|  | /* | 
|  | Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2500usb | 
|  | Abstract: rt2500usb device specific routines. | 
|  | Supported chipsets: RT2570. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/usb.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00usb.h" | 
|  | #include "rt2500usb.h" | 
|  |  | 
|  | /* | 
|  | * Allow hardware encryption to be disabled. | 
|  | */ | 
|  | static bool modparam_nohwcrypt; | 
|  | module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * All access to the CSR registers will go through the methods | 
|  | * rt2500usb_register_read and rt2500usb_register_write. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers BBPCSR and RFCSR to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attampt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | * If the csr_mutex is already held then the _lock variants must | 
|  | * be used instead. | 
|  | */ | 
|  | static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u16 *value) | 
|  | { | 
|  | __le16 reg; | 
|  | rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, | 
|  | USB_VENDOR_REQUEST_IN, offset, | 
|  | ®, sizeof(reg), REGISTER_TIMEOUT); | 
|  | *value = le16_to_cpu(reg); | 
|  | } | 
|  |  | 
|  | static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u16 *value) | 
|  | { | 
|  | __le16 reg; | 
|  | rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, | 
|  | USB_VENDOR_REQUEST_IN, offset, | 
|  | ®, sizeof(reg), REGISTER_TIMEOUT); | 
|  | *value = le16_to_cpu(reg); | 
|  | } | 
|  |  | 
|  | static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | void *value, const u16 length) | 
|  | { | 
|  | rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, | 
|  | USB_VENDOR_REQUEST_IN, offset, | 
|  | value, length, | 
|  | REGISTER_TIMEOUT16(length)); | 
|  | } | 
|  |  | 
|  | static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u16 value) | 
|  | { | 
|  | __le16 reg = cpu_to_le16(value); | 
|  | rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, | 
|  | USB_VENDOR_REQUEST_OUT, offset, | 
|  | ®, sizeof(reg), REGISTER_TIMEOUT); | 
|  | } | 
|  |  | 
|  | static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u16 value) | 
|  | { | 
|  | __le16 reg = cpu_to_le16(value); | 
|  | rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, | 
|  | USB_VENDOR_REQUEST_OUT, offset, | 
|  | ®, sizeof(reg), REGISTER_TIMEOUT); | 
|  | } | 
|  |  | 
|  | static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | void *value, const u16 length) | 
|  | { | 
|  | rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, | 
|  | USB_VENDOR_REQUEST_OUT, offset, | 
|  | value, length, | 
|  | REGISTER_TIMEOUT16(length)); | 
|  | } | 
|  |  | 
|  | static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | struct rt2x00_field16 field, | 
|  | u16 *reg) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2500usb_register_read_lock(rt2x00dev, offset, reg); | 
|  | if (!rt2x00_get_field16(*reg, field)) | 
|  | return 1; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "Indirect register access failed: " | 
|  | "offset=0x%.08x, value=0x%.08x\n", offset, *reg); | 
|  | *reg = ~0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) | 
|  |  | 
|  | static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, PHY_CSR7_DATA, value); | 
|  | rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); | 
|  | rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); | 
|  |  | 
|  | rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); | 
|  | rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); | 
|  |  | 
|  | rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); | 
|  |  | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) | 
|  | rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field16(reg, PHY_CSR7_DATA); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); | 
|  | rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); | 
|  |  | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); | 
|  | rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); | 
|  | rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); | 
|  | rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); | 
|  |  | 
|  | rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u32 *value) | 
|  | { | 
|  | rt2500usb_register_read(rt2x00dev, offset, (u16 *)value); | 
|  | } | 
|  |  | 
|  | static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int offset, | 
|  | u32 value) | 
|  | { | 
|  | rt2500usb_register_write(rt2x00dev, offset, value); | 
|  | } | 
|  |  | 
|  | static const struct rt2x00debug rt2500usb_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= _rt2500usb_register_read, | 
|  | .write		= _rt2500usb_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u16), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt2500usb_bbp_read, | 
|  | .write		= rt2500usb_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt2500usb_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); | 
|  | return rt2x00_get_field16(reg, MAC_CSR19_BIT7); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt2500usb_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | u16 reg; | 
|  |  | 
|  | rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, ®); | 
|  |  | 
|  | if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) | 
|  | rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); | 
|  | else if (led->type == LED_TYPE_ACTIVITY) | 
|  | rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); | 
|  |  | 
|  | rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); | 
|  | } | 
|  |  | 
|  | static int rt2500usb_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, | 
|  | unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u16 reg; | 
|  |  | 
|  | rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); | 
|  | rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, | 
|  | enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt2500usb_brightness_set; | 
|  | led->led_dev.blink_set = rt2500usb_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * rt2500usb does not differentiate between shared and pairwise | 
|  | * keys, so we should use the same function for both key types. | 
|  | */ | 
|  | static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | u32 mask; | 
|  | u16 reg; | 
|  | enum cipher curr_cipher; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * Disallow to set WEP key other than with index 0, | 
|  | * it is known that not work at least on some hardware. | 
|  | * SW crypto will be used in that case. | 
|  | */ | 
|  | if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || | 
|  | key->cipher == WLAN_CIPHER_SUITE_WEP104) && | 
|  | key->keyidx != 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * Pairwise key will always be entry 0, but this | 
|  | * could collide with a shared key on the same | 
|  | * position... | 
|  | */ | 
|  | mask = TXRX_CSR0_KEY_ID.bit_mask; | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); | 
|  | reg &= mask; | 
|  |  | 
|  | if (reg && reg == mask) | 
|  | return -ENOSPC; | 
|  |  | 
|  | reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); | 
|  |  | 
|  | key->hw_key_idx += reg ? ffz(reg) : 0; | 
|  | /* | 
|  | * Hardware requires that all keys use the same cipher | 
|  | * (e.g. TKIP-only, AES-only, but not TKIP+AES). | 
|  | * If this is not the first key, compare the cipher with the | 
|  | * first one and fall back to SW crypto if not the same. | 
|  | */ | 
|  | if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), | 
|  | crypto->key, sizeof(crypto->key)); | 
|  |  | 
|  | /* | 
|  | * The driver does not support the IV/EIV generation | 
|  | * in hardware. However it demands the data to be provided | 
|  | * both separately as well as inside the frame. | 
|  | * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib | 
|  | * to ensure rt2x00lib will not strip the data from the | 
|  | * frame after the copy, now we must tell mac80211 | 
|  | * to generate the IV/EIV data. | 
|  | */ | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate | 
|  | * a particular key is valid. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); | 
|  |  | 
|  | mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | mask |= 1 << key->hw_key_idx; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | mask &= ~(1 << key->hw_key_idx); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS) && | 
|  | !rt2x00dev->intf_ap_count); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | unsigned int bcn_preload; | 
|  | u16 reg; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Enable beacon config | 
|  | */ | 
|  | bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR20, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); | 
|  | rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, | 
|  | 2 * (conf->type != NL80211_IFTYPE_STATION)); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); | 
|  |  | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) | 
|  | rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, | 
|  | (3 * sizeof(__le16))); | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_BSSID) | 
|  | rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, | 
|  | (3 * sizeof(__le16))); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_erp *erp, | 
|  | u32 changed) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_PREAMBLE) { | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR10, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, | 
|  | !!erp->short_preamble); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_BASIC_RATES) | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR11, | 
|  | erp->basic_rates); | 
|  |  | 
|  | if (changed & BSS_CHANGED_BEACON_INT) { | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, | 
|  | erp->beacon_int * 4); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_SLOT) { | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r2; | 
|  | u8 r14; | 
|  | u16 csr5; | 
|  | u16 csr6; | 
|  |  | 
|  | /* | 
|  | * We should never come here because rt2x00lib is supposed | 
|  | * to catch this and send us the correct antenna explicitely. | 
|  | */ | 
|  | BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || | 
|  | ant->tx == ANTENNA_SW_DIVERSITY); | 
|  |  | 
|  | rt2500usb_bbp_read(rt2x00dev, 2, &r2); | 
|  | rt2500usb_bbp_read(rt2x00dev, 14, &r14); | 
|  | rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5); | 
|  | rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6); | 
|  |  | 
|  | /* | 
|  | * Configure the TX antenna. | 
|  | */ | 
|  | switch (ant->tx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); | 
|  | rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); | 
|  | rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); | 
|  | rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); | 
|  | rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); | 
|  | rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); | 
|  | rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RT2525E and RT5222 need to flip TX I/Q | 
|  | */ | 
|  | if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { | 
|  | rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); | 
|  | rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); | 
|  | rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); | 
|  |  | 
|  | /* | 
|  | * RT2525E does not need RX I/Q Flip. | 
|  | */ | 
|  | if (rt2x00_rf(rt2x00dev, RF2525E)) | 
|  | rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); | 
|  | } else { | 
|  | rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); | 
|  | rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); | 
|  | } | 
|  |  | 
|  | rt2500usb_bbp_write(rt2x00dev, 2, r2); | 
|  | rt2500usb_bbp_write(rt2x00dev, 14, r14); | 
|  | rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); | 
|  | rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct rf_channel *rf, const int txpower) | 
|  | { | 
|  | /* | 
|  | * Set TXpower. | 
|  | */ | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  |  | 
|  | /* | 
|  | * For RT2525E we should first set the channel to half band higher. | 
|  | */ | 
|  | if (rt2x00_rf(rt2x00dev, RF2525E)) { | 
|  | static const u32 vals[] = { | 
|  | 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, | 
|  | 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, | 
|  | 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, | 
|  | 0x00000902, 0x00000906 | 
|  | }; | 
|  |  | 
|  | rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); | 
|  | if (rf->rf4) | 
|  | rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); | 
|  | } | 
|  |  | 
|  | rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); | 
|  | if (rf->rf4) | 
|  | rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | const int txpower) | 
|  | { | 
|  | u32 rf3; | 
|  |  | 
|  | rt2x00_rf_read(rt2x00dev, 3, &rf3); | 
|  | rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  | rt2500usb_rf_write(rt2x00dev, 3, rf3); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u16 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, | 
|  | rt2x00dev->beacon_int - 20); | 
|  | rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, | 
|  | libconf->conf->listen_interval - 1); | 
|  |  | 
|  | /* We must first disable autowake before it can be enabled */ | 
|  | rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); | 
|  |  | 
|  | rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); | 
|  | } else { | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); | 
|  | } | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | 
|  | rt2500usb_config_channel(rt2x00dev, &libconf->rf, | 
|  | libconf->conf->power_level); | 
|  | if ((flags & IEEE80211_CONF_CHANGE_POWER) && | 
|  | !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) | 
|  | rt2500usb_config_txpower(rt2x00dev, | 
|  | libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt2500usb_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, STA_CSR0, ®); | 
|  | qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); | 
|  |  | 
|  | /* | 
|  | * Update False CCA count from register. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, STA_CSR3, ®); | 
|  | qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); | 
|  | } | 
|  |  | 
|  | static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | u16 eeprom; | 
|  | u16 value; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); | 
|  | rt2500usb_bbp_write(rt2x00dev, 24, value); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); | 
|  | rt2500usb_bbp_write(rt2x00dev, 25, value); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); | 
|  | rt2500usb_bbp_write(rt2x00dev, 61, value); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); | 
|  | rt2500usb_bbp_write(rt2x00dev, 17, value); | 
|  |  | 
|  | qual->vgc_level = value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue handlers. | 
|  | */ | 
|  | static void rt2500usb_start_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u16 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2500usb_stop_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u16 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 reg; | 
|  |  | 
|  | rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, | 
|  | USB_MODE_TEST, REGISTER_TIMEOUT); | 
|  | rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, | 
|  | 0x00f0, REGISTER_TIMEOUT); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  |  | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); | 
|  | rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); | 
|  | rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); | 
|  | rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR5, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); | 
|  | rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); | 
|  | rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR6, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); | 
|  | rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); | 
|  | rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR7, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); | 
|  | rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); | 
|  | rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR8, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); | 
|  | rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  |  | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); | 
|  |  | 
|  | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) | 
|  | return -EBUSY; | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); | 
|  | rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { | 
|  | rt2500usb_register_read(rt2x00dev, PHY_CSR2, ®); | 
|  | rt2x00_set_field16(®, PHY_CSR2_LNA, 0); | 
|  | } else { | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, PHY_CSR2_LNA, 1); | 
|  | rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); | 
|  | } | 
|  | rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); | 
|  |  | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR8, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, | 
|  | rt2x00dev->rx->data_size); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); | 
|  | rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, PHY_CSR4, ®); | 
|  | rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); | 
|  | rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); | 
|  |  | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2500usb_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 value; | 
|  | u8 reg_id; | 
|  |  | 
|  | if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | rt2500usb_bbp_write(rt2x00dev, 3, 0x02); | 
|  | rt2500usb_bbp_write(rt2x00dev, 4, 0x19); | 
|  | rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); | 
|  | rt2500usb_bbp_write(rt2x00dev, 15, 0x30); | 
|  | rt2500usb_bbp_write(rt2x00dev, 16, 0xac); | 
|  | rt2500usb_bbp_write(rt2x00dev, 18, 0x18); | 
|  | rt2500usb_bbp_write(rt2x00dev, 19, 0xff); | 
|  | rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); | 
|  | rt2500usb_bbp_write(rt2x00dev, 21, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 22, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 23, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 24, 0x80); | 
|  | rt2500usb_bbp_write(rt2x00dev, 25, 0x50); | 
|  | rt2500usb_bbp_write(rt2x00dev, 26, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 27, 0x23); | 
|  | rt2500usb_bbp_write(rt2x00dev, 30, 0x10); | 
|  | rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); | 
|  | rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); | 
|  | rt2500usb_bbp_write(rt2x00dev, 34, 0x12); | 
|  | rt2500usb_bbp_write(rt2x00dev, 35, 0x50); | 
|  | rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); | 
|  | rt2500usb_bbp_write(rt2x00dev, 40, 0x02); | 
|  | rt2500usb_bbp_write(rt2x00dev, 41, 0x60); | 
|  | rt2500usb_bbp_write(rt2x00dev, 53, 0x10); | 
|  | rt2500usb_bbp_write(rt2x00dev, 54, 0x18); | 
|  | rt2500usb_bbp_write(rt2x00dev, 56, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 57, 0x10); | 
|  | rt2500usb_bbp_write(rt2x00dev, 58, 0x08); | 
|  | rt2500usb_bbp_write(rt2x00dev, 61, 0x60); | 
|  | rt2500usb_bbp_write(rt2x00dev, 62, 0x10); | 
|  | rt2500usb_bbp_write(rt2x00dev, 75, 0xff); | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt2500usb_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device state switch handlers. | 
|  | */ | 
|  | static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Initialize all registers. | 
|  | */ | 
|  | if (unlikely(rt2500usb_init_registers(rt2x00dev) || | 
|  | rt2500usb_init_bbp(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); | 
|  |  | 
|  | /* | 
|  | * Disable synchronisation. | 
|  | */ | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); | 
|  |  | 
|  | rt2x00usb_disable_radio(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | u16 reg; | 
|  | u16 reg2; | 
|  | unsigned int i; | 
|  | char put_to_sleep; | 
|  | char bbp_state; | 
|  | char rf_state; | 
|  |  | 
|  | put_to_sleep = (state != STATE_AWAKE); | 
|  |  | 
|  | reg = 0; | 
|  | rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); | 
|  | rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); | 
|  | rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); | 
|  | rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); | 
|  |  | 
|  | /* | 
|  | * Device is not guaranteed to be in the requested state yet. | 
|  | * We must wait until the register indicates that the | 
|  | * device has entered the correct state. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR17, ®2); | 
|  | bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); | 
|  | rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); | 
|  | if (bbp_state == state && rf_state == state) | 
|  | return 0; | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); | 
|  | msleep(30); | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case STATE_RADIO_ON: | 
|  | retval = rt2500usb_enable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_OFF: | 
|  | rt2500usb_disable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_IRQ_ON: | 
|  | case STATE_RADIO_IRQ_OFF: | 
|  | /* No support, but no error either */ | 
|  | break; | 
|  | case STATE_DEEP_SLEEP: | 
|  | case STATE_SLEEP: | 
|  | case STATE_STANDBY: | 
|  | case STATE_AWAKE: | 
|  | retval = rt2500usb_set_state(rt2x00dev, state); | 
|  | break; | 
|  | default: | 
|  | retval = -ENOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(retval)) | 
|  | ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", | 
|  | state, retval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX descriptor initialization | 
|  | */ | 
|  | static void rt2500usb_write_tx_desc(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | __le32 *txd = (__le32 *) entry->skb->data; | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * Start writing the descriptor words. | 
|  | */ | 
|  | rt2x00_desc_read(txd, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); | 
|  | rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, | 
|  | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_ACK, | 
|  | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, | 
|  | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_OFDM, | 
|  | (txdesc->rate_mode == RATE_MODE_OFDM)); | 
|  | rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, | 
|  | test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); | 
|  | rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); | 
|  | rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); | 
|  | rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); | 
|  | rt2x00_desc_write(txd, 0, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); | 
|  | rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); | 
|  | rt2x00_desc_write(txd, 1, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 2, &word); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, | 
|  | txdesc->u.plcp.length_low); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, | 
|  | txdesc->u.plcp.length_high); | 
|  | rt2x00_desc_write(txd, 2, word); | 
|  |  | 
|  | if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { | 
|  | _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); | 
|  | _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register descriptor details in skb frame descriptor. | 
|  | */ | 
|  | skbdesc->flags |= SKBDESC_DESC_IN_SKB; | 
|  | skbdesc->desc = txd; | 
|  | skbdesc->desc_len = TXD_DESC_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX data initialization | 
|  | */ | 
|  | static void rt2500usb_beacondone(struct urb *urb); | 
|  |  | 
|  | static void rt2500usb_write_beacon(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); | 
|  | struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; | 
|  | int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); | 
|  | int length; | 
|  | u16 reg, reg0; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  |  | 
|  | /* | 
|  | * Add space for the descriptor in front of the skb. | 
|  | */ | 
|  | skb_push(entry->skb, TXD_DESC_SIZE); | 
|  | memset(entry->skb->data, 0, TXD_DESC_SIZE); | 
|  |  | 
|  | /* | 
|  | * Write the TX descriptor for the beacon. | 
|  | */ | 
|  | rt2500usb_write_tx_desc(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * Dump beacon to userspace through debugfs. | 
|  | */ | 
|  | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); | 
|  |  | 
|  | /* | 
|  | * USB devices cannot blindly pass the skb->len as the | 
|  | * length of the data to usb_fill_bulk_urb. Pass the skb | 
|  | * to the driver to determine what the length should be. | 
|  | */ | 
|  | length = rt2x00dev->ops->lib->get_tx_data_len(entry); | 
|  |  | 
|  | usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, | 
|  | entry->skb->data, length, rt2500usb_beacondone, | 
|  | entry); | 
|  |  | 
|  | /* | 
|  | * Second we need to create the guardian byte. | 
|  | * We only need a single byte, so lets recycle | 
|  | * the 'flags' field we are not using for beacons. | 
|  | */ | 
|  | bcn_priv->guardian_data = 0; | 
|  | usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, | 
|  | &bcn_priv->guardian_data, 1, rt2500usb_beacondone, | 
|  | entry); | 
|  |  | 
|  | /* | 
|  | * Send out the guardian byte. | 
|  | */ | 
|  | usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | */ | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); | 
|  | rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); | 
|  | reg0 = reg; | 
|  | rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); | 
|  | /* | 
|  | * Beacon generation will fail initially. | 
|  | * To prevent this we need to change the TXRX_CSR19 | 
|  | * register several times (reg0 is the same as reg | 
|  | * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 | 
|  | * and 1 in reg). | 
|  | */ | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); | 
|  | rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); | 
|  | } | 
|  |  | 
|  | static int rt2500usb_get_tx_data_len(struct queue_entry *entry) | 
|  | { | 
|  | int length; | 
|  |  | 
|  | /* | 
|  | * The length _must_ be a multiple of 2, | 
|  | * but it must _not_ be a multiple of the USB packet size. | 
|  | */ | 
|  | length = roundup(entry->skb->len, 2); | 
|  | length += (2 * !(length % entry->queue->usb_maxpacket)); | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RX control handlers | 
|  | */ | 
|  | static void rt2500usb_fill_rxdone(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct queue_entry_priv_usb *entry_priv = entry->priv_data; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | __le32 *rxd = | 
|  | (__le32 *)(entry->skb->data + | 
|  | (entry_priv->urb->actual_length - | 
|  | entry->queue->desc_size)); | 
|  | u32 word0; | 
|  | u32 word1; | 
|  |  | 
|  | /* | 
|  | * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of | 
|  | * frame data in rt2x00usb. | 
|  | */ | 
|  | memcpy(skbdesc->desc, rxd, skbdesc->desc_len); | 
|  | rxd = (__le32 *)skbdesc->desc; | 
|  |  | 
|  | /* | 
|  | * It is now safe to read the descriptor on all architectures. | 
|  | */ | 
|  | rt2x00_desc_read(rxd, 0, &word0); | 
|  | rt2x00_desc_read(rxd, 1, &word1); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; | 
|  |  | 
|  | rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); | 
|  | if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) | 
|  | rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; | 
|  |  | 
|  | if (rxdesc->cipher != CIPHER_NONE) { | 
|  | _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); | 
|  | _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); | 
|  | rxdesc->dev_flags |= RXDONE_CRYPTO_IV; | 
|  |  | 
|  | /* ICV is located at the end of frame */ | 
|  |  | 
|  | rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; | 
|  | if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) | 
|  | rxdesc->flags |= RX_FLAG_DECRYPTED; | 
|  | else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) | 
|  | rxdesc->flags |= RX_FLAG_MMIC_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | * When frame was received with an OFDM bitrate, | 
|  | * the signal is the PLCP value. If it was received with | 
|  | * a CCK bitrate the signal is the rate in 100kbit/s. | 
|  | */ | 
|  | rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); | 
|  | rxdesc->rssi = | 
|  | rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; | 
|  | rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_OFDM)) | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; | 
|  | else | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) | 
|  | rxdesc->dev_flags |= RXDONE_MY_BSS; | 
|  |  | 
|  | /* | 
|  | * Adjust the skb memory window to the frame boundaries. | 
|  | */ | 
|  | skb_trim(entry->skb, rxdesc->size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt functions. | 
|  | */ | 
|  | static void rt2500usb_beacondone(struct urb *urb) | 
|  | { | 
|  | struct queue_entry *entry = (struct queue_entry *)urb->context; | 
|  | struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; | 
|  |  | 
|  | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Check if this was the guardian beacon, | 
|  | * if that was the case we need to send the real beacon now. | 
|  | * Otherwise we should free the sk_buffer, the device | 
|  | * should be doing the rest of the work now. | 
|  | */ | 
|  | if (bcn_priv->guardian_urb == urb) { | 
|  | usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); | 
|  | } else if (bcn_priv->urb == urb) { | 
|  | dev_kfree_skb(entry->skb); | 
|  | entry->skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device probe functions. | 
|  | */ | 
|  | static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 word; | 
|  | u8 *mac; | 
|  | u8 bbp; | 
|  |  | 
|  | rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, | 
|  | ANTENNA_SW_DIVERSITY); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, | 
|  | ANTENNA_SW_DIVERSITY); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, | 
|  | LED_MODE_DEFAULT); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, | 
|  | DEFAULT_RSSI_OFFSET); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); | 
|  | EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); | 
|  | EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch lower vgc bound to current BBP R17 value, | 
|  | * lower the value a bit for better quality. | 
|  | */ | 
|  | rt2500usb_bbp_read(rt2x00dev, 17, &bbp); | 
|  | bbp -= 6; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); | 
|  | EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); | 
|  | } else { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); | 
|  | EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); | 
|  | EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); | 
|  | EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); | 
|  | rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); | 
|  | EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset. | 
|  | */ | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | rt2x00_set_chip(rt2x00dev, RT2570, value, reg); | 
|  |  | 
|  | if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { | 
|  | ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (!rt2x00_rf(rt2x00dev, RF2522) && | 
|  | !rt2x00_rf(rt2x00dev, RF2523) && | 
|  | !rt2x00_rf(rt2x00dev, RF2524) && | 
|  | !rt2x00_rf(rt2x00dev, RF2525) && | 
|  | !rt2x00_rf(rt2x00dev, RF2525E) && | 
|  | !rt2x00_rf(rt2x00dev, RF5222)) { | 
|  | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); | 
|  | rt2x00dev->default_ant.rx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. | 
|  | * I am not 100% sure about this, but the legacy drivers do not | 
|  | * indicate antenna swapping in software is required when | 
|  | * diversity is enabled. | 
|  | */ | 
|  | if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) | 
|  | rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; | 
|  | if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) | 
|  | rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; | 
|  |  | 
|  | /* | 
|  | * Store led mode, for correct led behaviour. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); | 
|  |  | 
|  | rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | if (value == LED_MODE_TXRX_ACTIVITY || | 
|  | value == LED_MODE_DEFAULT || | 
|  | value == LED_MODE_ASUS) | 
|  | rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, | 
|  | LED_TYPE_ACTIVITY); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Detect if this device has an hardware controlled radio. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) | 
|  | __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Read the RSSI <-> dBm offset information. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); | 
|  | rt2x00dev->rssi_offset = | 
|  | rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2522 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2522[] = { | 
|  | { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 }, | 
|  | { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 }, | 
|  | { 3,  0x00002050, 0x000c2002, 0x00000101, 0 }, | 
|  | { 4,  0x00002050, 0x000c2016, 0x00000101, 0 }, | 
|  | { 5,  0x00002050, 0x000c202a, 0x00000101, 0 }, | 
|  | { 6,  0x00002050, 0x000c203e, 0x00000101, 0 }, | 
|  | { 7,  0x00002050, 0x000c2052, 0x00000101, 0 }, | 
|  | { 8,  0x00002050, 0x000c2066, 0x00000101, 0 }, | 
|  | { 9,  0x00002050, 0x000c207a, 0x00000101, 0 }, | 
|  | { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, | 
|  | { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, | 
|  | { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, | 
|  | { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, | 
|  | { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2523 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2523[] = { | 
|  | { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, | 
|  | { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, | 
|  | { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, | 
|  | { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, | 
|  | { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, | 
|  | { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, | 
|  | { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, | 
|  | { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, | 
|  | { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, | 
|  | { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, | 
|  | { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, | 
|  | { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, | 
|  | { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, | 
|  | { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2524 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2524[] = { | 
|  | { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, | 
|  | { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, | 
|  | { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, | 
|  | { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, | 
|  | { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, | 
|  | { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, | 
|  | { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, | 
|  | { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, | 
|  | { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, | 
|  | { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, | 
|  | { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, | 
|  | { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, | 
|  | { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, | 
|  | { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2525 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2525[] = { | 
|  | { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, | 
|  | { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, | 
|  | { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, | 
|  | { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, | 
|  | { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, | 
|  | { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, | 
|  | { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, | 
|  | { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, | 
|  | { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, | 
|  | { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, | 
|  | { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, | 
|  | { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, | 
|  | { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, | 
|  | { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2525e | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2525e[] = { | 
|  | { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, | 
|  | { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, | 
|  | { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, | 
|  | { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, | 
|  | { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, | 
|  | { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, | 
|  | { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, | 
|  | { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, | 
|  | { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, | 
|  | { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, | 
|  | { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, | 
|  | { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, | 
|  | { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, | 
|  | { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5222 | 
|  | * Supports: 2.4 GHz & 5.2 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_5222[] = { | 
|  | { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, | 
|  | { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, | 
|  | { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, | 
|  | { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, | 
|  | { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, | 
|  | { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, | 
|  | { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, | 
|  | { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, | 
|  | { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, | 
|  | { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, | 
|  | { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, | 
|  | { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, | 
|  | { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, | 
|  | { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, | 
|  | { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, | 
|  | { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, | 
|  | { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, | 
|  | { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, | 
|  | { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, | 
|  | { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, | 
|  | { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, | 
|  | { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, | 
|  | { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, | 
|  | { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, | 
|  | { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, | 
|  | { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, | 
|  | { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, | 
|  | { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, | 
|  | { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, | 
|  | { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, | 
|  | { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, | 
|  | { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, | 
|  | { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, | 
|  | { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, | 
|  | }; | 
|  |  | 
|  | static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *tx_power; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | * | 
|  | * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are | 
|  | * capable of sending the buffered frames out after the DTIM | 
|  | * transmission using rt2x00lib_beacondone. This will send out | 
|  | * multicast and broadcast traffic immediately instead of buffering it | 
|  | * infinitly and thus dropping it after some time. | 
|  | */ | 
|  | rt2x00dev->hw->flags = | 
|  | IEEE80211_HW_RX_INCLUDES_FCS | | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF2522)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); | 
|  | spec->channels = rf_vals_bg_2522; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2523)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); | 
|  | spec->channels = rf_vals_bg_2523; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2524)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); | 
|  | spec->channels = rf_vals_bg_2524; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2525)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); | 
|  | spec->channels = rf_vals_bg_2525; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2525E)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); | 
|  | spec->channels = rf_vals_bg_2525e; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF5222)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_5222); | 
|  | spec->channels = rf_vals_5222; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); | 
|  | for (i = 0; i < 14; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  | } | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | for (i = 14; i < spec->num_channels; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = DEFAULT_TXPOWER; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  | u16 reg; | 
|  |  | 
|  | /* | 
|  | * Allocate eeprom data. | 
|  | */ | 
|  | retval = rt2500usb_validate_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = rt2500usb_init_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Enable rfkill polling by setting GPIO direction of the | 
|  | * rfkill switch GPIO pin correctly. | 
|  | */ | 
|  | rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); | 
|  | rt2x00_set_field16(®, MAC_CSR19_BIT8, 0); | 
|  | rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); | 
|  |  | 
|  | /* | 
|  | * Initialize hw specifications. | 
|  | */ | 
|  | retval = rt2500usb_probe_hw_mode(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * This device requires the atim queue | 
|  | */ | 
|  | __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); | 
|  | if (!modparam_nohwcrypt) { | 
|  | __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); | 
|  | } | 
|  | __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Set the rssi offset. | 
|  | */ | 
|  | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct ieee80211_ops rt2500usb_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .set_tim		= rt2x00mac_set_tim, | 
|  | .set_key		= rt2x00mac_set_key, | 
|  | .sw_scan_start		= rt2x00mac_sw_scan_start, | 
|  | .sw_scan_complete	= rt2x00mac_sw_scan_complete, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt2x00mac_conf_tx, | 
|  | .rfkill_poll		= rt2x00mac_rfkill_poll, | 
|  | .flush			= rt2x00mac_flush, | 
|  | .set_antenna		= rt2x00mac_set_antenna, | 
|  | .get_antenna		= rt2x00mac_get_antenna, | 
|  | .get_ringparam		= rt2x00mac_get_ringparam, | 
|  | .tx_frames_pending	= rt2x00mac_tx_frames_pending, | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { | 
|  | .probe_hw		= rt2500usb_probe_hw, | 
|  | .initialize		= rt2x00usb_initialize, | 
|  | .uninitialize		= rt2x00usb_uninitialize, | 
|  | .clear_entry		= rt2x00usb_clear_entry, | 
|  | .set_device_state	= rt2500usb_set_device_state, | 
|  | .rfkill_poll		= rt2500usb_rfkill_poll, | 
|  | .link_stats		= rt2500usb_link_stats, | 
|  | .reset_tuner		= rt2500usb_reset_tuner, | 
|  | .watchdog		= rt2x00usb_watchdog, | 
|  | .start_queue		= rt2500usb_start_queue, | 
|  | .kick_queue		= rt2x00usb_kick_queue, | 
|  | .stop_queue		= rt2500usb_stop_queue, | 
|  | .flush_queue		= rt2x00usb_flush_queue, | 
|  | .write_tx_desc		= rt2500usb_write_tx_desc, | 
|  | .write_beacon		= rt2500usb_write_beacon, | 
|  | .get_tx_data_len	= rt2500usb_get_tx_data_len, | 
|  | .fill_rxdone		= rt2500usb_fill_rxdone, | 
|  | .config_shared_key	= rt2500usb_config_key, | 
|  | .config_pairwise_key	= rt2500usb_config_key, | 
|  | .config_filter		= rt2500usb_config_filter, | 
|  | .config_intf		= rt2500usb_config_intf, | 
|  | .config_erp		= rt2500usb_config_erp, | 
|  | .config_ant		= rt2500usb_config_ant, | 
|  | .config			= rt2500usb_config, | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500usb_queue_rx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= RXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500usb_queue_tx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500usb_queue_bcn = { | 
|  | .entry_num		= 1, | 
|  | .data_size		= MGMT_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb_bcn), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2500usb_queue_atim = { | 
|  | .entry_num		= 8, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00_ops rt2500usb_ops = { | 
|  | .name			= KBUILD_MODNAME, | 
|  | .max_sta_intf		= 1, | 
|  | .max_ap_intf		= 1, | 
|  | .eeprom_size		= EEPROM_SIZE, | 
|  | .rf_size		= RF_SIZE, | 
|  | .tx_queues		= NUM_TX_QUEUES, | 
|  | .extra_tx_headroom	= TXD_DESC_SIZE, | 
|  | .rx			= &rt2500usb_queue_rx, | 
|  | .tx			= &rt2500usb_queue_tx, | 
|  | .bcn			= &rt2500usb_queue_bcn, | 
|  | .atim			= &rt2500usb_queue_atim, | 
|  | .lib			= &rt2500usb_rt2x00_ops, | 
|  | .hw			= &rt2500usb_mac80211_ops, | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | .debugfs		= &rt2500usb_rt2x00debug, | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * rt2500usb module information. | 
|  | */ | 
|  | static struct usb_device_id rt2500usb_device_table[] = { | 
|  | /* ASUS */ | 
|  | { USB_DEVICE(0x0b05, 0x1706) }, | 
|  | { USB_DEVICE(0x0b05, 0x1707) }, | 
|  | /* Belkin */ | 
|  | { USB_DEVICE(0x050d, 0x7050) }, | 
|  | { USB_DEVICE(0x050d, 0x7051) }, | 
|  | /* Cisco Systems */ | 
|  | { USB_DEVICE(0x13b1, 0x000d) }, | 
|  | { USB_DEVICE(0x13b1, 0x0011) }, | 
|  | { USB_DEVICE(0x13b1, 0x001a) }, | 
|  | /* Conceptronic */ | 
|  | { USB_DEVICE(0x14b2, 0x3c02) }, | 
|  | /* D-LINK */ | 
|  | { USB_DEVICE(0x2001, 0x3c00) }, | 
|  | /* Gigabyte */ | 
|  | { USB_DEVICE(0x1044, 0x8001) }, | 
|  | { USB_DEVICE(0x1044, 0x8007) }, | 
|  | /* Hercules */ | 
|  | { USB_DEVICE(0x06f8, 0xe000) }, | 
|  | /* Melco */ | 
|  | { USB_DEVICE(0x0411, 0x005e) }, | 
|  | { USB_DEVICE(0x0411, 0x0066) }, | 
|  | { USB_DEVICE(0x0411, 0x0067) }, | 
|  | { USB_DEVICE(0x0411, 0x008b) }, | 
|  | { USB_DEVICE(0x0411, 0x0097) }, | 
|  | /* MSI */ | 
|  | { USB_DEVICE(0x0db0, 0x6861) }, | 
|  | { USB_DEVICE(0x0db0, 0x6865) }, | 
|  | { USB_DEVICE(0x0db0, 0x6869) }, | 
|  | /* Ralink */ | 
|  | { USB_DEVICE(0x148f, 0x1706) }, | 
|  | { USB_DEVICE(0x148f, 0x2570) }, | 
|  | { USB_DEVICE(0x148f, 0x9020) }, | 
|  | /* Sagem */ | 
|  | { USB_DEVICE(0x079b, 0x004b) }, | 
|  | /* Siemens */ | 
|  | { USB_DEVICE(0x0681, 0x3c06) }, | 
|  | /* SMC */ | 
|  | { USB_DEVICE(0x0707, 0xee13) }, | 
|  | /* Spairon */ | 
|  | { USB_DEVICE(0x114b, 0x0110) }, | 
|  | /* SURECOM */ | 
|  | { USB_DEVICE(0x0769, 0x11f3) }, | 
|  | /* Trust */ | 
|  | { USB_DEVICE(0x0eb0, 0x9020) }, | 
|  | /* VTech */ | 
|  | { USB_DEVICE(0x0f88, 0x3012) }, | 
|  | /* Zinwell */ | 
|  | { USB_DEVICE(0x5a57, 0x0260) }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); | 
|  | MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards"); | 
|  | MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int rt2500usb_probe(struct usb_interface *usb_intf, | 
|  | const struct usb_device_id *id) | 
|  | { | 
|  | return rt2x00usb_probe(usb_intf, &rt2500usb_ops); | 
|  | } | 
|  |  | 
|  | static struct usb_driver rt2500usb_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= rt2500usb_device_table, | 
|  | .probe		= rt2500usb_probe, | 
|  | .disconnect	= rt2x00usb_disconnect, | 
|  | .suspend	= rt2x00usb_suspend, | 
|  | .resume		= rt2x00usb_resume, | 
|  | }; | 
|  |  | 
|  | module_usb_driver(rt2500usb_driver); |