform_get_irq(pdev, i); | 
|  | free_irq(irq, ndev); | 
|  | } | 
|  | goto failed_irq; | 
|  | } | 
|  | } | 
|  |  | 
|  | fep->clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(fep->clk)) { | 
|  | ret = PTR_ERR(fep->clk); | 
|  | goto failed_clk; | 
|  | } | 
|  | clk_prepare_enable(fep->clk); | 
|  |  | 
|  | ret = fec_enet_init(ndev); | 
|  | if (ret) | 
|  | goto failed_init; | 
|  |  | 
|  | ret = fec_enet_mii_init(pdev); | 
|  | if (ret) | 
|  | goto failed_mii_init; | 
|  |  | 
|  | /* Carrier starts down, phylib will bring it up */ | 
|  | netif_carrier_off(ndev); | 
|  |  | 
|  | ret = register_netdev(ndev); | 
|  | if (ret) | 
|  | goto failed_register; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failed_register: | 
|  | fec_enet_mii_remove(fep); | 
|  | failed_mii_init: | 
|  | failed_init: | 
|  | clk_disable_unprepare(fep->clk); | 
|  | clk_put(fep->clk); | 
|  | failed_clk: | 
|  | for (i = 0; i < FEC_IRQ_NUM; i++) { | 
|  | irq = platform_get_irq(pdev, i); | 
|  | if (irq > 0) | 
|  | free_irq(irq, ndev); | 
|  | } | 
|  | failed_irq: | 
|  | iounmap(fep->hwp); | 
|  | failed_ioremap: | 
|  | free_netdev(ndev); | 
|  | failed_alloc_etherdev: | 
|  | release_mem_region(r->start, resource_size(r)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devexit | 
|  | fec_drv_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct net_device *ndev = platform_get_drvdata(pdev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  | struct resource *r; | 
|  | int i; | 
|  |  | 
|  | unregister_netdev(ndev); | 
|  | fec_enet_mii_remove(fep); | 
|  | for (i = 0; i < FEC_IRQ_NUM; i++) { | 
|  | int irq = platform_get_irq(pdev, i); | 
|  | if (irq > 0) | 
|  | free_irq(irq, ndev); | 
|  | } | 
|  | clk_disable_unprepare(fep->clk); | 
|  | clk_put(fep->clk); | 
|  | iounmap(fep->hwp); | 
|  | free_netdev(ndev); | 
|  |  | 
|  | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | BUG_ON(!r); | 
|  | release_mem_region(r->start, resource_size(r)); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int | 
|  | fec_suspend(struct device *dev) | 
|  | { | 
|  | struct net_device *ndev = dev_get_drvdata(dev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | if (netif_running(ndev)) { | 
|  | fec_stop(ndev); | 
|  | netif_device_detach(ndev); | 
|  | } | 
|  | clk_disable_unprepare(fep->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | fec_resume(struct device *dev) | 
|  | { | 
|  | struct net_device *ndev = dev_get_drvdata(dev); | 
|  | struct fec_enet_private *fep = netdev_priv(ndev); | 
|  |  | 
|  | clk_prepare_enable(fep->clk); | 
|  | if (netif_running(ndev)) { | 
|  | fec_restart(ndev, fep->full_duplex); | 
|  | netif_device_attach(ndev); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops fec_pm_ops = { | 
|  | .suspend	= fec_suspend, | 
|  | .resume		= fec_resume, | 
|  | .freeze		= fec_suspend, | 
|  | .thaw		= fec_resume, | 
|  | .poweroff	= fec_suspend, | 
|  | .restore	= fec_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver fec_driver = { | 
|  | .driver	= { | 
|  | .name	= DRIVER_NAME, | 
|  | .owner	= THIS_MODULE, | 
|  | #ifdef CONFIG_PM | 
|  | .pm	= &fec_pm_ops, | 
|  | #endif | 
|  | .of_match_table = fec_dt_ids, | 
|  | }, | 
|  | .id_table = fec_devtype, | 
|  | .probe	= fec_probe, | 
|  | .remove	= __devexit_p(fec_drv_remove), | 
|  | }; | 
|  |  | 
|  | module_platform_driver(fec_driver); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |