|  | /****************************************************************************** | 
|  | * | 
|  | * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * Portions of this file are derived from the ipw3945 project, as well | 
|  | * as portions of the ieee80211 subsystem header files. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in the | 
|  | * file called LICENSE. | 
|  | * | 
|  | * Contact Information: | 
|  | *  Intel Linux Wireless <ilw@linux.intel.com> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | * | 
|  | *****************************************************************************/ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include "iwl-prph.h" | 
|  | #include "iwl-io.h" | 
|  | #include "iwl-trans-pcie-int.h" | 
|  | #include "iwl-op-mode.h" | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_IDI | 
|  | #include "iwl-amfh.h" | 
|  | #endif | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * RX path functions | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Rx theory of operation | 
|  | * | 
|  | * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), | 
|  | * each of which point to Receive Buffers to be filled by the NIC.  These get | 
|  | * used not only for Rx frames, but for any command response or notification | 
|  | * from the NIC.  The driver and NIC manage the Rx buffers by means | 
|  | * of indexes into the circular buffer. | 
|  | * | 
|  | * Rx Queue Indexes | 
|  | * The host/firmware share two index registers for managing the Rx buffers. | 
|  | * | 
|  | * The READ index maps to the first position that the firmware may be writing | 
|  | * to -- the driver can read up to (but not including) this position and get | 
|  | * good data. | 
|  | * The READ index is managed by the firmware once the card is enabled. | 
|  | * | 
|  | * The WRITE index maps to the last position the driver has read from -- the | 
|  | * position preceding WRITE is the last slot the firmware can place a packet. | 
|  | * | 
|  | * The queue is empty (no good data) if WRITE = READ - 1, and is full if | 
|  | * WRITE = READ. | 
|  | * | 
|  | * During initialization, the host sets up the READ queue position to the first | 
|  | * INDEX position, and WRITE to the last (READ - 1 wrapped) | 
|  | * | 
|  | * When the firmware places a packet in a buffer, it will advance the READ index | 
|  | * and fire the RX interrupt.  The driver can then query the READ index and | 
|  | * process as many packets as possible, moving the WRITE index forward as it | 
|  | * resets the Rx queue buffers with new memory. | 
|  | * | 
|  | * The management in the driver is as follows: | 
|  | * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When | 
|  | *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled | 
|  | *   to replenish the iwl->rxq->rx_free. | 
|  | * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the | 
|  | *   iwl->rxq is replenished and the READ INDEX is updated (updating the | 
|  | *   'processed' and 'read' driver indexes as well) | 
|  | * + A received packet is processed and handed to the kernel network stack, | 
|  | *   detached from the iwl->rxq.  The driver 'processed' index is updated. | 
|  | * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free | 
|  | *   list. If there are no allocated buffers in iwl->rxq->rx_free, the READ | 
|  | *   INDEX is not incremented and iwl->status(RX_STALLED) is set.  If there | 
|  | *   were enough free buffers and RX_STALLED is set it is cleared. | 
|  | * | 
|  | * | 
|  | * Driver sequence: | 
|  | * | 
|  | * iwl_rx_queue_alloc()   Allocates rx_free | 
|  | * iwl_rx_replenish()     Replenishes rx_free list from rx_used, and calls | 
|  | *                            iwl_rx_queue_restock | 
|  | * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx | 
|  | *                            queue, updates firmware pointers, and updates | 
|  | *                            the WRITE index.  If insufficient rx_free buffers | 
|  | *                            are available, schedules iwl_rx_replenish | 
|  | * | 
|  | * -- enable interrupts -- | 
|  | * ISR - iwl_rx()         Detach iwl_rx_mem_buffers from pool up to the | 
|  | *                            READ INDEX, detaching the SKB from the pool. | 
|  | *                            Moves the packet buffer from queue to rx_used. | 
|  | *                            Calls iwl_rx_queue_restock to refill any empty | 
|  | *                            slots. | 
|  | * ... | 
|  | * | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * iwl_rx_queue_space - Return number of free slots available in queue. | 
|  | */ | 
|  | static int iwl_rx_queue_space(const struct iwl_rx_queue *q) | 
|  | { | 
|  | int s = q->read - q->write; | 
|  | if (s <= 0) | 
|  | s += RX_QUEUE_SIZE; | 
|  | /* keep some buffer to not confuse full and empty queue */ | 
|  | s -= 2; | 
|  | if (s < 0) | 
|  | s = 0; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue | 
|  | */ | 
|  | void iwl_rx_queue_update_write_ptr(struct iwl_trans *trans, | 
|  | struct iwl_rx_queue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 reg; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  |  | 
|  | if (q->need_update == 0) | 
|  | goto exit_unlock; | 
|  |  | 
|  | if (cfg(trans)->base_params->shadow_reg_enable) { | 
|  | /* shadow register enabled */ | 
|  | /* Device expects a multiple of 8 */ | 
|  | q->write_actual = (q->write & ~0x7); | 
|  | iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, q->write_actual); | 
|  | } else { | 
|  | /* If power-saving is in use, make sure device is awake */ | 
|  | if (test_bit(STATUS_POWER_PMI, &trans->shrd->status)) { | 
|  | reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); | 
|  |  | 
|  | if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { | 
|  | IWL_DEBUG_INFO(trans, | 
|  | "Rx queue requesting wakeup," | 
|  | " GP1 = 0x%x\n", reg); | 
|  | iwl_set_bit(trans, CSR_GP_CNTRL, | 
|  | CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); | 
|  | goto exit_unlock; | 
|  | } | 
|  |  | 
|  | q->write_actual = (q->write & ~0x7); | 
|  | iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR, | 
|  | q->write_actual); | 
|  |  | 
|  | /* Else device is assumed to be awake */ | 
|  | } else { | 
|  | /* Device expects a multiple of 8 */ | 
|  | q->write_actual = (q->write & ~0x7); | 
|  | iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR, | 
|  | q->write_actual); | 
|  | } | 
|  | } | 
|  | q->need_update = 0; | 
|  |  | 
|  | exit_unlock: | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwlagn_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr | 
|  | */ | 
|  | static inline __le32 iwlagn_dma_addr2rbd_ptr(dma_addr_t dma_addr) | 
|  | { | 
|  | return cpu_to_le32((u32)(dma_addr >> 8)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwlagn_rx_queue_restock - refill RX queue from pre-allocated pool | 
|  | * | 
|  | * If there are slots in the RX queue that need to be restocked, | 
|  | * and we have free pre-allocated buffers, fill the ranks as much | 
|  | * as we can, pulling from rx_free. | 
|  | * | 
|  | * This moves the 'write' index forward to catch up with 'processed', and | 
|  | * also updates the memory address in the firmware to reference the new | 
|  | * target buffer. | 
|  | */ | 
|  | static void iwlagn_rx_queue_restock(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | struct iwl_rx_queue *rxq = &trans_pcie->rxq; | 
|  | struct list_head *element; | 
|  | struct iwl_rx_mem_buffer *rxb; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  | while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) { | 
|  | /* The overwritten rxb must be a used one */ | 
|  | rxb = rxq->queue[rxq->write]; | 
|  | BUG_ON(rxb && rxb->page); | 
|  |  | 
|  | /* Get next free Rx buffer, remove from free list */ | 
|  | element = rxq->rx_free.next; | 
|  | rxb = list_entry(element, struct iwl_rx_mem_buffer, list); | 
|  | list_del(element); | 
|  |  | 
|  | /* Point to Rx buffer via next RBD in circular buffer */ | 
|  | rxq->bd[rxq->write] = iwlagn_dma_addr2rbd_ptr(rxb->page_dma); | 
|  | rxq->queue[rxq->write] = rxb; | 
|  | rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; | 
|  | rxq->free_count--; | 
|  | } | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | /* If the pre-allocated buffer pool is dropping low, schedule to | 
|  | * refill it */ | 
|  | if (rxq->free_count <= RX_LOW_WATERMARK) | 
|  | schedule_work(&trans_pcie->rx_replenish); | 
|  |  | 
|  |  | 
|  | /* If we've added more space for the firmware to place data, tell it. | 
|  | * Increment device's write pointer in multiples of 8. */ | 
|  | if (rxq->write_actual != (rxq->write & ~0x7)) { | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  | rxq->need_update = 1; | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | iwl_rx_queue_update_write_ptr(trans, rxq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwlagn_rx_replenish - Move all used packet from rx_used to rx_free | 
|  | * | 
|  | * When moving to rx_free an SKB is allocated for the slot. | 
|  | * | 
|  | * Also restock the Rx queue via iwl_rx_queue_restock. | 
|  | * This is called as a scheduled work item (except for during initialization) | 
|  | */ | 
|  | static void iwlagn_rx_allocate(struct iwl_trans *trans, gfp_t priority) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | struct iwl_rx_queue *rxq = &trans_pcie->rxq; | 
|  | struct list_head *element; | 
|  | struct iwl_rx_mem_buffer *rxb; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  | gfp_t gfp_mask = priority; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  | if (list_empty(&rxq->rx_used)) { | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  |  | 
|  | if (rxq->free_count > RX_LOW_WATERMARK) | 
|  | gfp_mask |= __GFP_NOWARN; | 
|  |  | 
|  | if (hw_params(trans).rx_page_order > 0) | 
|  | gfp_mask |= __GFP_COMP; | 
|  |  | 
|  | /* Alloc a new receive buffer */ | 
|  | page = alloc_pages(gfp_mask, | 
|  | hw_params(trans).rx_page_order); | 
|  | if (!page) { | 
|  | if (net_ratelimit()) | 
|  | IWL_DEBUG_INFO(trans, "alloc_pages failed, " | 
|  | "order: %d\n", | 
|  | hw_params(trans).rx_page_order); | 
|  |  | 
|  | if ((rxq->free_count <= RX_LOW_WATERMARK) && | 
|  | net_ratelimit()) | 
|  | IWL_CRIT(trans, "Failed to alloc_pages with %s." | 
|  | "Only %u free buffers remaining.\n", | 
|  | priority == GFP_ATOMIC ? | 
|  | "GFP_ATOMIC" : "GFP_KERNEL", | 
|  | rxq->free_count); | 
|  | /* We don't reschedule replenish work here -- we will | 
|  | * call the restock method and if it still needs | 
|  | * more buffers it will schedule replenish */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  |  | 
|  | if (list_empty(&rxq->rx_used)) { | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | __free_pages(page, hw_params(trans).rx_page_order); | 
|  | return; | 
|  | } | 
|  | element = rxq->rx_used.next; | 
|  | rxb = list_entry(element, struct iwl_rx_mem_buffer, list); | 
|  | list_del(element); | 
|  |  | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  |  | 
|  | BUG_ON(rxb->page); | 
|  | rxb->page = page; | 
|  | /* Get physical address of the RB */ | 
|  | rxb->page_dma = dma_map_page(trans->dev, page, 0, | 
|  | PAGE_SIZE << hw_params(trans).rx_page_order, | 
|  | DMA_FROM_DEVICE); | 
|  | /* dma address must be no more than 36 bits */ | 
|  | BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36)); | 
|  | /* and also 256 byte aligned! */ | 
|  | BUG_ON(rxb->page_dma & DMA_BIT_MASK(8)); | 
|  |  | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  |  | 
|  | list_add_tail(&rxb->list, &rxq->rx_free); | 
|  | rxq->free_count++; | 
|  |  | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | void iwlagn_rx_replenish(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  | unsigned long flags; | 
|  |  | 
|  | iwlagn_rx_allocate(trans, GFP_KERNEL); | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  | iwlagn_rx_queue_restock(trans); | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | } | 
|  |  | 
|  | static void iwlagn_rx_replenish_now(struct iwl_trans *trans) | 
|  | { | 
|  | iwlagn_rx_allocate(trans, GFP_ATOMIC); | 
|  |  | 
|  | iwlagn_rx_queue_restock(trans); | 
|  | } | 
|  |  | 
|  | void iwl_bg_rx_replenish(struct work_struct *data) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | container_of(data, struct iwl_trans_pcie, rx_replenish); | 
|  |  | 
|  | iwlagn_rx_replenish(trans_pcie->trans); | 
|  | } | 
|  |  | 
|  | static void iwl_rx_handle_rxbuf(struct iwl_trans *trans, | 
|  | struct iwl_rx_mem_buffer *rxb) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  | struct iwl_rx_queue *rxq = &trans_pcie->rxq; | 
|  | struct iwl_tx_queue *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; | 
|  | struct iwl_device_cmd *cmd; | 
|  | unsigned long flags; | 
|  | int len, err; | 
|  | u16 sequence; | 
|  | struct iwl_rx_cmd_buffer rxcb; | 
|  | struct iwl_rx_packet *pkt; | 
|  | bool reclaim; | 
|  | int index, cmd_index; | 
|  |  | 
|  | if (WARN_ON(!rxb)) | 
|  | return; | 
|  |  | 
|  | rxcb.truesize = PAGE_SIZE << hw_params(trans).rx_page_order; | 
|  | dma_unmap_page(trans->dev, rxb->page_dma, | 
|  | rxcb.truesize, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | rxcb._page = rxb->page; | 
|  | pkt = rxb_addr(&rxcb); | 
|  |  | 
|  | IWL_DEBUG_RX(trans, "%s, 0x%02x\n", | 
|  | get_cmd_string(pkt->hdr.cmd), pkt->hdr.cmd); | 
|  |  | 
|  |  | 
|  | len = le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; | 
|  | len += sizeof(u32); /* account for status word */ | 
|  | trace_iwlwifi_dev_rx(trans->dev, pkt, len); | 
|  |  | 
|  | /* Reclaim a command buffer only if this packet is a response | 
|  | *   to a (driver-originated) command. | 
|  | * If the packet (e.g. Rx frame) originated from uCode, | 
|  | *   there is no command buffer to reclaim. | 
|  | * Ucode should set SEQ_RX_FRAME bit if ucode-originated, | 
|  | *   but apparently a few don't get set; catch them here. */ | 
|  | reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); | 
|  | if (reclaim) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { | 
|  | if (trans_pcie->no_reclaim_cmds[i] == pkt->hdr.cmd) { | 
|  | reclaim = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sequence = le16_to_cpu(pkt->hdr.sequence); | 
|  | index = SEQ_TO_INDEX(sequence); | 
|  | cmd_index = get_cmd_index(&txq->q, index); | 
|  |  | 
|  | if (reclaim) | 
|  | cmd = txq->cmd[cmd_index]; | 
|  | else | 
|  | cmd = NULL; | 
|  |  | 
|  | err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd); | 
|  |  | 
|  | /* | 
|  | * XXX: After here, we should always check rxcb._page | 
|  | * against NULL before touching it or its virtual | 
|  | * memory (pkt). Because some rx_handler might have | 
|  | * already taken or freed the pages. | 
|  | */ | 
|  |  | 
|  | if (reclaim) { | 
|  | /* Invoke any callbacks, transfer the buffer to caller, | 
|  | * and fire off the (possibly) blocking | 
|  | * iwl_trans_send_cmd() | 
|  | * as we reclaim the driver command queue */ | 
|  | if (rxcb._page) | 
|  | iwl_tx_cmd_complete(trans, &rxcb, err); | 
|  | else | 
|  | IWL_WARN(trans, "Claim null rxb?\n"); | 
|  | } | 
|  |  | 
|  | /* page was stolen from us */ | 
|  | if (rxcb._page == NULL) | 
|  | rxb->page = NULL; | 
|  |  | 
|  | /* Reuse the page if possible. For notification packets and | 
|  | * SKBs that fail to Rx correctly, add them back into the | 
|  | * rx_free list for reuse later. */ | 
|  | spin_lock_irqsave(&rxq->lock, flags); | 
|  | if (rxb->page != NULL) { | 
|  | rxb->page_dma = | 
|  | dma_map_page(trans->dev, rxb->page, 0, | 
|  | PAGE_SIZE << hw_params(trans).rx_page_order, | 
|  | DMA_FROM_DEVICE); | 
|  | list_add_tail(&rxb->list, &rxq->rx_free); | 
|  | rxq->free_count++; | 
|  | } else | 
|  | list_add_tail(&rxb->list, &rxq->rx_used); | 
|  | spin_unlock_irqrestore(&rxq->lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_rx_handle - Main entry function for receiving responses from uCode | 
|  | * | 
|  | * Uses the priv->rx_handlers callback function array to invoke | 
|  | * the appropriate handlers, including command responses, | 
|  | * frame-received notifications, and other notifications. | 
|  | */ | 
|  | static void iwl_rx_handle(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  | struct iwl_rx_queue *rxq = &trans_pcie->rxq; | 
|  | u32 r, i; | 
|  | u8 fill_rx = 0; | 
|  | u32 count = 8; | 
|  | int total_empty; | 
|  |  | 
|  | /* uCode's read index (stored in shared DRAM) indicates the last Rx | 
|  | * buffer that the driver may process (last buffer filled by ucode). */ | 
|  | r = le16_to_cpu(rxq->rb_stts->closed_rb_num) &  0x0FFF; | 
|  | i = rxq->read; | 
|  |  | 
|  | /* Rx interrupt, but nothing sent from uCode */ | 
|  | if (i == r) | 
|  | IWL_DEBUG_RX(trans, "r = %d, i = %d\n", r, i); | 
|  |  | 
|  | /* calculate total frames need to be restock after handling RX */ | 
|  | total_empty = r - rxq->write_actual; | 
|  | if (total_empty < 0) | 
|  | total_empty += RX_QUEUE_SIZE; | 
|  |  | 
|  | if (total_empty > (RX_QUEUE_SIZE / 2)) | 
|  | fill_rx = 1; | 
|  |  | 
|  | while (i != r) { | 
|  | struct iwl_rx_mem_buffer *rxb; | 
|  |  | 
|  | rxb = rxq->queue[i]; | 
|  | rxq->queue[i] = NULL; | 
|  |  | 
|  | IWL_DEBUG_RX(trans, "rxbuf: r = %d, i = %d (%p)\n", rxb); | 
|  |  | 
|  | iwl_rx_handle_rxbuf(trans, rxb); | 
|  |  | 
|  | i = (i + 1) & RX_QUEUE_MASK; | 
|  | /* If there are a lot of unused frames, | 
|  | * restock the Rx queue so ucode wont assert. */ | 
|  | if (fill_rx) { | 
|  | count++; | 
|  | if (count >= 8) { | 
|  | rxq->read = i; | 
|  | iwlagn_rx_replenish_now(trans); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Backtrack one entry */ | 
|  | rxq->read = i; | 
|  | if (fill_rx) | 
|  | iwlagn_rx_replenish_now(trans); | 
|  | else | 
|  | iwlagn_rx_queue_restock(trans); | 
|  | } | 
|  |  | 
|  | static const char * const desc_lookup_text[] = { | 
|  | "OK", | 
|  | "FAIL", | 
|  | "BAD_PARAM", | 
|  | "BAD_CHECKSUM", | 
|  | "NMI_INTERRUPT_WDG", | 
|  | "SYSASSERT", | 
|  | "FATAL_ERROR", | 
|  | "BAD_COMMAND", | 
|  | "HW_ERROR_TUNE_LOCK", | 
|  | "HW_ERROR_TEMPERATURE", | 
|  | "ILLEGAL_CHAN_FREQ", | 
|  | "VCC_NOT_STABLE", | 
|  | "FH_ERROR", | 
|  | "NMI_INTERRUPT_HOST", | 
|  | "NMI_INTERRUPT_ACTION_PT", | 
|  | "NMI_INTERRUPT_UNKNOWN", | 
|  | "UCODE_VERSION_MISMATCH", | 
|  | "HW_ERROR_ABS_LOCK", | 
|  | "HW_ERROR_CAL_LOCK_FAIL", | 
|  | "NMI_INTERRUPT_INST_ACTION_PT", | 
|  | "NMI_INTERRUPT_DATA_ACTION_PT", | 
|  | "NMI_TRM_HW_ER", | 
|  | "NMI_INTERRUPT_TRM", | 
|  | "NMI_INTERRUPT_BREAK_POINT", | 
|  | "DEBUG_0", | 
|  | "DEBUG_1", | 
|  | "DEBUG_2", | 
|  | "DEBUG_3", | 
|  | }; | 
|  |  | 
|  | static struct { char *name; u8 num; } advanced_lookup[] = { | 
|  | { "NMI_INTERRUPT_WDG", 0x34 }, | 
|  | { "SYSASSERT", 0x35 }, | 
|  | { "UCODE_VERSION_MISMATCH", 0x37 }, | 
|  | { "BAD_COMMAND", 0x38 }, | 
|  | { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, | 
|  | { "FATAL_ERROR", 0x3D }, | 
|  | { "NMI_TRM_HW_ERR", 0x46 }, | 
|  | { "NMI_INTERRUPT_TRM", 0x4C }, | 
|  | { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, | 
|  | { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, | 
|  | { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, | 
|  | { "NMI_INTERRUPT_HOST", 0x66 }, | 
|  | { "NMI_INTERRUPT_ACTION_PT", 0x7C }, | 
|  | { "NMI_INTERRUPT_UNKNOWN", 0x84 }, | 
|  | { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, | 
|  | { "ADVANCED_SYSASSERT", 0 }, | 
|  | }; | 
|  |  | 
|  | static const char *desc_lookup(u32 num) | 
|  | { | 
|  | int i; | 
|  | int max = ARRAY_SIZE(desc_lookup_text); | 
|  |  | 
|  | if (num < max) | 
|  | return desc_lookup_text[num]; | 
|  |  | 
|  | max = ARRAY_SIZE(advanced_lookup) - 1; | 
|  | for (i = 0; i < max; i++) { | 
|  | if (advanced_lookup[i].num == num) | 
|  | break; | 
|  | } | 
|  | return advanced_lookup[i].name; | 
|  | } | 
|  |  | 
|  | #define ERROR_START_OFFSET  (1 * sizeof(u32)) | 
|  | #define ERROR_ELEM_SIZE     (7 * sizeof(u32)) | 
|  |  | 
|  | static void iwl_dump_nic_error_log(struct iwl_trans *trans) | 
|  | { | 
|  | u32 base; | 
|  | struct iwl_error_event_table table; | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | base = trans->shrd->device_pointers.error_event_table; | 
|  | if (trans->shrd->ucode_type == IWL_UCODE_INIT) { | 
|  | if (!base) | 
|  | base = trans->shrd->fw->init_errlog_ptr; | 
|  | } else { | 
|  | if (!base) | 
|  | base = trans->shrd->fw->inst_errlog_ptr; | 
|  | } | 
|  |  | 
|  | if (!iwlagn_hw_valid_rtc_data_addr(base)) { | 
|  | IWL_ERR(trans, | 
|  | "Not valid error log pointer 0x%08X for %s uCode\n", | 
|  | base, | 
|  | (trans->shrd->ucode_type == IWL_UCODE_INIT) | 
|  | ? "Init" : "RT"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | iwl_read_targ_mem_words(trans, base, &table, sizeof(table)); | 
|  |  | 
|  | if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { | 
|  | IWL_ERR(trans, "Start IWL Error Log Dump:\n"); | 
|  | IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", | 
|  | trans->shrd->status, table.valid); | 
|  | } | 
|  |  | 
|  | trans_pcie->isr_stats.err_code = table.error_id; | 
|  |  | 
|  | trace_iwlwifi_dev_ucode_error(trans->dev, table.error_id, table.tsf_low, | 
|  | table.data1, table.data2, table.line, | 
|  | table.blink1, table.blink2, table.ilink1, | 
|  | table.ilink2, table.bcon_time, table.gp1, | 
|  | table.gp2, table.gp3, table.ucode_ver, | 
|  | table.hw_ver, table.brd_ver); | 
|  | IWL_ERR(trans, "0x%08X | %-28s\n", table.error_id, | 
|  | desc_lookup(table.error_id)); | 
|  | IWL_ERR(trans, "0x%08X | uPc\n", table.pc); | 
|  | IWL_ERR(trans, "0x%08X | branchlink1\n", table.blink1); | 
|  | IWL_ERR(trans, "0x%08X | branchlink2\n", table.blink2); | 
|  | IWL_ERR(trans, "0x%08X | interruptlink1\n", table.ilink1); | 
|  | IWL_ERR(trans, "0x%08X | interruptlink2\n", table.ilink2); | 
|  | IWL_ERR(trans, "0x%08X | data1\n", table.data1); | 
|  | IWL_ERR(trans, "0x%08X | data2\n", table.data2); | 
|  | IWL_ERR(trans, "0x%08X | line\n", table.line); | 
|  | IWL_ERR(trans, "0x%08X | beacon time\n", table.bcon_time); | 
|  | IWL_ERR(trans, "0x%08X | tsf low\n", table.tsf_low); | 
|  | IWL_ERR(trans, "0x%08X | tsf hi\n", table.tsf_hi); | 
|  | IWL_ERR(trans, "0x%08X | time gp1\n", table.gp1); | 
|  | IWL_ERR(trans, "0x%08X | time gp2\n", table.gp2); | 
|  | IWL_ERR(trans, "0x%08X | time gp3\n", table.gp3); | 
|  | IWL_ERR(trans, "0x%08X | uCode version\n", table.ucode_ver); | 
|  | IWL_ERR(trans, "0x%08X | hw version\n", table.hw_ver); | 
|  | IWL_ERR(trans, "0x%08X | board version\n", table.brd_ver); | 
|  | IWL_ERR(trans, "0x%08X | hcmd\n", table.hcmd); | 
|  |  | 
|  | IWL_ERR(trans, "0x%08X | isr0\n", table.isr0); | 
|  | IWL_ERR(trans, "0x%08X | isr1\n", table.isr1); | 
|  | IWL_ERR(trans, "0x%08X | isr2\n", table.isr2); | 
|  | IWL_ERR(trans, "0x%08X | isr3\n", table.isr3); | 
|  | IWL_ERR(trans, "0x%08X | isr4\n", table.isr4); | 
|  | IWL_ERR(trans, "0x%08X | isr_pref\n", table.isr_pref); | 
|  | IWL_ERR(trans, "0x%08X | wait_event\n", table.wait_event); | 
|  | IWL_ERR(trans, "0x%08X | l2p_control\n", table.l2p_control); | 
|  | IWL_ERR(trans, "0x%08X | l2p_duration\n", table.l2p_duration); | 
|  | IWL_ERR(trans, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid); | 
|  | IWL_ERR(trans, "0x%08X | l2p_addr_match\n", table.l2p_addr_match); | 
|  | IWL_ERR(trans, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); | 
|  | IWL_ERR(trans, "0x%08X | timestamp\n", table.u_timestamp); | 
|  | IWL_ERR(trans, "0x%08X | flow_handler\n", table.flow_handler); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_irq_handle_error - called for HW or SW error interrupt from card | 
|  | */ | 
|  | static void iwl_irq_handle_error(struct iwl_trans *trans) | 
|  | { | 
|  | /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ | 
|  | if (cfg(trans)->internal_wimax_coex && | 
|  | (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & | 
|  | APMS_CLK_VAL_MRB_FUNC_MODE) || | 
|  | (iwl_read_prph(trans, APMG_PS_CTRL_REG) & | 
|  | APMG_PS_CTRL_VAL_RESET_REQ))) { | 
|  | /* | 
|  | * Keep the restart process from trying to send host | 
|  | * commands by clearing the ready bit. | 
|  | */ | 
|  | clear_bit(STATUS_READY, &trans->shrd->status); | 
|  | clear_bit(STATUS_HCMD_ACTIVE, &trans->shrd->status); | 
|  | wake_up(&trans->wait_command_queue); | 
|  | IWL_ERR(trans, "RF is used by WiMAX\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IWL_ERR(trans, "Loaded firmware version: %s\n", | 
|  | trans->shrd->fw->fw_version); | 
|  |  | 
|  | iwl_dump_nic_error_log(trans); | 
|  | iwl_dump_csr(trans); | 
|  | iwl_dump_fh(trans, NULL, false); | 
|  | iwl_dump_nic_event_log(trans, false, NULL, false); | 
|  |  | 
|  | iwl_op_mode_nic_error(trans->op_mode); | 
|  | } | 
|  |  | 
|  | #define EVENT_START_OFFSET  (4 * sizeof(u32)) | 
|  |  | 
|  | /** | 
|  | * iwl_print_event_log - Dump error event log to syslog | 
|  | * | 
|  | */ | 
|  | static int iwl_print_event_log(struct iwl_trans *trans, u32 start_idx, | 
|  | u32 num_events, u32 mode, | 
|  | int pos, char **buf, size_t bufsz) | 
|  | { | 
|  | u32 i; | 
|  | u32 base;       /* SRAM byte address of event log header */ | 
|  | u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */ | 
|  | u32 ptr;        /* SRAM byte address of log data */ | 
|  | u32 ev, time, data; /* event log data */ | 
|  | unsigned long reg_flags; | 
|  |  | 
|  | if (num_events == 0) | 
|  | return pos; | 
|  |  | 
|  | base = trans->shrd->device_pointers.log_event_table; | 
|  | if (trans->shrd->ucode_type == IWL_UCODE_INIT) { | 
|  | if (!base) | 
|  | base = trans->shrd->fw->init_evtlog_ptr; | 
|  | } else { | 
|  | if (!base) | 
|  | base = trans->shrd->fw->inst_evtlog_ptr; | 
|  | } | 
|  |  | 
|  | if (mode == 0) | 
|  | event_size = 2 * sizeof(u32); | 
|  | else | 
|  | event_size = 3 * sizeof(u32); | 
|  |  | 
|  | ptr = base + EVENT_START_OFFSET + (start_idx * event_size); | 
|  |  | 
|  | /* Make sure device is powered up for SRAM reads */ | 
|  | spin_lock_irqsave(&trans->reg_lock, reg_flags); | 
|  | if (unlikely(!iwl_grab_nic_access(trans))) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Set starting address; reads will auto-increment */ | 
|  | iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr); | 
|  |  | 
|  | /* "time" is actually "data" for mode 0 (no timestamp). | 
|  | * place event id # at far right for easier visual parsing. */ | 
|  | for (i = 0; i < num_events; i++) { | 
|  | ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT); | 
|  | time = iwl_read32(trans, HBUS_TARG_MEM_RDAT); | 
|  | if (mode == 0) { | 
|  | /* data, ev */ | 
|  | if (bufsz) { | 
|  | pos += scnprintf(*buf + pos, bufsz - pos, | 
|  | "EVT_LOG:0x%08x:%04u\n", | 
|  | time, ev); | 
|  | } else { | 
|  | trace_iwlwifi_dev_ucode_event(trans->dev, 0, | 
|  | time, ev); | 
|  | IWL_ERR(trans, "EVT_LOG:0x%08x:%04u\n", | 
|  | time, ev); | 
|  | } | 
|  | } else { | 
|  | data = iwl_read32(trans, HBUS_TARG_MEM_RDAT); | 
|  | if (bufsz) { | 
|  | pos += scnprintf(*buf + pos, bufsz - pos, | 
|  | "EVT_LOGT:%010u:0x%08x:%04u\n", | 
|  | time, data, ev); | 
|  | } else { | 
|  | IWL_ERR(trans, "EVT_LOGT:%010u:0x%08x:%04u\n", | 
|  | time, data, ev); | 
|  | trace_iwlwifi_dev_ucode_event(trans->dev, time, | 
|  | data, ev); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allow device to power down */ | 
|  | iwl_release_nic_access(trans); | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&trans->reg_lock, reg_flags); | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_print_last_event_logs - Dump the newest # of event log to syslog | 
|  | */ | 
|  | static int iwl_print_last_event_logs(struct iwl_trans *trans, u32 capacity, | 
|  | u32 num_wraps, u32 next_entry, | 
|  | u32 size, u32 mode, | 
|  | int pos, char **buf, size_t bufsz) | 
|  | { | 
|  | /* | 
|  | * display the newest DEFAULT_LOG_ENTRIES entries | 
|  | * i.e the entries just before the next ont that uCode would fill. | 
|  | */ | 
|  | if (num_wraps) { | 
|  | if (next_entry < size) { | 
|  | pos = iwl_print_event_log(trans, | 
|  | capacity - (size - next_entry), | 
|  | size - next_entry, mode, | 
|  | pos, buf, bufsz); | 
|  | pos = iwl_print_event_log(trans, 0, | 
|  | next_entry, mode, | 
|  | pos, buf, bufsz); | 
|  | } else | 
|  | pos = iwl_print_event_log(trans, next_entry - size, | 
|  | size, mode, pos, buf, bufsz); | 
|  | } else { | 
|  | if (next_entry < size) { | 
|  | pos = iwl_print_event_log(trans, 0, next_entry, | 
|  | mode, pos, buf, bufsz); | 
|  | } else { | 
|  | pos = iwl_print_event_log(trans, next_entry - size, | 
|  | size, mode, pos, buf, bufsz); | 
|  | } | 
|  | } | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20) | 
|  |  | 
|  | int iwl_dump_nic_event_log(struct iwl_trans *trans, bool full_log, | 
|  | char **buf, bool display) | 
|  | { | 
|  | u32 base;       /* SRAM byte address of event log header */ | 
|  | u32 capacity;   /* event log capacity in # entries */ | 
|  | u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */ | 
|  | u32 num_wraps;  /* # times uCode wrapped to top of log */ | 
|  | u32 next_entry; /* index of next entry to be written by uCode */ | 
|  | u32 size;       /* # entries that we'll print */ | 
|  | u32 logsize; | 
|  | int pos = 0; | 
|  | size_t bufsz = 0; | 
|  |  | 
|  | base = trans->shrd->device_pointers.log_event_table; | 
|  | if (trans->shrd->ucode_type == IWL_UCODE_INIT) { | 
|  | logsize = trans->shrd->fw->init_evtlog_size; | 
|  | if (!base) | 
|  | base = trans->shrd->fw->init_evtlog_ptr; | 
|  | } else { | 
|  | logsize = trans->shrd->fw->inst_evtlog_size; | 
|  | if (!base) | 
|  | base = trans->shrd->fw->inst_evtlog_ptr; | 
|  | } | 
|  |  | 
|  | if (!iwlagn_hw_valid_rtc_data_addr(base)) { | 
|  | IWL_ERR(trans, | 
|  | "Invalid event log pointer 0x%08X for %s uCode\n", | 
|  | base, | 
|  | (trans->shrd->ucode_type == IWL_UCODE_INIT) | 
|  | ? "Init" : "RT"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* event log header */ | 
|  | capacity = iwl_read_targ_mem(trans, base); | 
|  | mode = iwl_read_targ_mem(trans, base + (1 * sizeof(u32))); | 
|  | num_wraps = iwl_read_targ_mem(trans, base + (2 * sizeof(u32))); | 
|  | next_entry = iwl_read_targ_mem(trans, base + (3 * sizeof(u32))); | 
|  |  | 
|  | if (capacity > logsize) { | 
|  | IWL_ERR(trans, "Log capacity %d is bogus, limit to %d " | 
|  | "entries\n", capacity, logsize); | 
|  | capacity = logsize; | 
|  | } | 
|  |  | 
|  | if (next_entry > logsize) { | 
|  | IWL_ERR(trans, "Log write index %d is bogus, limit to %d\n", | 
|  | next_entry, logsize); | 
|  | next_entry = logsize; | 
|  | } | 
|  |  | 
|  | size = num_wraps ? capacity : next_entry; | 
|  |  | 
|  | /* bail out if nothing in log */ | 
|  | if (size == 0) { | 
|  | IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n"); | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if (!(iwl_have_debug_level(IWL_DL_FW_ERRORS)) && !full_log) | 
|  | size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES) | 
|  | ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size; | 
|  | #else | 
|  | size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES) | 
|  | ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size; | 
|  | #endif | 
|  | IWL_ERR(trans, "Start IWL Event Log Dump: display last %u entries\n", | 
|  | size); | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if (display) { | 
|  | if (full_log) | 
|  | bufsz = capacity * 48; | 
|  | else | 
|  | bufsz = size * 48; | 
|  | *buf = kmalloc(bufsz, GFP_KERNEL); | 
|  | if (!*buf) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (iwl_have_debug_level(IWL_DL_FW_ERRORS) || full_log) { | 
|  | /* | 
|  | * if uCode has wrapped back to top of log, | 
|  | * start at the oldest entry, | 
|  | * i.e the next one that uCode would fill. | 
|  | */ | 
|  | if (num_wraps) | 
|  | pos = iwl_print_event_log(trans, next_entry, | 
|  | capacity - next_entry, mode, | 
|  | pos, buf, bufsz); | 
|  | /* (then/else) start at top of log */ | 
|  | pos = iwl_print_event_log(trans, 0, | 
|  | next_entry, mode, pos, buf, bufsz); | 
|  | } else | 
|  | pos = iwl_print_last_event_logs(trans, capacity, num_wraps, | 
|  | next_entry, size, mode, | 
|  | pos, buf, bufsz); | 
|  | #else | 
|  | pos = iwl_print_last_event_logs(trans, capacity, num_wraps, | 
|  | next_entry, size, mode, | 
|  | pos, buf, bufsz); | 
|  | #endif | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | /* tasklet for iwlagn interrupt */ | 
|  | void iwl_irq_tasklet(struct iwl_trans *trans) | 
|  | { | 
|  | u32 inta = 0; | 
|  | u32 handled = 0; | 
|  | unsigned long flags; | 
|  | u32 i; | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | u32 inta_mask; | 
|  | #endif | 
|  |  | 
|  | struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  | struct isr_statistics *isr_stats = &trans_pcie->isr_stats; | 
|  |  | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  |  | 
|  | /* Ack/clear/reset pending uCode interrupts. | 
|  | * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, | 
|  | */ | 
|  | /* There is a hardware bug in the interrupt mask function that some | 
|  | * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if | 
|  | * they are disabled in the CSR_INT_MASK register. Furthermore the | 
|  | * ICT interrupt handling mechanism has another bug that might cause | 
|  | * these unmasked interrupts fail to be detected. We workaround the | 
|  | * hardware bugs here by ACKing all the possible interrupts so that | 
|  | * interrupt coalescing can still be achieved. | 
|  | */ | 
|  | iwl_write32(trans, CSR_INT, | 
|  | trans_pcie->inta | ~trans_pcie->inta_mask); | 
|  |  | 
|  | inta = trans_pcie->inta; | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if (iwl_have_debug_level(IWL_DL_ISR)) { | 
|  | /* just for debug */ | 
|  | inta_mask = iwl_read32(trans, CSR_INT_MASK); | 
|  | IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n ", | 
|  | inta, inta_mask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* saved interrupt in inta variable now we can reset trans_pcie->inta */ | 
|  | trans_pcie->inta = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  |  | 
|  | /* Now service all interrupt bits discovered above. */ | 
|  | if (inta & CSR_INT_BIT_HW_ERR) { | 
|  | IWL_ERR(trans, "Hardware error detected.  Restarting.\n"); | 
|  |  | 
|  | /* Tell the device to stop sending interrupts */ | 
|  | iwl_disable_interrupts(trans); | 
|  |  | 
|  | isr_stats->hw++; | 
|  | iwl_irq_handle_error(trans); | 
|  |  | 
|  | handled |= CSR_INT_BIT_HW_ERR; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if (iwl_have_debug_level(IWL_DL_ISR)) { | 
|  | /* NIC fires this, but we don't use it, redundant with WAKEUP */ | 
|  | if (inta & CSR_INT_BIT_SCD) { | 
|  | IWL_DEBUG_ISR(trans, "Scheduler finished to transmit " | 
|  | "the frame/frames.\n"); | 
|  | isr_stats->sch++; | 
|  | } | 
|  |  | 
|  | /* Alive notification via Rx interrupt will do the real work */ | 
|  | if (inta & CSR_INT_BIT_ALIVE) { | 
|  | IWL_DEBUG_ISR(trans, "Alive interrupt\n"); | 
|  | isr_stats->alive++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* Safely ignore these bits for debug checks below */ | 
|  | inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); | 
|  |  | 
|  | /* HW RF KILL switch toggled */ | 
|  | if (inta & CSR_INT_BIT_RF_KILL) { | 
|  | bool hw_rfkill; | 
|  |  | 
|  | hw_rfkill = !(iwl_read32(trans, CSR_GP_CNTRL) & | 
|  | CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW); | 
|  | IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", | 
|  | hw_rfkill ? "disable radio" : "enable radio"); | 
|  |  | 
|  | isr_stats->rfkill++; | 
|  |  | 
|  | iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill); | 
|  |  | 
|  | handled |= CSR_INT_BIT_RF_KILL; | 
|  | } | 
|  |  | 
|  | /* Chip got too hot and stopped itself */ | 
|  | if (inta & CSR_INT_BIT_CT_KILL) { | 
|  | IWL_ERR(trans, "Microcode CT kill error detected.\n"); | 
|  | isr_stats->ctkill++; | 
|  | handled |= CSR_INT_BIT_CT_KILL; | 
|  | } | 
|  |  | 
|  | /* Error detected by uCode */ | 
|  | if (inta & CSR_INT_BIT_SW_ERR) { | 
|  | IWL_ERR(trans, "Microcode SW error detected. " | 
|  | " Restarting 0x%X.\n", inta); | 
|  | isr_stats->sw++; | 
|  | iwl_irq_handle_error(trans); | 
|  | handled |= CSR_INT_BIT_SW_ERR; | 
|  | } | 
|  |  | 
|  | /* uCode wakes up after power-down sleep */ | 
|  | if (inta & CSR_INT_BIT_WAKEUP) { | 
|  | IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); | 
|  | iwl_rx_queue_update_write_ptr(trans, &trans_pcie->rxq); | 
|  | for (i = 0; i < cfg(trans)->base_params->num_of_queues; i++) | 
|  | iwl_txq_update_write_ptr(trans, | 
|  | &trans_pcie->txq[i]); | 
|  |  | 
|  | isr_stats->wakeup++; | 
|  |  | 
|  | handled |= CSR_INT_BIT_WAKEUP; | 
|  | } | 
|  |  | 
|  | /* All uCode command responses, including Tx command responses, | 
|  | * Rx "responses" (frame-received notification), and other | 
|  | * notifications from uCode come through here*/ | 
|  | if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | | 
|  | CSR_INT_BIT_RX_PERIODIC)) { | 
|  | IWL_DEBUG_ISR(trans, "Rx interrupt\n"); | 
|  | if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { | 
|  | handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); | 
|  | iwl_write32(trans, CSR_FH_INT_STATUS, | 
|  | CSR_FH_INT_RX_MASK); | 
|  | } | 
|  | if (inta & CSR_INT_BIT_RX_PERIODIC) { | 
|  | handled |= CSR_INT_BIT_RX_PERIODIC; | 
|  | iwl_write32(trans, | 
|  | CSR_INT, CSR_INT_BIT_RX_PERIODIC); | 
|  | } | 
|  | /* Sending RX interrupt require many steps to be done in the | 
|  | * the device: | 
|  | * 1- write interrupt to current index in ICT table. | 
|  | * 2- dma RX frame. | 
|  | * 3- update RX shared data to indicate last write index. | 
|  | * 4- send interrupt. | 
|  | * This could lead to RX race, driver could receive RX interrupt | 
|  | * but the shared data changes does not reflect this; | 
|  | * periodic interrupt will detect any dangling Rx activity. | 
|  | */ | 
|  |  | 
|  | /* Disable periodic interrupt; we use it as just a one-shot. */ | 
|  | iwl_write8(trans, CSR_INT_PERIODIC_REG, | 
|  | CSR_INT_PERIODIC_DIS); | 
|  | #ifdef CONFIG_IWLWIFI_IDI | 
|  | iwl_amfh_rx_handler(); | 
|  | #else | 
|  | iwl_rx_handle(trans); | 
|  | #endif | 
|  | /* | 
|  | * Enable periodic interrupt in 8 msec only if we received | 
|  | * real RX interrupt (instead of just periodic int), to catch | 
|  | * any dangling Rx interrupt.  If it was just the periodic | 
|  | * interrupt, there was no dangling Rx activity, and no need | 
|  | * to extend the periodic interrupt; one-shot is enough. | 
|  | */ | 
|  | if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) | 
|  | iwl_write8(trans, CSR_INT_PERIODIC_REG, | 
|  | CSR_INT_PERIODIC_ENA); | 
|  |  | 
|  | isr_stats->rx++; | 
|  | } | 
|  |  | 
|  | /* This "Tx" DMA channel is used only for loading uCode */ | 
|  | if (inta & CSR_INT_BIT_FH_TX) { | 
|  | iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); | 
|  | IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); | 
|  | isr_stats->tx++; | 
|  | handled |= CSR_INT_BIT_FH_TX; | 
|  | /* Wake up uCode load routine, now that load is complete */ | 
|  | trans_pcie->ucode_write_complete = true; | 
|  | wake_up(&trans_pcie->ucode_write_waitq); | 
|  | } | 
|  |  | 
|  | if (inta & ~handled) { | 
|  | IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); | 
|  | isr_stats->unhandled++; | 
|  | } | 
|  |  | 
|  | if (inta & ~(trans_pcie->inta_mask)) { | 
|  | IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", | 
|  | inta & ~trans_pcie->inta_mask); | 
|  | } | 
|  |  | 
|  | /* Re-enable all interrupts */ | 
|  | /* only Re-enable if disabled by irq */ | 
|  | if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status)) | 
|  | iwl_enable_interrupts(trans); | 
|  | /* Re-enable RF_KILL if it occurred */ | 
|  | else if (handled & CSR_INT_BIT_RF_KILL) | 
|  | iwl_enable_rfkill_int(trans); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * ICT functions | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | /* a device (PCI-E) page is 4096 bytes long */ | 
|  | #define ICT_SHIFT	12 | 
|  | #define ICT_SIZE	(1 << ICT_SHIFT) | 
|  | #define ICT_COUNT	(ICT_SIZE / sizeof(u32)) | 
|  |  | 
|  | /* Free dram table */ | 
|  | void iwl_free_isr_ict(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | if (trans_pcie->ict_tbl) { | 
|  | dma_free_coherent(trans->dev, ICT_SIZE, | 
|  | trans_pcie->ict_tbl, | 
|  | trans_pcie->ict_tbl_dma); | 
|  | trans_pcie->ict_tbl = NULL; | 
|  | trans_pcie->ict_tbl_dma = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * allocate dram shared table, it is an aligned memory | 
|  | * block of ICT_SIZE. | 
|  | * also reset all data related to ICT table interrupt. | 
|  | */ | 
|  | int iwl_alloc_isr_ict(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | trans_pcie->ict_tbl = | 
|  | dma_alloc_coherent(trans->dev, ICT_SIZE, | 
|  | &trans_pcie->ict_tbl_dma, | 
|  | GFP_KERNEL); | 
|  | if (!trans_pcie->ict_tbl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* just an API sanity check ... it is guaranteed to be aligned */ | 
|  | if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { | 
|  | iwl_free_isr_ict(trans); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_ISR(trans, "ict dma addr %Lx\n", | 
|  | (unsigned long long)trans_pcie->ict_tbl_dma); | 
|  |  | 
|  | IWL_DEBUG_ISR(trans, "ict vir addr %p\n", trans_pcie->ict_tbl); | 
|  |  | 
|  | /* reset table and index to all 0 */ | 
|  | memset(trans_pcie->ict_tbl, 0, ICT_SIZE); | 
|  | trans_pcie->ict_index = 0; | 
|  |  | 
|  | /* add periodic RX interrupt */ | 
|  | trans_pcie->inta_mask |= CSR_INT_BIT_RX_PERIODIC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Device is going up inform it about using ICT interrupt table, | 
|  | * also we need to tell the driver to start using ICT interrupt. | 
|  | */ | 
|  | void iwl_reset_ict(struct iwl_trans *trans) | 
|  | { | 
|  | u32 val; | 
|  | unsigned long flags; | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | if (!trans_pcie->ict_tbl) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  | iwl_disable_interrupts(trans); | 
|  |  | 
|  | memset(trans_pcie->ict_tbl, 0, ICT_SIZE); | 
|  |  | 
|  | val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; | 
|  |  | 
|  | val |= CSR_DRAM_INT_TBL_ENABLE; | 
|  | val |= CSR_DRAM_INIT_TBL_WRAP_CHECK; | 
|  |  | 
|  | IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); | 
|  |  | 
|  | iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); | 
|  | trans_pcie->use_ict = true; | 
|  | trans_pcie->ict_index = 0; | 
|  | iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); | 
|  | iwl_enable_interrupts(trans); | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Device is going down disable ict interrupt usage */ | 
|  | void iwl_disable_ict(struct iwl_trans *trans) | 
|  | { | 
|  | struct iwl_trans_pcie *trans_pcie = | 
|  | IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  | trans_pcie->use_ict = false; | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t iwl_isr(int irq, void *data) | 
|  | { | 
|  | struct iwl_trans *trans = data; | 
|  | struct iwl_trans_pcie *trans_pcie; | 
|  | u32 inta, inta_mask; | 
|  | unsigned long flags; | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | u32 inta_fh; | 
|  | #endif | 
|  | if (!trans) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | trace_iwlwifi_dev_irq(trans->dev); | 
|  |  | 
|  | trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  |  | 
|  | /* Disable (but don't clear!) interrupts here to avoid | 
|  | *    back-to-back ISRs and sporadic interrupts from our NIC. | 
|  | * If we have something to service, the tasklet will re-enable ints. | 
|  | * If we *don't* have something, we'll re-enable before leaving here. */ | 
|  | inta_mask = iwl_read32(trans, CSR_INT_MASK);  /* just for debug */ | 
|  | iwl_write32(trans, CSR_INT_MASK, 0x00000000); | 
|  |  | 
|  | /* Discover which interrupts are active/pending */ | 
|  | inta = iwl_read32(trans, CSR_INT); | 
|  |  | 
|  | /* Ignore interrupt if there's nothing in NIC to service. | 
|  | * This may be due to IRQ shared with another device, | 
|  | * or due to sporadic interrupts thrown from our NIC. */ | 
|  | if (!inta) { | 
|  | IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); | 
|  | goto none; | 
|  | } | 
|  |  | 
|  | if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { | 
|  | /* Hardware disappeared. It might have already raised | 
|  | * an interrupt */ | 
|  | IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); | 
|  | goto unplugged; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IWLWIFI_DEBUG | 
|  | if (iwl_have_debug_level(IWL_DL_ISR)) { | 
|  | inta_fh = iwl_read32(trans, CSR_FH_INT_STATUS); | 
|  | IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x, " | 
|  | "fh 0x%08x\n", inta, inta_mask, inta_fh); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | trans_pcie->inta |= inta; | 
|  | /* iwl_irq_tasklet() will service interrupts and re-enable them */ | 
|  | if (likely(inta)) | 
|  | tasklet_schedule(&trans_pcie->irq_tasklet); | 
|  | else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) && | 
|  | !trans_pcie->inta) | 
|  | iwl_enable_interrupts(trans); | 
|  |  | 
|  | unplugged: | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | none: | 
|  | /* re-enable interrupts here since we don't have anything to service. */ | 
|  | /* only Re-enable if disabled by irq  and no schedules tasklet. */ | 
|  | if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) && | 
|  | !trans_pcie->inta) | 
|  | iwl_enable_interrupts(trans); | 
|  |  | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* interrupt handler using ict table, with this interrupt driver will | 
|  | * stop using INTA register to get device's interrupt, reading this register | 
|  | * is expensive, device will write interrupts in ICT dram table, increment | 
|  | * index then will fire interrupt to driver, driver will OR all ICT table | 
|  | * entries from current index up to table entry with 0 value. the result is | 
|  | * the interrupt we need to service, driver will set the entries back to 0 and | 
|  | * set index. | 
|  | */ | 
|  | irqreturn_t iwl_isr_ict(int irq, void *data) | 
|  | { | 
|  | struct iwl_trans *trans = data; | 
|  | struct iwl_trans_pcie *trans_pcie; | 
|  | u32 inta, inta_mask; | 
|  | u32 val = 0; | 
|  | u32 read; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!trans) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); | 
|  |  | 
|  | /* dram interrupt table not set yet, | 
|  | * use legacy interrupt. | 
|  | */ | 
|  | if (!trans_pcie->use_ict) | 
|  | return iwl_isr(irq, data); | 
|  |  | 
|  | trace_iwlwifi_dev_irq(trans->dev); | 
|  |  | 
|  | spin_lock_irqsave(&trans_pcie->irq_lock, flags); | 
|  |  | 
|  | /* Disable (but don't clear!) interrupts here to avoid | 
|  | * back-to-back ISRs and sporadic interrupts from our NIC. | 
|  | * If we have something to service, the tasklet will re-enable ints. | 
|  | * If we *don't* have something, we'll re-enable before leaving here. | 
|  | */ | 
|  | inta_mask = iwl_read32(trans, CSR_INT_MASK);  /* just for debug */ | 
|  | iwl_write32(trans, CSR_INT_MASK, 0x00000000); | 
|  |  | 
|  |  | 
|  | /* Ignore interrupt if there's nothing in NIC to service. | 
|  | * This may be due to IRQ shared with another device, | 
|  | * or due to sporadic interrupts thrown from our NIC. */ | 
|  | read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); | 
|  | trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); | 
|  | if (!read) { | 
|  | IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); | 
|  | goto none; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collect all entries up to the first 0, starting from ict_index; | 
|  | * note we already read at ict_index. | 
|  | */ | 
|  | do { | 
|  | val |= read; | 
|  | IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", | 
|  | trans_pcie->ict_index, read); | 
|  | trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; | 
|  | trans_pcie->ict_index = | 
|  | iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT); | 
|  |  | 
|  | read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); | 
|  | trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, | 
|  | read); | 
|  | } while (read); | 
|  |  | 
|  | /* We should not get this value, just ignore it. */ | 
|  | if (val == 0xffffffff) | 
|  | val = 0; | 
|  |  | 
|  | /* | 
|  | * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit | 
|  | * (bit 15 before shifting it to 31) to clear when using interrupt | 
|  | * coalescing. fortunately, bits 18 and 19 stay set when this happens | 
|  | * so we use them to decide on the real state of the Rx bit. | 
|  | * In order words, bit 15 is set if bit 18 or bit 19 are set. | 
|  | */ | 
|  | if (val & 0xC0000) | 
|  | val |= 0x8000; | 
|  |  | 
|  | inta = (0xff & val) | ((0xff00 & val) << 16); | 
|  | IWL_DEBUG_ISR(trans, "ISR inta 0x%08x, enabled 0x%08x ict 0x%08x\n", | 
|  | inta, inta_mask, val); | 
|  |  | 
|  | inta &= trans_pcie->inta_mask; | 
|  | trans_pcie->inta |= inta; | 
|  |  | 
|  | /* iwl_irq_tasklet() will service interrupts and re-enable them */ | 
|  | if (likely(inta)) | 
|  | tasklet_schedule(&trans_pcie->irq_tasklet); | 
|  | else if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) && | 
|  | !trans_pcie->inta) { | 
|  | /* Allow interrupt if was disabled by this handler and | 
|  | * no tasklet was schedules, We should not enable interrupt, | 
|  | * tasklet will enable it. | 
|  | */ | 
|  | iwl_enable_interrupts(trans); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | none: | 
|  | /* re-enable interrupts here since we don't have anything to service. | 
|  | * only Re-enable if disabled by irq. | 
|  | */ | 
|  | if (test_bit(STATUS_INT_ENABLED, &trans_pcie->status) && | 
|  | !trans_pcie->inta) | 
|  | iwl_enable_interrupts(trans); | 
|  |  | 
|  | spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); | 
|  | return IRQ_NONE; | 
|  | } |