| /* | 
 |  *  Generic process-grouping system. | 
 |  * | 
 |  *  Based originally on the cpuset system, extracted by Paul Menage | 
 |  *  Copyright (C) 2006 Google, Inc | 
 |  * | 
 |  *  Copyright notices from the original cpuset code: | 
 |  *  -------------------------------------------------- | 
 |  *  Copyright (C) 2003 BULL SA. | 
 |  *  Copyright (C) 2004-2006 Silicon Graphics, Inc. | 
 |  * | 
 |  *  Portions derived from Patrick Mochel's sysfs code. | 
 |  *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
 |  * | 
 |  *  2003-10-10 Written by Simon Derr. | 
 |  *  2003-10-22 Updates by Stephen Hemminger. | 
 |  *  2004 May-July Rework by Paul Jackson. | 
 |  *  --------------------------------------------------- | 
 |  * | 
 |  *  This file is subject to the terms and conditions of the GNU General Public | 
 |  *  License.  See the file COPYING in the main directory of the Linux | 
 |  *  distribution for more details. | 
 |  */ | 
 |  | 
 | #include <linux/cgroup.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/string.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/delayacct.h> | 
 | #include <linux/cgroupstats.h> | 
 |  | 
 | #include <asm/atomic.h> | 
 |  | 
 | static DEFINE_MUTEX(cgroup_mutex); | 
 |  | 
 | /* Generate an array of cgroup subsystem pointers */ | 
 | #define SUBSYS(_x) &_x ## _subsys, | 
 |  | 
 | static struct cgroup_subsys *subsys[] = { | 
 | #include <linux/cgroup_subsys.h> | 
 | }; | 
 |  | 
 | /* | 
 |  * A cgroupfs_root represents the root of a cgroup hierarchy, | 
 |  * and may be associated with a superblock to form an active | 
 |  * hierarchy | 
 |  */ | 
 | struct cgroupfs_root { | 
 | 	struct super_block *sb; | 
 |  | 
 | 	/* | 
 | 	 * The bitmask of subsystems intended to be attached to this | 
 | 	 * hierarchy | 
 | 	 */ | 
 | 	unsigned long subsys_bits; | 
 |  | 
 | 	/* The bitmask of subsystems currently attached to this hierarchy */ | 
 | 	unsigned long actual_subsys_bits; | 
 |  | 
 | 	/* A list running through the attached subsystems */ | 
 | 	struct list_head subsys_list; | 
 |  | 
 | 	/* The root cgroup for this hierarchy */ | 
 | 	struct cgroup top_cgroup; | 
 |  | 
 | 	/* Tracks how many cgroups are currently defined in hierarchy.*/ | 
 | 	int number_of_cgroups; | 
 |  | 
 | 	/* A list running through the mounted hierarchies */ | 
 | 	struct list_head root_list; | 
 |  | 
 | 	/* Hierarchy-specific flags */ | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* The path to use for release notifications. No locking | 
 | 	 * between setting and use - so if userspace updates this | 
 | 	 * while child cgroups exist, you could miss a | 
 | 	 * notification. We ensure that it's always a valid | 
 | 	 * NUL-terminated string */ | 
 | 	char release_agent_path[PATH_MAX]; | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the | 
 |  * subsystems that are otherwise unattached - it never has more than a | 
 |  * single cgroup, and all tasks are part of that cgroup. | 
 |  */ | 
 | static struct cgroupfs_root rootnode; | 
 |  | 
 | /* The list of hierarchy roots */ | 
 |  | 
 | static LIST_HEAD(roots); | 
 | static int root_count; | 
 |  | 
 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 
 | #define dummytop (&rootnode.top_cgroup) | 
 |  | 
 | /* This flag indicates whether tasks in the fork and exit paths should | 
 |  * check for fork/exit handlers to call. This avoids us having to do | 
 |  * extra work in the fork/exit path if none of the subsystems need to | 
 |  * be called. | 
 |  */ | 
 | static int need_forkexit_callback; | 
 |  | 
 | /* bits in struct cgroup flags field */ | 
 | enum { | 
 | 	/* Control Group is dead */ | 
 | 	CGRP_REMOVED, | 
 | 	/* Control Group has previously had a child cgroup or a task, | 
 | 	 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */ | 
 | 	CGRP_RELEASABLE, | 
 | 	/* Control Group requires release notifications to userspace */ | 
 | 	CGRP_NOTIFY_ON_RELEASE, | 
 | }; | 
 |  | 
 | /* convenient tests for these bits */ | 
 | inline int cgroup_is_removed(const struct cgroup *cgrp) | 
 | { | 
 | 	return test_bit(CGRP_REMOVED, &cgrp->flags); | 
 | } | 
 |  | 
 | /* bits in struct cgroupfs_root flags field */ | 
 | enum { | 
 | 	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ | 
 | }; | 
 |  | 
 | static int cgroup_is_releasable(const struct cgroup *cgrp) | 
 | { | 
 | 	const int bits = | 
 | 		(1 << CGRP_RELEASABLE) | | 
 | 		(1 << CGRP_NOTIFY_ON_RELEASE); | 
 | 	return (cgrp->flags & bits) == bits; | 
 | } | 
 |  | 
 | static int notify_on_release(const struct cgroup *cgrp) | 
 | { | 
 | 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * for_each_subsys() allows you to iterate on each subsystem attached to | 
 |  * an active hierarchy | 
 |  */ | 
 | #define for_each_subsys(_root, _ss) \ | 
 | list_for_each_entry(_ss, &_root->subsys_list, sibling) | 
 |  | 
 | /* for_each_root() allows you to iterate across the active hierarchies */ | 
 | #define for_each_root(_root) \ | 
 | list_for_each_entry(_root, &roots, root_list) | 
 |  | 
 | /* the list of cgroups eligible for automatic release. Protected by | 
 |  * release_list_lock */ | 
 | static LIST_HEAD(release_list); | 
 | static DEFINE_SPINLOCK(release_list_lock); | 
 | static void cgroup_release_agent(struct work_struct *work); | 
 | static DECLARE_WORK(release_agent_work, cgroup_release_agent); | 
 | static void check_for_release(struct cgroup *cgrp); | 
 |  | 
 | /* Link structure for associating css_set objects with cgroups */ | 
 | struct cg_cgroup_link { | 
 | 	/* | 
 | 	 * List running through cg_cgroup_links associated with a | 
 | 	 * cgroup, anchored on cgroup->css_sets | 
 | 	 */ | 
 | 	struct list_head cgrp_link_list; | 
 | 	/* | 
 | 	 * List running through cg_cgroup_links pointing at a | 
 | 	 * single css_set object, anchored on css_set->cg_links | 
 | 	 */ | 
 | 	struct list_head cg_link_list; | 
 | 	struct css_set *cg; | 
 | }; | 
 |  | 
 | /* The default css_set - used by init and its children prior to any | 
 |  * hierarchies being mounted. It contains a pointer to the root state | 
 |  * for each subsystem. Also used to anchor the list of css_sets. Not | 
 |  * reference-counted, to improve performance when child cgroups | 
 |  * haven't been created. | 
 |  */ | 
 |  | 
 | static struct css_set init_css_set; | 
 | static struct cg_cgroup_link init_css_set_link; | 
 |  | 
 | /* css_set_lock protects the list of css_set objects, and the | 
 |  * chain of tasks off each css_set.  Nests outside task->alloc_lock | 
 |  * due to cgroup_iter_start() */ | 
 | static DEFINE_RWLOCK(css_set_lock); | 
 | static int css_set_count; | 
 |  | 
 | /* We don't maintain the lists running through each css_set to its | 
 |  * task until after the first call to cgroup_iter_start(). This | 
 |  * reduces the fork()/exit() overhead for people who have cgroups | 
 |  * compiled into their kernel but not actually in use */ | 
 | static int use_task_css_set_links; | 
 |  | 
 | /* When we create or destroy a css_set, the operation simply | 
 |  * takes/releases a reference count on all the cgroups referenced | 
 |  * by subsystems in this css_set. This can end up multiple-counting | 
 |  * some cgroups, but that's OK - the ref-count is just a | 
 |  * busy/not-busy indicator; ensuring that we only count each cgroup | 
 |  * once would require taking a global lock to ensure that no | 
 |  * subsystems moved between hierarchies while we were doing so. | 
 |  * | 
 |  * Possible TODO: decide at boot time based on the number of | 
 |  * registered subsystems and the number of CPUs or NUMA nodes whether | 
 |  * it's better for performance to ref-count every subsystem, or to | 
 |  * take a global lock and only add one ref count to each hierarchy. | 
 |  */ | 
 |  | 
 | /* | 
 |  * unlink a css_set from the list and free it | 
 |  */ | 
 | static void unlink_css_set(struct css_set *cg) | 
 | { | 
 | 	write_lock(&css_set_lock); | 
 | 	list_del(&cg->list); | 
 | 	css_set_count--; | 
 | 	while (!list_empty(&cg->cg_links)) { | 
 | 		struct cg_cgroup_link *link; | 
 | 		link = list_entry(cg->cg_links.next, | 
 | 				  struct cg_cgroup_link, cg_link_list); | 
 | 		list_del(&link->cg_link_list); | 
 | 		list_del(&link->cgrp_link_list); | 
 | 		kfree(link); | 
 | 	} | 
 | 	write_unlock(&css_set_lock); | 
 | } | 
 |  | 
 | static void __release_css_set(struct kref *k, int taskexit) | 
 | { | 
 | 	int i; | 
 | 	struct css_set *cg = container_of(k, struct css_set, ref); | 
 |  | 
 | 	unlink_css_set(cg); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup *cgrp = cg->subsys[i]->cgroup; | 
 | 		if (atomic_dec_and_test(&cgrp->count) && | 
 | 		    notify_on_release(cgrp)) { | 
 | 			if (taskexit) | 
 | 				set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
 | 			check_for_release(cgrp); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	kfree(cg); | 
 | } | 
 |  | 
 | static void release_css_set(struct kref *k) | 
 | { | 
 | 	__release_css_set(k, 0); | 
 | } | 
 |  | 
 | static void release_css_set_taskexit(struct kref *k) | 
 | { | 
 | 	__release_css_set(k, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * refcounted get/put for css_set objects | 
 |  */ | 
 | static inline void get_css_set(struct css_set *cg) | 
 | { | 
 | 	kref_get(&cg->ref); | 
 | } | 
 |  | 
 | static inline void put_css_set(struct css_set *cg) | 
 | { | 
 | 	kref_put(&cg->ref, release_css_set); | 
 | } | 
 |  | 
 | static inline void put_css_set_taskexit(struct css_set *cg) | 
 | { | 
 | 	kref_put(&cg->ref, release_css_set_taskexit); | 
 | } | 
 |  | 
 | /* | 
 |  * find_existing_css_set() is a helper for | 
 |  * find_css_set(), and checks to see whether an existing | 
 |  * css_set is suitable. This currently walks a linked-list for | 
 |  * simplicity; a later patch will use a hash table for better | 
 |  * performance | 
 |  * | 
 |  * oldcg: the cgroup group that we're using before the cgroup | 
 |  * transition | 
 |  * | 
 |  * cgrp: the cgroup that we're moving into | 
 |  * | 
 |  * template: location in which to build the desired set of subsystem | 
 |  * state objects for the new cgroup group | 
 |  */ | 
 | static struct css_set *find_existing_css_set( | 
 | 	struct css_set *oldcg, | 
 | 	struct cgroup *cgrp, | 
 | 	struct cgroup_subsys_state *template[]) | 
 | { | 
 | 	int i; | 
 | 	struct cgroupfs_root *root = cgrp->root; | 
 | 	struct list_head *l = &init_css_set.list; | 
 |  | 
 | 	/* Built the set of subsystem state objects that we want to | 
 | 	 * see in the new css_set */ | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		if (root->subsys_bits & (1UL << i)) { | 
 | 			/* Subsystem is in this hierarchy. So we want | 
 | 			 * the subsystem state from the new | 
 | 			 * cgroup */ | 
 | 			template[i] = cgrp->subsys[i]; | 
 | 		} else { | 
 | 			/* Subsystem is not in this hierarchy, so we | 
 | 			 * don't want to change the subsystem state */ | 
 | 			template[i] = oldcg->subsys[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Look through existing cgroup groups to find one to reuse */ | 
 | 	do { | 
 | 		struct css_set *cg = | 
 | 			list_entry(l, struct css_set, list); | 
 |  | 
 | 		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 
 | 			/* All subsystems matched */ | 
 | 			return cg; | 
 | 		} | 
 | 		/* Try the next cgroup group */ | 
 | 		l = l->next; | 
 | 	} while (l != &init_css_set.list); | 
 |  | 
 | 	/* No existing cgroup group matched */ | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * allocate_cg_links() allocates "count" cg_cgroup_link structures | 
 |  * and chains them on tmp through their cgrp_link_list fields. Returns 0 on | 
 |  * success or a negative error | 
 |  */ | 
 | static int allocate_cg_links(int count, struct list_head *tmp) | 
 | { | 
 | 	struct cg_cgroup_link *link; | 
 | 	int i; | 
 | 	INIT_LIST_HEAD(tmp); | 
 | 	for (i = 0; i < count; i++) { | 
 | 		link = kmalloc(sizeof(*link), GFP_KERNEL); | 
 | 		if (!link) { | 
 | 			while (!list_empty(tmp)) { | 
 | 				link = list_entry(tmp->next, | 
 | 						  struct cg_cgroup_link, | 
 | 						  cgrp_link_list); | 
 | 				list_del(&link->cgrp_link_list); | 
 | 				kfree(link); | 
 | 			} | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		list_add(&link->cgrp_link_list, tmp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_cg_links(struct list_head *tmp) | 
 | { | 
 | 	while (!list_empty(tmp)) { | 
 | 		struct cg_cgroup_link *link; | 
 | 		link = list_entry(tmp->next, | 
 | 				  struct cg_cgroup_link, | 
 | 				  cgrp_link_list); | 
 | 		list_del(&link->cgrp_link_list); | 
 | 		kfree(link); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * find_css_set() takes an existing cgroup group and a | 
 |  * cgroup object, and returns a css_set object that's | 
 |  * equivalent to the old group, but with the given cgroup | 
 |  * substituted into the appropriate hierarchy. Must be called with | 
 |  * cgroup_mutex held | 
 |  */ | 
 | static struct css_set *find_css_set( | 
 | 	struct css_set *oldcg, struct cgroup *cgrp) | 
 | { | 
 | 	struct css_set *res; | 
 | 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 
 | 	int i; | 
 |  | 
 | 	struct list_head tmp_cg_links; | 
 | 	struct cg_cgroup_link *link; | 
 |  | 
 | 	/* First see if we already have a cgroup group that matches | 
 | 	 * the desired set */ | 
 | 	write_lock(&css_set_lock); | 
 | 	res = find_existing_css_set(oldcg, cgrp, template); | 
 | 	if (res) | 
 | 		get_css_set(res); | 
 | 	write_unlock(&css_set_lock); | 
 |  | 
 | 	if (res) | 
 | 		return res; | 
 |  | 
 | 	res = kmalloc(sizeof(*res), GFP_KERNEL); | 
 | 	if (!res) | 
 | 		return NULL; | 
 |  | 
 | 	/* Allocate all the cg_cgroup_link objects that we'll need */ | 
 | 	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { | 
 | 		kfree(res); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	kref_init(&res->ref); | 
 | 	INIT_LIST_HEAD(&res->cg_links); | 
 | 	INIT_LIST_HEAD(&res->tasks); | 
 |  | 
 | 	/* Copy the set of subsystem state objects generated in | 
 | 	 * find_existing_css_set() */ | 
 | 	memcpy(res->subsys, template, sizeof(res->subsys)); | 
 |  | 
 | 	write_lock(&css_set_lock); | 
 | 	/* Add reference counts and links from the new css_set. */ | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup *cgrp = res->subsys[i]->cgroup; | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		atomic_inc(&cgrp->count); | 
 | 		/* | 
 | 		 * We want to add a link once per cgroup, so we | 
 | 		 * only do it for the first subsystem in each | 
 | 		 * hierarchy | 
 | 		 */ | 
 | 		if (ss->root->subsys_list.next == &ss->sibling) { | 
 | 			BUG_ON(list_empty(&tmp_cg_links)); | 
 | 			link = list_entry(tmp_cg_links.next, | 
 | 					  struct cg_cgroup_link, | 
 | 					  cgrp_link_list); | 
 | 			list_del(&link->cgrp_link_list); | 
 | 			list_add(&link->cgrp_link_list, &cgrp->css_sets); | 
 | 			link->cg = res; | 
 | 			list_add(&link->cg_link_list, &res->cg_links); | 
 | 		} | 
 | 	} | 
 | 	if (list_empty(&rootnode.subsys_list)) { | 
 | 		link = list_entry(tmp_cg_links.next, | 
 | 				  struct cg_cgroup_link, | 
 | 				  cgrp_link_list); | 
 | 		list_del(&link->cgrp_link_list); | 
 | 		list_add(&link->cgrp_link_list, &dummytop->css_sets); | 
 | 		link->cg = res; | 
 | 		list_add(&link->cg_link_list, &res->cg_links); | 
 | 	} | 
 |  | 
 | 	BUG_ON(!list_empty(&tmp_cg_links)); | 
 |  | 
 | 	/* Link this cgroup group into the list */ | 
 | 	list_add(&res->list, &init_css_set.list); | 
 | 	css_set_count++; | 
 | 	write_unlock(&css_set_lock); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * There is one global cgroup mutex. We also require taking | 
 |  * task_lock() when dereferencing a task's cgroup subsys pointers. | 
 |  * See "The task_lock() exception", at the end of this comment. | 
 |  * | 
 |  * A task must hold cgroup_mutex to modify cgroups. | 
 |  * | 
 |  * Any task can increment and decrement the count field without lock. | 
 |  * So in general, code holding cgroup_mutex can't rely on the count | 
 |  * field not changing.  However, if the count goes to zero, then only | 
 |  * cgroup_attach_task() can increment it again.  Because a count of zero | 
 |  * means that no tasks are currently attached, therefore there is no | 
 |  * way a task attached to that cgroup can fork (the other way to | 
 |  * increment the count).  So code holding cgroup_mutex can safely | 
 |  * assume that if the count is zero, it will stay zero. Similarly, if | 
 |  * a task holds cgroup_mutex on a cgroup with zero count, it | 
 |  * knows that the cgroup won't be removed, as cgroup_rmdir() | 
 |  * needs that mutex. | 
 |  * | 
 |  * The cgroup_common_file_write handler for operations that modify | 
 |  * the cgroup hierarchy holds cgroup_mutex across the entire operation, | 
 |  * single threading all such cgroup modifications across the system. | 
 |  * | 
 |  * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't | 
 |  * (usually) take cgroup_mutex.  These are the two most performance | 
 |  * critical pieces of code here.  The exception occurs on cgroup_exit(), | 
 |  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex | 
 |  * is taken, and if the cgroup count is zero, a usermode call made | 
 |  * to the release agent with the name of the cgroup (path relative to | 
 |  * the root of cgroup file system) as the argument. | 
 |  * | 
 |  * A cgroup can only be deleted if both its 'count' of using tasks | 
 |  * is zero, and its list of 'children' cgroups is empty.  Since all | 
 |  * tasks in the system use _some_ cgroup, and since there is always at | 
 |  * least one task in the system (init, pid == 1), therefore, top_cgroup | 
 |  * always has either children cgroups and/or using tasks.  So we don't | 
 |  * need a special hack to ensure that top_cgroup cannot be deleted. | 
 |  * | 
 |  *	The task_lock() exception | 
 |  * | 
 |  * The need for this exception arises from the action of | 
 |  * cgroup_attach_task(), which overwrites one tasks cgroup pointer with | 
 |  * another.  It does so using cgroup_mutex, however there are | 
 |  * several performance critical places that need to reference | 
 |  * task->cgroup without the expense of grabbing a system global | 
 |  * mutex.  Therefore except as noted below, when dereferencing or, as | 
 |  * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use | 
 |  * task_lock(), which acts on a spinlock (task->alloc_lock) already in | 
 |  * the task_struct routinely used for such matters. | 
 |  * | 
 |  * P.S.  One more locking exception.  RCU is used to guard the | 
 |  * update of a tasks cgroup pointer by cgroup_attach_task() | 
 |  */ | 
 |  | 
 | /** | 
 |  * cgroup_lock - lock out any changes to cgroup structures | 
 |  * | 
 |  */ | 
 | void cgroup_lock(void) | 
 | { | 
 | 	mutex_lock(&cgroup_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_unlock - release lock on cgroup changes | 
 |  * | 
 |  * Undo the lock taken in a previous cgroup_lock() call. | 
 |  */ | 
 | void cgroup_unlock(void) | 
 | { | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * A couple of forward declarations required, due to cyclic reference loop: | 
 |  * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> | 
 |  * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations | 
 |  * -> cgroup_mkdir. | 
 |  */ | 
 |  | 
 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 
 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
 | static int cgroup_populate_dir(struct cgroup *cgrp); | 
 | static struct inode_operations cgroup_dir_inode_operations; | 
 | static struct file_operations proc_cgroupstats_operations; | 
 |  | 
 | static struct backing_dev_info cgroup_backing_dev_info = { | 
 | 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | 
 | }; | 
 |  | 
 | static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) | 
 | { | 
 | 	struct inode *inode = new_inode(sb); | 
 |  | 
 | 	if (inode) { | 
 | 		inode->i_mode = mode; | 
 | 		inode->i_uid = current->fsuid; | 
 | 		inode->i_gid = current->fsgid; | 
 | 		inode->i_blocks = 0; | 
 | 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
 | 		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; | 
 | 	} | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* | 
 |  * Call subsys's pre_destroy handler. | 
 |  * This is called before css refcnt check. | 
 |  */ | 
 | static void cgroup_call_pre_destroy(struct cgroup *cgrp) | 
 | { | 
 | 	struct cgroup_subsys *ss; | 
 | 	for_each_subsys(cgrp->root, ss) | 
 | 		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id]) | 
 | 			ss->pre_destroy(ss, cgrp); | 
 | 	return; | 
 | } | 
 |  | 
 | static void cgroup_diput(struct dentry *dentry, struct inode *inode) | 
 | { | 
 | 	/* is dentry a directory ? if so, kfree() associated cgroup */ | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		struct cgroup *cgrp = dentry->d_fsdata; | 
 | 		struct cgroup_subsys *ss; | 
 | 		BUG_ON(!(cgroup_is_removed(cgrp))); | 
 | 		/* It's possible for external users to be holding css | 
 | 		 * reference counts on a cgroup; css_put() needs to | 
 | 		 * be able to access the cgroup after decrementing | 
 | 		 * the reference count in order to know if it needs to | 
 | 		 * queue the cgroup to be handled by the release | 
 | 		 * agent */ | 
 | 		synchronize_rcu(); | 
 |  | 
 | 		mutex_lock(&cgroup_mutex); | 
 | 		/* | 
 | 		 * Release the subsystem state objects. | 
 | 		 */ | 
 | 		for_each_subsys(cgrp->root, ss) { | 
 | 			if (cgrp->subsys[ss->subsys_id]) | 
 | 				ss->destroy(ss, cgrp); | 
 | 		} | 
 |  | 
 | 		cgrp->root->number_of_cgroups--; | 
 | 		mutex_unlock(&cgroup_mutex); | 
 |  | 
 | 		/* Drop the active superblock reference that we took when we | 
 | 		 * created the cgroup */ | 
 | 		deactivate_super(cgrp->root->sb); | 
 |  | 
 | 		kfree(cgrp); | 
 | 	} | 
 | 	iput(inode); | 
 | } | 
 |  | 
 | static void remove_dir(struct dentry *d) | 
 | { | 
 | 	struct dentry *parent = dget(d->d_parent); | 
 |  | 
 | 	d_delete(d); | 
 | 	simple_rmdir(parent->d_inode, d); | 
 | 	dput(parent); | 
 | } | 
 |  | 
 | static void cgroup_clear_directory(struct dentry *dentry) | 
 | { | 
 | 	struct list_head *node; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); | 
 | 	spin_lock(&dcache_lock); | 
 | 	node = dentry->d_subdirs.next; | 
 | 	while (node != &dentry->d_subdirs) { | 
 | 		struct dentry *d = list_entry(node, struct dentry, d_u.d_child); | 
 | 		list_del_init(node); | 
 | 		if (d->d_inode) { | 
 | 			/* This should never be called on a cgroup | 
 | 			 * directory with child cgroups */ | 
 | 			BUG_ON(d->d_inode->i_mode & S_IFDIR); | 
 | 			d = dget_locked(d); | 
 | 			spin_unlock(&dcache_lock); | 
 | 			d_delete(d); | 
 | 			simple_unlink(dentry->d_inode, d); | 
 | 			dput(d); | 
 | 			spin_lock(&dcache_lock); | 
 | 		} | 
 | 		node = dentry->d_subdirs.next; | 
 | 	} | 
 | 	spin_unlock(&dcache_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE : the dentry must have been dget()'ed | 
 |  */ | 
 | static void cgroup_d_remove_dir(struct dentry *dentry) | 
 | { | 
 | 	cgroup_clear_directory(dentry); | 
 |  | 
 | 	spin_lock(&dcache_lock); | 
 | 	list_del_init(&dentry->d_u.d_child); | 
 | 	spin_unlock(&dcache_lock); | 
 | 	remove_dir(dentry); | 
 | } | 
 |  | 
 | static int rebind_subsystems(struct cgroupfs_root *root, | 
 | 			      unsigned long final_bits) | 
 | { | 
 | 	unsigned long added_bits, removed_bits; | 
 | 	struct cgroup *cgrp = &root->top_cgroup; | 
 | 	int i; | 
 |  | 
 | 	removed_bits = root->actual_subsys_bits & ~final_bits; | 
 | 	added_bits = final_bits & ~root->actual_subsys_bits; | 
 | 	/* Check that any added subsystems are currently free */ | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		unsigned long bit = 1UL << i; | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		if (!(bit & added_bits)) | 
 | 			continue; | 
 | 		if (ss->root != &rootnode) { | 
 | 			/* Subsystem isn't free */ | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Currently we don't handle adding/removing subsystems when | 
 | 	 * any child cgroups exist. This is theoretically supportable | 
 | 	 * but involves complex error handling, so it's being left until | 
 | 	 * later */ | 
 | 	if (!list_empty(&cgrp->children)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Process each subsystem */ | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		unsigned long bit = 1UL << i; | 
 | 		if (bit & added_bits) { | 
 | 			/* We're binding this subsystem to this hierarchy */ | 
 | 			BUG_ON(cgrp->subsys[i]); | 
 | 			BUG_ON(!dummytop->subsys[i]); | 
 | 			BUG_ON(dummytop->subsys[i]->cgroup != dummytop); | 
 | 			cgrp->subsys[i] = dummytop->subsys[i]; | 
 | 			cgrp->subsys[i]->cgroup = cgrp; | 
 | 			list_add(&ss->sibling, &root->subsys_list); | 
 | 			rcu_assign_pointer(ss->root, root); | 
 | 			if (ss->bind) | 
 | 				ss->bind(ss, cgrp); | 
 |  | 
 | 		} else if (bit & removed_bits) { | 
 | 			/* We're removing this subsystem */ | 
 | 			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); | 
 | 			BUG_ON(cgrp->subsys[i]->cgroup != cgrp); | 
 | 			if (ss->bind) | 
 | 				ss->bind(ss, dummytop); | 
 | 			dummytop->subsys[i]->cgroup = dummytop; | 
 | 			cgrp->subsys[i] = NULL; | 
 | 			rcu_assign_pointer(subsys[i]->root, &rootnode); | 
 | 			list_del(&ss->sibling); | 
 | 		} else if (bit & final_bits) { | 
 | 			/* Subsystem state should already exist */ | 
 | 			BUG_ON(!cgrp->subsys[i]); | 
 | 		} else { | 
 | 			/* Subsystem state shouldn't exist */ | 
 | 			BUG_ON(cgrp->subsys[i]); | 
 | 		} | 
 | 	} | 
 | 	root->subsys_bits = root->actual_subsys_bits = final_bits; | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | 
 | { | 
 | 	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info; | 
 | 	struct cgroup_subsys *ss; | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	for_each_subsys(root, ss) | 
 | 		seq_printf(seq, ",%s", ss->name); | 
 | 	if (test_bit(ROOT_NOPREFIX, &root->flags)) | 
 | 		seq_puts(seq, ",noprefix"); | 
 | 	if (strlen(root->release_agent_path)) | 
 | 		seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct cgroup_sb_opts { | 
 | 	unsigned long subsys_bits; | 
 | 	unsigned long flags; | 
 | 	char *release_agent; | 
 | }; | 
 |  | 
 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 
 |  * flags. */ | 
 | static int parse_cgroupfs_options(char *data, | 
 | 				     struct cgroup_sb_opts *opts) | 
 | { | 
 | 	char *token, *o = data ?: "all"; | 
 |  | 
 | 	opts->subsys_bits = 0; | 
 | 	opts->flags = 0; | 
 | 	opts->release_agent = NULL; | 
 |  | 
 | 	while ((token = strsep(&o, ",")) != NULL) { | 
 | 		if (!*token) | 
 | 			return -EINVAL; | 
 | 		if (!strcmp(token, "all")) { | 
 | 			opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1; | 
 | 		} else if (!strcmp(token, "noprefix")) { | 
 | 			set_bit(ROOT_NOPREFIX, &opts->flags); | 
 | 		} else if (!strncmp(token, "release_agent=", 14)) { | 
 | 			/* Specifying two release agents is forbidden */ | 
 | 			if (opts->release_agent) | 
 | 				return -EINVAL; | 
 | 			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 
 | 			if (!opts->release_agent) | 
 | 				return -ENOMEM; | 
 | 			strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 
 | 			opts->release_agent[PATH_MAX - 1] = 0; | 
 | 		} else { | 
 | 			struct cgroup_subsys *ss; | 
 | 			int i; | 
 | 			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 				ss = subsys[i]; | 
 | 				if (!strcmp(token, ss->name)) { | 
 | 					set_bit(i, &opts->subsys_bits); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			if (i == CGROUP_SUBSYS_COUNT) | 
 | 				return -ENOENT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* We can't have an empty hierarchy */ | 
 | 	if (!opts->subsys_bits) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroup_remount(struct super_block *sb, int *flags, char *data) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct cgroupfs_root *root = sb->s_fs_info; | 
 | 	struct cgroup *cgrp = &root->top_cgroup; | 
 | 	struct cgroup_sb_opts opts; | 
 |  | 
 | 	mutex_lock(&cgrp->dentry->d_inode->i_mutex); | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  | 
 | 	/* See what subsystems are wanted */ | 
 | 	ret = parse_cgroupfs_options(data, &opts); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Don't allow flags to change at remount */ | 
 | 	if (opts.flags != root->flags) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ret = rebind_subsystems(root, opts.subsys_bits); | 
 |  | 
 | 	/* (re)populate subsystem files */ | 
 | 	if (!ret) | 
 | 		cgroup_populate_dir(cgrp); | 
 |  | 
 | 	if (opts.release_agent) | 
 | 		strcpy(root->release_agent_path, opts.release_agent); | 
 |  out_unlock: | 
 | 	if (opts.release_agent) | 
 | 		kfree(opts.release_agent); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct super_operations cgroup_ops = { | 
 | 	.statfs = simple_statfs, | 
 | 	.drop_inode = generic_delete_inode, | 
 | 	.show_options = cgroup_show_options, | 
 | 	.remount_fs = cgroup_remount, | 
 | }; | 
 |  | 
 | static void init_cgroup_root(struct cgroupfs_root *root) | 
 | { | 
 | 	struct cgroup *cgrp = &root->top_cgroup; | 
 | 	INIT_LIST_HEAD(&root->subsys_list); | 
 | 	INIT_LIST_HEAD(&root->root_list); | 
 | 	root->number_of_cgroups = 1; | 
 | 	cgrp->root = root; | 
 | 	cgrp->top_cgroup = cgrp; | 
 | 	INIT_LIST_HEAD(&cgrp->sibling); | 
 | 	INIT_LIST_HEAD(&cgrp->children); | 
 | 	INIT_LIST_HEAD(&cgrp->css_sets); | 
 | 	INIT_LIST_HEAD(&cgrp->release_list); | 
 | } | 
 |  | 
 | static int cgroup_test_super(struct super_block *sb, void *data) | 
 | { | 
 | 	struct cgroupfs_root *new = data; | 
 | 	struct cgroupfs_root *root = sb->s_fs_info; | 
 |  | 
 | 	/* First check subsystems */ | 
 | 	if (new->subsys_bits != root->subsys_bits) | 
 | 	    return 0; | 
 |  | 
 | 	/* Next check flags */ | 
 | 	if (new->flags != root->flags) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int cgroup_set_super(struct super_block *sb, void *data) | 
 | { | 
 | 	int ret; | 
 | 	struct cgroupfs_root *root = data; | 
 |  | 
 | 	ret = set_anon_super(sb, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	sb->s_fs_info = root; | 
 | 	root->sb = sb; | 
 |  | 
 | 	sb->s_blocksize = PAGE_CACHE_SIZE; | 
 | 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
 | 	sb->s_magic = CGROUP_SUPER_MAGIC; | 
 | 	sb->s_op = &cgroup_ops; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroup_get_rootdir(struct super_block *sb) | 
 | { | 
 | 	struct inode *inode = | 
 | 		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	if (!inode) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	inode->i_fop = &simple_dir_operations; | 
 | 	inode->i_op = &cgroup_dir_inode_operations; | 
 | 	/* directories start off with i_nlink == 2 (for "." entry) */ | 
 | 	inc_nlink(inode); | 
 | 	dentry = d_alloc_root(inode); | 
 | 	if (!dentry) { | 
 | 		iput(inode); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	sb->s_root = dentry; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroup_get_sb(struct file_system_type *fs_type, | 
 | 			 int flags, const char *unused_dev_name, | 
 | 			 void *data, struct vfsmount *mnt) | 
 | { | 
 | 	struct cgroup_sb_opts opts; | 
 | 	int ret = 0; | 
 | 	struct super_block *sb; | 
 | 	struct cgroupfs_root *root; | 
 | 	struct list_head tmp_cg_links, *l; | 
 | 	INIT_LIST_HEAD(&tmp_cg_links); | 
 |  | 
 | 	/* First find the desired set of subsystems */ | 
 | 	ret = parse_cgroupfs_options(data, &opts); | 
 | 	if (ret) { | 
 | 		if (opts.release_agent) | 
 | 			kfree(opts.release_agent); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	root = kzalloc(sizeof(*root), GFP_KERNEL); | 
 | 	if (!root) { | 
 | 		if (opts.release_agent) | 
 | 			kfree(opts.release_agent); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	init_cgroup_root(root); | 
 | 	root->subsys_bits = opts.subsys_bits; | 
 | 	root->flags = opts.flags; | 
 | 	if (opts.release_agent) { | 
 | 		strcpy(root->release_agent_path, opts.release_agent); | 
 | 		kfree(opts.release_agent); | 
 | 	} | 
 |  | 
 | 	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 
 |  | 
 | 	if (IS_ERR(sb)) { | 
 | 		kfree(root); | 
 | 		return PTR_ERR(sb); | 
 | 	} | 
 |  | 
 | 	if (sb->s_fs_info != root) { | 
 | 		/* Reusing an existing superblock */ | 
 | 		BUG_ON(sb->s_root == NULL); | 
 | 		kfree(root); | 
 | 		root = NULL; | 
 | 	} else { | 
 | 		/* New superblock */ | 
 | 		struct cgroup *cgrp = &root->top_cgroup; | 
 | 		struct inode *inode; | 
 |  | 
 | 		BUG_ON(sb->s_root != NULL); | 
 |  | 
 | 		ret = cgroup_get_rootdir(sb); | 
 | 		if (ret) | 
 | 			goto drop_new_super; | 
 | 		inode = sb->s_root->d_inode; | 
 |  | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 		mutex_lock(&cgroup_mutex); | 
 |  | 
 | 		/* | 
 | 		 * We're accessing css_set_count without locking | 
 | 		 * css_set_lock here, but that's OK - it can only be | 
 | 		 * increased by someone holding cgroup_lock, and | 
 | 		 * that's us. The worst that can happen is that we | 
 | 		 * have some link structures left over | 
 | 		 */ | 
 | 		ret = allocate_cg_links(css_set_count, &tmp_cg_links); | 
 | 		if (ret) { | 
 | 			mutex_unlock(&cgroup_mutex); | 
 | 			mutex_unlock(&inode->i_mutex); | 
 | 			goto drop_new_super; | 
 | 		} | 
 |  | 
 | 		ret = rebind_subsystems(root, root->subsys_bits); | 
 | 		if (ret == -EBUSY) { | 
 | 			mutex_unlock(&cgroup_mutex); | 
 | 			mutex_unlock(&inode->i_mutex); | 
 | 			goto drop_new_super; | 
 | 		} | 
 |  | 
 | 		/* EBUSY should be the only error here */ | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		list_add(&root->root_list, &roots); | 
 | 		root_count++; | 
 |  | 
 | 		sb->s_root->d_fsdata = &root->top_cgroup; | 
 | 		root->top_cgroup.dentry = sb->s_root; | 
 |  | 
 | 		/* Link the top cgroup in this hierarchy into all | 
 | 		 * the css_set objects */ | 
 | 		write_lock(&css_set_lock); | 
 | 		l = &init_css_set.list; | 
 | 		do { | 
 | 			struct css_set *cg; | 
 | 			struct cg_cgroup_link *link; | 
 | 			cg = list_entry(l, struct css_set, list); | 
 | 			BUG_ON(list_empty(&tmp_cg_links)); | 
 | 			link = list_entry(tmp_cg_links.next, | 
 | 					  struct cg_cgroup_link, | 
 | 					  cgrp_link_list); | 
 | 			list_del(&link->cgrp_link_list); | 
 | 			link->cg = cg; | 
 | 			list_add(&link->cgrp_link_list, | 
 | 				 &root->top_cgroup.css_sets); | 
 | 			list_add(&link->cg_link_list, &cg->cg_links); | 
 | 			l = l->next; | 
 | 		} while (l != &init_css_set.list); | 
 | 		write_unlock(&css_set_lock); | 
 |  | 
 | 		free_cg_links(&tmp_cg_links); | 
 |  | 
 | 		BUG_ON(!list_empty(&cgrp->sibling)); | 
 | 		BUG_ON(!list_empty(&cgrp->children)); | 
 | 		BUG_ON(root->number_of_cgroups != 1); | 
 |  | 
 | 		cgroup_populate_dir(cgrp); | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 	} | 
 |  | 
 | 	return simple_set_mnt(mnt, sb); | 
 |  | 
 |  drop_new_super: | 
 | 	up_write(&sb->s_umount); | 
 | 	deactivate_super(sb); | 
 | 	free_cg_links(&tmp_cg_links); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cgroup_kill_sb(struct super_block *sb) { | 
 | 	struct cgroupfs_root *root = sb->s_fs_info; | 
 | 	struct cgroup *cgrp = &root->top_cgroup; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!root); | 
 |  | 
 | 	BUG_ON(root->number_of_cgroups != 1); | 
 | 	BUG_ON(!list_empty(&cgrp->children)); | 
 | 	BUG_ON(!list_empty(&cgrp->sibling)); | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  | 
 | 	/* Rebind all subsystems back to the default hierarchy */ | 
 | 	ret = rebind_subsystems(root, 0); | 
 | 	/* Shouldn't be able to fail ... */ | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	/* | 
 | 	 * Release all the links from css_sets to this hierarchy's | 
 | 	 * root cgroup | 
 | 	 */ | 
 | 	write_lock(&css_set_lock); | 
 | 	while (!list_empty(&cgrp->css_sets)) { | 
 | 		struct cg_cgroup_link *link; | 
 | 		link = list_entry(cgrp->css_sets.next, | 
 | 				  struct cg_cgroup_link, cgrp_link_list); | 
 | 		list_del(&link->cg_link_list); | 
 | 		list_del(&link->cgrp_link_list); | 
 | 		kfree(link); | 
 | 	} | 
 | 	write_unlock(&css_set_lock); | 
 |  | 
 | 	if (!list_empty(&root->root_list)) { | 
 | 		list_del(&root->root_list); | 
 | 		root_count--; | 
 | 	} | 
 | 	mutex_unlock(&cgroup_mutex); | 
 |  | 
 | 	kfree(root); | 
 | 	kill_litter_super(sb); | 
 | } | 
 |  | 
 | static struct file_system_type cgroup_fs_type = { | 
 | 	.name = "cgroup", | 
 | 	.get_sb = cgroup_get_sb, | 
 | 	.kill_sb = cgroup_kill_sb, | 
 | }; | 
 |  | 
 | static inline struct cgroup *__d_cgrp(struct dentry *dentry) | 
 | { | 
 | 	return dentry->d_fsdata; | 
 | } | 
 |  | 
 | static inline struct cftype *__d_cft(struct dentry *dentry) | 
 | { | 
 | 	return dentry->d_fsdata; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_path - generate the path of a cgroup | 
 |  * @cgrp: the cgroup in question | 
 |  * @buf: the buffer to write the path into | 
 |  * @buflen: the length of the buffer | 
 |  * | 
 |  * Called with cgroup_mutex held. Writes path of cgroup into buf. | 
 |  * Returns 0 on success, -errno on error. | 
 |  */ | 
 | int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | 
 | { | 
 | 	char *start; | 
 |  | 
 | 	if (cgrp == dummytop) { | 
 | 		/* | 
 | 		 * Inactive subsystems have no dentry for their root | 
 | 		 * cgroup | 
 | 		 */ | 
 | 		strcpy(buf, "/"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	start = buf + buflen; | 
 |  | 
 | 	*--start = '\0'; | 
 | 	for (;;) { | 
 | 		int len = cgrp->dentry->d_name.len; | 
 | 		if ((start -= len) < buf) | 
 | 			return -ENAMETOOLONG; | 
 | 		memcpy(start, cgrp->dentry->d_name.name, len); | 
 | 		cgrp = cgrp->parent; | 
 | 		if (!cgrp) | 
 | 			break; | 
 | 		if (!cgrp->parent) | 
 | 			continue; | 
 | 		if (--start < buf) | 
 | 			return -ENAMETOOLONG; | 
 | 		*start = '/'; | 
 | 	} | 
 | 	memmove(buf, start, buf + buflen - start); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the first subsystem attached to a cgroup's hierarchy, and | 
 |  * its subsystem id. | 
 |  */ | 
 |  | 
 | static void get_first_subsys(const struct cgroup *cgrp, | 
 | 			struct cgroup_subsys_state **css, int *subsys_id) | 
 | { | 
 | 	const struct cgroupfs_root *root = cgrp->root; | 
 | 	const struct cgroup_subsys *test_ss; | 
 | 	BUG_ON(list_empty(&root->subsys_list)); | 
 | 	test_ss = list_entry(root->subsys_list.next, | 
 | 			     struct cgroup_subsys, sibling); | 
 | 	if (css) { | 
 | 		*css = cgrp->subsys[test_ss->subsys_id]; | 
 | 		BUG_ON(!*css); | 
 | 	} | 
 | 	if (subsys_id) | 
 | 		*subsys_id = test_ss->subsys_id; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 
 |  * @cgrp: the cgroup the task is attaching to | 
 |  * @tsk: the task to be attached | 
 |  * | 
 |  * Call holding cgroup_mutex. May take task_lock of | 
 |  * the task 'tsk' during call. | 
 |  */ | 
 | int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct cgroup_subsys *ss; | 
 | 	struct cgroup *oldcgrp; | 
 | 	struct css_set *cg = tsk->cgroups; | 
 | 	struct css_set *newcg; | 
 | 	struct cgroupfs_root *root = cgrp->root; | 
 | 	int subsys_id; | 
 |  | 
 | 	get_first_subsys(cgrp, NULL, &subsys_id); | 
 |  | 
 | 	/* Nothing to do if the task is already in that cgroup */ | 
 | 	oldcgrp = task_cgroup(tsk, subsys_id); | 
 | 	if (cgrp == oldcgrp) | 
 | 		return 0; | 
 |  | 
 | 	for_each_subsys(root, ss) { | 
 | 		if (ss->can_attach) { | 
 | 			retval = ss->can_attach(ss, cgrp, tsk); | 
 | 			if (retval) | 
 | 				return retval; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Locate or allocate a new css_set for this task, | 
 | 	 * based on its final set of cgroups | 
 | 	 */ | 
 | 	newcg = find_css_set(cg, cgrp); | 
 | 	if (!newcg) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	task_lock(tsk); | 
 | 	if (tsk->flags & PF_EXITING) { | 
 | 		task_unlock(tsk); | 
 | 		put_css_set(newcg); | 
 | 		return -ESRCH; | 
 | 	} | 
 | 	rcu_assign_pointer(tsk->cgroups, newcg); | 
 | 	task_unlock(tsk); | 
 |  | 
 | 	/* Update the css_set linked lists if we're using them */ | 
 | 	write_lock(&css_set_lock); | 
 | 	if (!list_empty(&tsk->cg_list)) { | 
 | 		list_del(&tsk->cg_list); | 
 | 		list_add(&tsk->cg_list, &newcg->tasks); | 
 | 	} | 
 | 	write_unlock(&css_set_lock); | 
 |  | 
 | 	for_each_subsys(root, ss) { | 
 | 		if (ss->attach) | 
 | 			ss->attach(ss, cgrp, oldcgrp, tsk); | 
 | 	} | 
 | 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 
 | 	synchronize_rcu(); | 
 | 	put_css_set(cg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach task with pid 'pid' to cgroup 'cgrp'. Call with | 
 |  * cgroup_mutex, may take task_lock of task | 
 |  */ | 
 | static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf) | 
 | { | 
 | 	pid_t pid; | 
 | 	struct task_struct *tsk; | 
 | 	int ret; | 
 |  | 
 | 	if (sscanf(pidbuf, "%d", &pid) != 1) | 
 | 		return -EIO; | 
 |  | 
 | 	if (pid) { | 
 | 		rcu_read_lock(); | 
 | 		tsk = find_task_by_vpid(pid); | 
 | 		if (!tsk || tsk->flags & PF_EXITING) { | 
 | 			rcu_read_unlock(); | 
 | 			return -ESRCH; | 
 | 		} | 
 | 		get_task_struct(tsk); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if ((current->euid) && (current->euid != tsk->uid) | 
 | 		    && (current->euid != tsk->suid)) { | 
 | 			put_task_struct(tsk); | 
 | 			return -EACCES; | 
 | 		} | 
 | 	} else { | 
 | 		tsk = current; | 
 | 		get_task_struct(tsk); | 
 | 	} | 
 |  | 
 | 	ret = cgroup_attach_task(cgrp, tsk); | 
 | 	put_task_struct(tsk); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* The various types of files and directories in a cgroup file system */ | 
 | enum cgroup_filetype { | 
 | 	FILE_ROOT, | 
 | 	FILE_DIR, | 
 | 	FILE_TASKLIST, | 
 | 	FILE_NOTIFY_ON_RELEASE, | 
 | 	FILE_RELEASABLE, | 
 | 	FILE_RELEASE_AGENT, | 
 | }; | 
 |  | 
 | static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft, | 
 | 				 struct file *file, | 
 | 				 const char __user *userbuf, | 
 | 				 size_t nbytes, loff_t *unused_ppos) | 
 | { | 
 | 	char buffer[64]; | 
 | 	int retval = 0; | 
 | 	u64 val; | 
 | 	char *end; | 
 |  | 
 | 	if (!nbytes) | 
 | 		return -EINVAL; | 
 | 	if (nbytes >= sizeof(buffer)) | 
 | 		return -E2BIG; | 
 | 	if (copy_from_user(buffer, userbuf, nbytes)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	buffer[nbytes] = 0;     /* nul-terminate */ | 
 |  | 
 | 	/* strip newline if necessary */ | 
 | 	if (nbytes && (buffer[nbytes-1] == '\n')) | 
 | 		buffer[nbytes-1] = 0; | 
 | 	val = simple_strtoull(buffer, &end, 0); | 
 | 	if (*end) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Pass to subsystem */ | 
 | 	retval = cft->write_uint(cgrp, cft, val); | 
 | 	if (!retval) | 
 | 		retval = nbytes; | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t cgroup_common_file_write(struct cgroup *cgrp, | 
 | 					   struct cftype *cft, | 
 | 					   struct file *file, | 
 | 					   const char __user *userbuf, | 
 | 					   size_t nbytes, loff_t *unused_ppos) | 
 | { | 
 | 	enum cgroup_filetype type = cft->private; | 
 | 	char *buffer; | 
 | 	int retval = 0; | 
 |  | 
 | 	if (nbytes >= PATH_MAX) | 
 | 		return -E2BIG; | 
 |  | 
 | 	/* +1 for nul-terminator */ | 
 | 	buffer = kmalloc(nbytes + 1, GFP_KERNEL); | 
 | 	if (buffer == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (copy_from_user(buffer, userbuf, nbytes)) { | 
 | 		retval = -EFAULT; | 
 | 		goto out1; | 
 | 	} | 
 | 	buffer[nbytes] = 0;	/* nul-terminate */ | 
 | 	strstrip(buffer);	/* strip -just- trailing whitespace */ | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  | 
 | 	/* | 
 | 	 * This was already checked for in cgroup_file_write(), but | 
 | 	 * check again now we're holding cgroup_mutex. | 
 | 	 */ | 
 | 	if (cgroup_is_removed(cgrp)) { | 
 | 		retval = -ENODEV; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_TASKLIST: | 
 | 		retval = attach_task_by_pid(cgrp, buffer); | 
 | 		break; | 
 | 	case FILE_NOTIFY_ON_RELEASE: | 
 | 		clear_bit(CGRP_RELEASABLE, &cgrp->flags); | 
 | 		if (simple_strtoul(buffer, NULL, 10) != 0) | 
 | 			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
 | 		else | 
 | 			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
 | 		break; | 
 | 	case FILE_RELEASE_AGENT: | 
 | 		BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); | 
 | 		strcpy(cgrp->root->release_agent_path, buffer); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	if (retval == 0) | 
 | 		retval = nbytes; | 
 | out2: | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | out1: | 
 | 	kfree(buffer); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t cgroup_file_write(struct file *file, const char __user *buf, | 
 | 						size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
 |  | 
 | 	if (!cft || cgroup_is_removed(cgrp)) | 
 | 		return -ENODEV; | 
 | 	if (cft->write) | 
 | 		return cft->write(cgrp, cft, file, buf, nbytes, ppos); | 
 | 	if (cft->write_uint) | 
 | 		return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft, | 
 | 				   struct file *file, | 
 | 				   char __user *buf, size_t nbytes, | 
 | 				   loff_t *ppos) | 
 | { | 
 | 	char tmp[64]; | 
 | 	u64 val = cft->read_uint(cgrp, cft); | 
 | 	int len = sprintf(tmp, "%llu\n", (unsigned long long) val); | 
 |  | 
 | 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
 | } | 
 |  | 
 | static ssize_t cgroup_common_file_read(struct cgroup *cgrp, | 
 | 					  struct cftype *cft, | 
 | 					  struct file *file, | 
 | 					  char __user *buf, | 
 | 					  size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	enum cgroup_filetype type = cft->private; | 
 | 	char *page; | 
 | 	ssize_t retval = 0; | 
 | 	char *s; | 
 |  | 
 | 	if (!(page = (char *)__get_free_page(GFP_KERNEL))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	s = page; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_RELEASE_AGENT: | 
 | 	{ | 
 | 		struct cgroupfs_root *root; | 
 | 		size_t n; | 
 | 		mutex_lock(&cgroup_mutex); | 
 | 		root = cgrp->root; | 
 | 		n = strnlen(root->release_agent_path, | 
 | 			    sizeof(root->release_agent_path)); | 
 | 		n = min(n, (size_t) PAGE_SIZE); | 
 | 		strncpy(s, root->release_agent_path, n); | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		s += n; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	*s++ = '\n'; | 
 |  | 
 | 	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); | 
 | out: | 
 | 	free_page((unsigned long)page); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t cgroup_file_read(struct file *file, char __user *buf, | 
 | 				   size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
 |  | 
 | 	if (!cft || cgroup_is_removed(cgrp)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (cft->read) | 
 | 		return cft->read(cgrp, cft, file, buf, nbytes, ppos); | 
 | 	if (cft->read_uint) | 
 | 		return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int cgroup_file_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	int err; | 
 | 	struct cftype *cft; | 
 |  | 
 | 	err = generic_file_open(inode, file); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cft = __d_cft(file->f_dentry); | 
 | 	if (!cft) | 
 | 		return -ENODEV; | 
 | 	if (cft->open) | 
 | 		err = cft->open(inode, file); | 
 | 	else | 
 | 		err = 0; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cgroup_file_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct cftype *cft = __d_cft(file->f_dentry); | 
 | 	if (cft->release) | 
 | 		return cft->release(inode, file); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * cgroup_rename - Only allow simple rename of directories in place. | 
 |  */ | 
 | static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | 
 | 			    struct inode *new_dir, struct dentry *new_dentry) | 
 | { | 
 | 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) | 
 | 		return -ENOTDIR; | 
 | 	if (new_dentry->d_inode) | 
 | 		return -EEXIST; | 
 | 	if (old_dir != new_dir) | 
 | 		return -EIO; | 
 | 	return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 
 | } | 
 |  | 
 | static struct file_operations cgroup_file_operations = { | 
 | 	.read = cgroup_file_read, | 
 | 	.write = cgroup_file_write, | 
 | 	.llseek = generic_file_llseek, | 
 | 	.open = cgroup_file_open, | 
 | 	.release = cgroup_file_release, | 
 | }; | 
 |  | 
 | static struct inode_operations cgroup_dir_inode_operations = { | 
 | 	.lookup = simple_lookup, | 
 | 	.mkdir = cgroup_mkdir, | 
 | 	.rmdir = cgroup_rmdir, | 
 | 	.rename = cgroup_rename, | 
 | }; | 
 |  | 
 | static int cgroup_create_file(struct dentry *dentry, int mode, | 
 | 				struct super_block *sb) | 
 | { | 
 | 	static struct dentry_operations cgroup_dops = { | 
 | 		.d_iput = cgroup_diput, | 
 | 	}; | 
 |  | 
 | 	struct inode *inode; | 
 |  | 
 | 	if (!dentry) | 
 | 		return -ENOENT; | 
 | 	if (dentry->d_inode) | 
 | 		return -EEXIST; | 
 |  | 
 | 	inode = cgroup_new_inode(mode, sb); | 
 | 	if (!inode) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (S_ISDIR(mode)) { | 
 | 		inode->i_op = &cgroup_dir_inode_operations; | 
 | 		inode->i_fop = &simple_dir_operations; | 
 |  | 
 | 		/* start off with i_nlink == 2 (for "." entry) */ | 
 | 		inc_nlink(inode); | 
 |  | 
 | 		/* start with the directory inode held, so that we can | 
 | 		 * populate it without racing with another mkdir */ | 
 | 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); | 
 | 	} else if (S_ISREG(mode)) { | 
 | 		inode->i_size = 0; | 
 | 		inode->i_fop = &cgroup_file_operations; | 
 | 	} | 
 | 	dentry->d_op = &cgroup_dops; | 
 | 	d_instantiate(dentry, inode); | 
 | 	dget(dentry);	/* Extra count - pin the dentry in core */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * cgroup_create_dir - create a directory for an object. | 
 |  * @cgrp: the cgroup we create the directory for. It must have a valid | 
 |  *        ->parent field. And we are going to fill its ->dentry field. | 
 |  * @dentry: dentry of the new cgroup | 
 |  * @mode: mode to set on new directory. | 
 |  */ | 
 | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, | 
 | 				int mode) | 
 | { | 
 | 	struct dentry *parent; | 
 | 	int error = 0; | 
 |  | 
 | 	parent = cgrp->parent->dentry; | 
 | 	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); | 
 | 	if (!error) { | 
 | 		dentry->d_fsdata = cgrp; | 
 | 		inc_nlink(parent->d_inode); | 
 | 		cgrp->dentry = dentry; | 
 | 		dget(dentry); | 
 | 	} | 
 | 	dput(dentry); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | int cgroup_add_file(struct cgroup *cgrp, | 
 | 		       struct cgroup_subsys *subsys, | 
 | 		       const struct cftype *cft) | 
 | { | 
 | 	struct dentry *dir = cgrp->dentry; | 
 | 	struct dentry *dentry; | 
 | 	int error; | 
 |  | 
 | 	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | 
 | 	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { | 
 | 		strcpy(name, subsys->name); | 
 | 		strcat(name, "."); | 
 | 	} | 
 | 	strcat(name, cft->name); | 
 | 	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | 
 | 	dentry = lookup_one_len(name, dir, strlen(name)); | 
 | 	if (!IS_ERR(dentry)) { | 
 | 		error = cgroup_create_file(dentry, 0644 | S_IFREG, | 
 | 						cgrp->root->sb); | 
 | 		if (!error) | 
 | 			dentry->d_fsdata = (void *)cft; | 
 | 		dput(dentry); | 
 | 	} else | 
 | 		error = PTR_ERR(dentry); | 
 | 	return error; | 
 | } | 
 |  | 
 | int cgroup_add_files(struct cgroup *cgrp, | 
 | 			struct cgroup_subsys *subsys, | 
 | 			const struct cftype cft[], | 
 | 			int count) | 
 | { | 
 | 	int i, err; | 
 | 	for (i = 0; i < count; i++) { | 
 | 		err = cgroup_add_file(cgrp, subsys, &cft[i]); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_task_count - count the number of tasks in a cgroup. | 
 |  * @cgrp: the cgroup in question | 
 |  * | 
 |  * Return the number of tasks in the cgroup. | 
 |  */ | 
 | int cgroup_task_count(const struct cgroup *cgrp) | 
 | { | 
 | 	int count = 0; | 
 | 	struct list_head *l; | 
 |  | 
 | 	read_lock(&css_set_lock); | 
 | 	l = cgrp->css_sets.next; | 
 | 	while (l != &cgrp->css_sets) { | 
 | 		struct cg_cgroup_link *link = | 
 | 			list_entry(l, struct cg_cgroup_link, cgrp_link_list); | 
 | 		count += atomic_read(&link->cg->ref.refcount); | 
 | 		l = l->next; | 
 | 	} | 
 | 	read_unlock(&css_set_lock); | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Advance a list_head iterator.  The iterator should be positioned at | 
 |  * the start of a css_set | 
 |  */ | 
 | static void cgroup_advance_iter(struct cgroup *cgrp, | 
 | 					  struct cgroup_iter *it) | 
 | { | 
 | 	struct list_head *l = it->cg_link; | 
 | 	struct cg_cgroup_link *link; | 
 | 	struct css_set *cg; | 
 |  | 
 | 	/* Advance to the next non-empty css_set */ | 
 | 	do { | 
 | 		l = l->next; | 
 | 		if (l == &cgrp->css_sets) { | 
 | 			it->cg_link = NULL; | 
 | 			return; | 
 | 		} | 
 | 		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); | 
 | 		cg = link->cg; | 
 | 	} while (list_empty(&cg->tasks)); | 
 | 	it->cg_link = l; | 
 | 	it->task = cg->tasks.next; | 
 | } | 
 |  | 
 | /* | 
 |  * To reduce the fork() overhead for systems that are not actually | 
 |  * using their cgroups capability, we don't maintain the lists running | 
 |  * through each css_set to its tasks until we see the list actually | 
 |  * used - in other words after the first call to cgroup_iter_start(). | 
 |  * | 
 |  * The tasklist_lock is not held here, as do_each_thread() and | 
 |  * while_each_thread() are protected by RCU. | 
 |  */ | 
 | void cgroup_enable_task_cg_lists(void) | 
 | { | 
 | 	struct task_struct *p, *g; | 
 | 	write_lock(&css_set_lock); | 
 | 	use_task_css_set_links = 1; | 
 | 	do_each_thread(g, p) { | 
 | 		task_lock(p); | 
 | 		if (list_empty(&p->cg_list)) | 
 | 			list_add(&p->cg_list, &p->cgroups->tasks); | 
 | 		task_unlock(p); | 
 | 	} while_each_thread(g, p); | 
 | 	write_unlock(&css_set_lock); | 
 | } | 
 |  | 
 | void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) | 
 | { | 
 | 	/* | 
 | 	 * The first time anyone tries to iterate across a cgroup, | 
 | 	 * we need to enable the list linking each css_set to its | 
 | 	 * tasks, and fix up all existing tasks. | 
 | 	 */ | 
 | 	if (!use_task_css_set_links) | 
 | 		cgroup_enable_task_cg_lists(); | 
 |  | 
 | 	read_lock(&css_set_lock); | 
 | 	it->cg_link = &cgrp->css_sets; | 
 | 	cgroup_advance_iter(cgrp, it); | 
 | } | 
 |  | 
 | struct task_struct *cgroup_iter_next(struct cgroup *cgrp, | 
 | 					struct cgroup_iter *it) | 
 | { | 
 | 	struct task_struct *res; | 
 | 	struct list_head *l = it->task; | 
 |  | 
 | 	/* If the iterator cg is NULL, we have no tasks */ | 
 | 	if (!it->cg_link) | 
 | 		return NULL; | 
 | 	res = list_entry(l, struct task_struct, cg_list); | 
 | 	/* Advance iterator to find next entry */ | 
 | 	l = l->next; | 
 | 	if (l == &res->cgroups->tasks) { | 
 | 		/* We reached the end of this task list - move on to | 
 | 		 * the next cg_cgroup_link */ | 
 | 		cgroup_advance_iter(cgrp, it); | 
 | 	} else { | 
 | 		it->task = l; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) | 
 | { | 
 | 	read_unlock(&css_set_lock); | 
 | } | 
 |  | 
 | static inline int started_after_time(struct task_struct *t1, | 
 | 				     struct timespec *time, | 
 | 				     struct task_struct *t2) | 
 | { | 
 | 	int start_diff = timespec_compare(&t1->start_time, time); | 
 | 	if (start_diff > 0) { | 
 | 		return 1; | 
 | 	} else if (start_diff < 0) { | 
 | 		return 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Arbitrarily, if two processes started at the same | 
 | 		 * time, we'll say that the lower pointer value | 
 | 		 * started first. Note that t2 may have exited by now | 
 | 		 * so this may not be a valid pointer any longer, but | 
 | 		 * that's fine - it still serves to distinguish | 
 | 		 * between two tasks started (effectively) simultaneously. | 
 | 		 */ | 
 | 		return t1 > t2; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function is a callback from heap_insert() and is used to order | 
 |  * the heap. | 
 |  * In this case we order the heap in descending task start time. | 
 |  */ | 
 | static inline int started_after(void *p1, void *p2) | 
 | { | 
 | 	struct task_struct *t1 = p1; | 
 | 	struct task_struct *t2 = p2; | 
 | 	return started_after_time(t1, &t2->start_time, t2); | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_scan_tasks - iterate though all the tasks in a cgroup | 
 |  * @scan: struct cgroup_scanner containing arguments for the scan | 
 |  * | 
 |  * Arguments include pointers to callback functions test_task() and | 
 |  * process_task(). | 
 |  * Iterate through all the tasks in a cgroup, calling test_task() for each, | 
 |  * and if it returns true, call process_task() for it also. | 
 |  * The test_task pointer may be NULL, meaning always true (select all tasks). | 
 |  * Effectively duplicates cgroup_iter_{start,next,end}() | 
 |  * but does not lock css_set_lock for the call to process_task(). | 
 |  * The struct cgroup_scanner may be embedded in any structure of the caller's | 
 |  * creation. | 
 |  * It is guaranteed that process_task() will act on every task that | 
 |  * is a member of the cgroup for the duration of this call. This | 
 |  * function may or may not call process_task() for tasks that exit | 
 |  * or move to a different cgroup during the call, or are forked or | 
 |  * move into the cgroup during the call. | 
 |  * | 
 |  * Note that test_task() may be called with locks held, and may in some | 
 |  * situations be called multiple times for the same task, so it should | 
 |  * be cheap. | 
 |  * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been | 
 |  * pre-allocated and will be used for heap operations (and its "gt" member will | 
 |  * be overwritten), else a temporary heap will be used (allocation of which | 
 |  * may cause this function to fail). | 
 |  */ | 
 | int cgroup_scan_tasks(struct cgroup_scanner *scan) | 
 | { | 
 | 	int retval, i; | 
 | 	struct cgroup_iter it; | 
 | 	struct task_struct *p, *dropped; | 
 | 	/* Never dereference latest_task, since it's not refcounted */ | 
 | 	struct task_struct *latest_task = NULL; | 
 | 	struct ptr_heap tmp_heap; | 
 | 	struct ptr_heap *heap; | 
 | 	struct timespec latest_time = { 0, 0 }; | 
 |  | 
 | 	if (scan->heap) { | 
 | 		/* The caller supplied our heap and pre-allocated its memory */ | 
 | 		heap = scan->heap; | 
 | 		heap->gt = &started_after; | 
 | 	} else { | 
 | 		/* We need to allocate our own heap memory */ | 
 | 		heap = &tmp_heap; | 
 | 		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); | 
 | 		if (retval) | 
 | 			/* cannot allocate the heap */ | 
 | 			return retval; | 
 | 	} | 
 |  | 
 |  again: | 
 | 	/* | 
 | 	 * Scan tasks in the cgroup, using the scanner's "test_task" callback | 
 | 	 * to determine which are of interest, and using the scanner's | 
 | 	 * "process_task" callback to process any of them that need an update. | 
 | 	 * Since we don't want to hold any locks during the task updates, | 
 | 	 * gather tasks to be processed in a heap structure. | 
 | 	 * The heap is sorted by descending task start time. | 
 | 	 * If the statically-sized heap fills up, we overflow tasks that | 
 | 	 * started later, and in future iterations only consider tasks that | 
 | 	 * started after the latest task in the previous pass. This | 
 | 	 * guarantees forward progress and that we don't miss any tasks. | 
 | 	 */ | 
 | 	heap->size = 0; | 
 | 	cgroup_iter_start(scan->cg, &it); | 
 | 	while ((p = cgroup_iter_next(scan->cg, &it))) { | 
 | 		/* | 
 | 		 * Only affect tasks that qualify per the caller's callback, | 
 | 		 * if he provided one | 
 | 		 */ | 
 | 		if (scan->test_task && !scan->test_task(p, scan)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Only process tasks that started after the last task | 
 | 		 * we processed | 
 | 		 */ | 
 | 		if (!started_after_time(p, &latest_time, latest_task)) | 
 | 			continue; | 
 | 		dropped = heap_insert(heap, p); | 
 | 		if (dropped == NULL) { | 
 | 			/* | 
 | 			 * The new task was inserted; the heap wasn't | 
 | 			 * previously full | 
 | 			 */ | 
 | 			get_task_struct(p); | 
 | 		} else if (dropped != p) { | 
 | 			/* | 
 | 			 * The new task was inserted, and pushed out a | 
 | 			 * different task | 
 | 			 */ | 
 | 			get_task_struct(p); | 
 | 			put_task_struct(dropped); | 
 | 		} | 
 | 		/* | 
 | 		 * Else the new task was newer than anything already in | 
 | 		 * the heap and wasn't inserted | 
 | 		 */ | 
 | 	} | 
 | 	cgroup_iter_end(scan->cg, &it); | 
 |  | 
 | 	if (heap->size) { | 
 | 		for (i = 0; i < heap->size; i++) { | 
 | 			struct task_struct *p = heap->ptrs[i]; | 
 | 			if (i == 0) { | 
 | 				latest_time = p->start_time; | 
 | 				latest_task = p; | 
 | 			} | 
 | 			/* Process the task per the caller's callback */ | 
 | 			scan->process_task(p, scan); | 
 | 			put_task_struct(p); | 
 | 		} | 
 | 		/* | 
 | 		 * If we had to process any tasks at all, scan again | 
 | 		 * in case some of them were in the middle of forking | 
 | 		 * children that didn't get processed. | 
 | 		 * Not the most efficient way to do it, but it avoids | 
 | 		 * having to take callback_mutex in the fork path | 
 | 		 */ | 
 | 		goto again; | 
 | 	} | 
 | 	if (heap == &tmp_heap) | 
 | 		heap_free(&tmp_heap); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Stuff for reading the 'tasks' file. | 
 |  * | 
 |  * Reading this file can return large amounts of data if a cgroup has | 
 |  * *lots* of attached tasks. So it may need several calls to read(), | 
 |  * but we cannot guarantee that the information we produce is correct | 
 |  * unless we produce it entirely atomically. | 
 |  * | 
 |  * Upon tasks file open(), a struct ctr_struct is allocated, that | 
 |  * will have a pointer to an array (also allocated here).  The struct | 
 |  * ctr_struct * is stored in file->private_data.  Its resources will | 
 |  * be freed by release() when the file is closed.  The array is used | 
 |  * to sprintf the PIDs and then used by read(). | 
 |  */ | 
 | struct ctr_struct { | 
 | 	char *buf; | 
 | 	int bufsz; | 
 | }; | 
 |  | 
 | /* | 
 |  * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 
 |  * 'cgrp'.  Return actual number of pids loaded.  No need to | 
 |  * task_lock(p) when reading out p->cgroup, since we're in an RCU | 
 |  * read section, so the css_set can't go away, and is | 
 |  * immutable after creation. | 
 |  */ | 
 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 
 | { | 
 | 	int n = 0; | 
 | 	struct cgroup_iter it; | 
 | 	struct task_struct *tsk; | 
 | 	cgroup_iter_start(cgrp, &it); | 
 | 	while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
 | 		if (unlikely(n == npids)) | 
 | 			break; | 
 | 		pidarray[n++] = task_pid_vnr(tsk); | 
 | 	} | 
 | 	cgroup_iter_end(cgrp, &it); | 
 | 	return n; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroupstats_build - build and fill cgroupstats | 
 |  * @stats: cgroupstats to fill information into | 
 |  * @dentry: A dentry entry belonging to the cgroup for which stats have | 
 |  * been requested. | 
 |  * | 
 |  * Build and fill cgroupstats so that taskstats can export it to user | 
 |  * space. | 
 |  */ | 
 | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	struct cgroup *cgrp; | 
 | 	struct cgroup_iter it; | 
 | 	struct task_struct *tsk; | 
 | 	/* | 
 | 	 * Validate dentry by checking the superblock operations | 
 | 	 */ | 
 | 	if (dentry->d_sb->s_op != &cgroup_ops) | 
 | 		 goto err; | 
 |  | 
 | 	ret = 0; | 
 | 	cgrp = dentry->d_fsdata; | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	cgroup_iter_start(cgrp, &it); | 
 | 	while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
 | 		switch (tsk->state) { | 
 | 		case TASK_RUNNING: | 
 | 			stats->nr_running++; | 
 | 			break; | 
 | 		case TASK_INTERRUPTIBLE: | 
 | 			stats->nr_sleeping++; | 
 | 			break; | 
 | 		case TASK_UNINTERRUPTIBLE: | 
 | 			stats->nr_uninterruptible++; | 
 | 			break; | 
 | 		case TASK_STOPPED: | 
 | 			stats->nr_stopped++; | 
 | 			break; | 
 | 		default: | 
 | 			if (delayacct_is_task_waiting_on_io(tsk)) | 
 | 				stats->nr_io_wait++; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	cgroup_iter_end(cgrp, &it); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | err: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cmppid(const void *a, const void *b) | 
 | { | 
 | 	return *(pid_t *)a - *(pid_t *)b; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert array 'a' of 'npids' pid_t's to a string of newline separated | 
 |  * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return | 
 |  * count 'cnt' of how many chars would be written if buf were large enough. | 
 |  */ | 
 | static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | 
 | { | 
 | 	int cnt = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < npids; i++) | 
 | 		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]); | 
 | 	return cnt; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle an open on 'tasks' file.  Prepare a buffer listing the | 
 |  * process id's of tasks currently attached to the cgroup being opened. | 
 |  * | 
 |  * Does not require any specific cgroup mutexes, and does not take any. | 
 |  */ | 
 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 
 | { | 
 | 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
 | 	struct ctr_struct *ctr; | 
 | 	pid_t *pidarray; | 
 | 	int npids; | 
 | 	char c; | 
 |  | 
 | 	if (!(file->f_mode & FMODE_READ)) | 
 | 		return 0; | 
 |  | 
 | 	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL); | 
 | 	if (!ctr) | 
 | 		goto err0; | 
 |  | 
 | 	/* | 
 | 	 * If cgroup gets more users after we read count, we won't have | 
 | 	 * enough space - tough.  This race is indistinguishable to the | 
 | 	 * caller from the case that the additional cgroup users didn't | 
 | 	 * show up until sometime later on. | 
 | 	 */ | 
 | 	npids = cgroup_task_count(cgrp); | 
 | 	if (npids) { | 
 | 		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | 
 | 		if (!pidarray) | 
 | 			goto err1; | 
 |  | 
 | 		npids = pid_array_load(pidarray, npids, cgrp); | 
 | 		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | 
 |  | 
 | 		/* Call pid_array_to_buf() twice, first just to get bufsz */ | 
 | 		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1; | 
 | 		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL); | 
 | 		if (!ctr->buf) | 
 | 			goto err2; | 
 | 		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids); | 
 |  | 
 | 		kfree(pidarray); | 
 | 	} else { | 
 | 		ctr->buf = 0; | 
 | 		ctr->bufsz = 0; | 
 | 	} | 
 | 	file->private_data = ctr; | 
 | 	return 0; | 
 |  | 
 | err2: | 
 | 	kfree(pidarray); | 
 | err1: | 
 | 	kfree(ctr); | 
 | err0: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static ssize_t cgroup_tasks_read(struct cgroup *cgrp, | 
 | 				    struct cftype *cft, | 
 | 				    struct file *file, char __user *buf, | 
 | 				    size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct ctr_struct *ctr = file->private_data; | 
 |  | 
 | 	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz); | 
 | } | 
 |  | 
 | static int cgroup_tasks_release(struct inode *unused_inode, | 
 | 					struct file *file) | 
 | { | 
 | 	struct ctr_struct *ctr; | 
 |  | 
 | 	if (file->f_mode & FMODE_READ) { | 
 | 		ctr = file->private_data; | 
 | 		kfree(ctr->buf); | 
 | 		kfree(ctr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 
 | 					    struct cftype *cft) | 
 | { | 
 | 	return notify_on_release(cgrp); | 
 | } | 
 |  | 
 | static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	return test_bit(CGRP_RELEASABLE, &cgrp->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * for the common functions, 'private' gives the type of file | 
 |  */ | 
 | static struct cftype files[] = { | 
 | 	{ | 
 | 		.name = "tasks", | 
 | 		.open = cgroup_tasks_open, | 
 | 		.read = cgroup_tasks_read, | 
 | 		.write = cgroup_common_file_write, | 
 | 		.release = cgroup_tasks_release, | 
 | 		.private = FILE_TASKLIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "notify_on_release", | 
 | 		.read_uint = cgroup_read_notify_on_release, | 
 | 		.write = cgroup_common_file_write, | 
 | 		.private = FILE_NOTIFY_ON_RELEASE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "releasable", | 
 | 		.read_uint = cgroup_read_releasable, | 
 | 		.private = FILE_RELEASABLE, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct cftype cft_release_agent = { | 
 | 	.name = "release_agent", | 
 | 	.read = cgroup_common_file_read, | 
 | 	.write = cgroup_common_file_write, | 
 | 	.private = FILE_RELEASE_AGENT, | 
 | }; | 
 |  | 
 | static int cgroup_populate_dir(struct cgroup *cgrp) | 
 | { | 
 | 	int err; | 
 | 	struct cgroup_subsys *ss; | 
 |  | 
 | 	/* First clear out any existing files */ | 
 | 	cgroup_clear_directory(cgrp->dentry); | 
 |  | 
 | 	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (cgrp == cgrp->top_cgroup) { | 
 | 		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	for_each_subsys(cgrp->root, ss) { | 
 | 		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void init_cgroup_css(struct cgroup_subsys_state *css, | 
 | 			       struct cgroup_subsys *ss, | 
 | 			       struct cgroup *cgrp) | 
 | { | 
 | 	css->cgroup = cgrp; | 
 | 	atomic_set(&css->refcnt, 0); | 
 | 	css->flags = 0; | 
 | 	if (cgrp == dummytop) | 
 | 		set_bit(CSS_ROOT, &css->flags); | 
 | 	BUG_ON(cgrp->subsys[ss->subsys_id]); | 
 | 	cgrp->subsys[ss->subsys_id] = css; | 
 | } | 
 |  | 
 | /* | 
 |  * cgroup_create - create a cgroup | 
 |  * @parent: cgroup that will be parent of the new cgroup | 
 |  * @dentry: dentry of the new cgroup | 
 |  * @mode: mode to set on new inode | 
 |  * | 
 |  * Must be called with the mutex on the parent inode held | 
 |  */ | 
 | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | 
 | 			     int mode) | 
 | { | 
 | 	struct cgroup *cgrp; | 
 | 	struct cgroupfs_root *root = parent->root; | 
 | 	int err = 0; | 
 | 	struct cgroup_subsys *ss; | 
 | 	struct super_block *sb = root->sb; | 
 |  | 
 | 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); | 
 | 	if (!cgrp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Grab a reference on the superblock so the hierarchy doesn't | 
 | 	 * get deleted on unmount if there are child cgroups.  This | 
 | 	 * can be done outside cgroup_mutex, since the sb can't | 
 | 	 * disappear while someone has an open control file on the | 
 | 	 * fs */ | 
 | 	atomic_inc(&sb->s_active); | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  | 
 | 	cgrp->flags = 0; | 
 | 	INIT_LIST_HEAD(&cgrp->sibling); | 
 | 	INIT_LIST_HEAD(&cgrp->children); | 
 | 	INIT_LIST_HEAD(&cgrp->css_sets); | 
 | 	INIT_LIST_HEAD(&cgrp->release_list); | 
 |  | 
 | 	cgrp->parent = parent; | 
 | 	cgrp->root = parent->root; | 
 | 	cgrp->top_cgroup = parent->top_cgroup; | 
 |  | 
 | 	for_each_subsys(root, ss) { | 
 | 		struct cgroup_subsys_state *css = ss->create(ss, cgrp); | 
 | 		if (IS_ERR(css)) { | 
 | 			err = PTR_ERR(css); | 
 | 			goto err_destroy; | 
 | 		} | 
 | 		init_cgroup_css(css, ss, cgrp); | 
 | 	} | 
 |  | 
 | 	list_add(&cgrp->sibling, &cgrp->parent->children); | 
 | 	root->number_of_cgroups++; | 
 |  | 
 | 	err = cgroup_create_dir(cgrp, dentry, mode); | 
 | 	if (err < 0) | 
 | 		goto err_remove; | 
 |  | 
 | 	/* The cgroup directory was pre-locked for us */ | 
 | 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); | 
 |  | 
 | 	err = cgroup_populate_dir(cgrp); | 
 | 	/* If err < 0, we have a half-filled directory - oh well ;) */ | 
 |  | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err_remove: | 
 |  | 
 | 	list_del(&cgrp->sibling); | 
 | 	root->number_of_cgroups--; | 
 |  | 
 |  err_destroy: | 
 |  | 
 | 	for_each_subsys(root, ss) { | 
 | 		if (cgrp->subsys[ss->subsys_id]) | 
 | 			ss->destroy(ss, cgrp); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&cgroup_mutex); | 
 |  | 
 | 	/* Release the reference count that we took on the superblock */ | 
 | 	deactivate_super(sb); | 
 |  | 
 | 	kfree(cgrp); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode) | 
 | { | 
 | 	struct cgroup *c_parent = dentry->d_parent->d_fsdata; | 
 |  | 
 | 	/* the vfs holds inode->i_mutex already */ | 
 | 	return cgroup_create(c_parent, dentry, mode | S_IFDIR); | 
 | } | 
 |  | 
 | static inline int cgroup_has_css_refs(struct cgroup *cgrp) | 
 | { | 
 | 	/* Check the reference count on each subsystem. Since we | 
 | 	 * already established that there are no tasks in the | 
 | 	 * cgroup, if the css refcount is also 0, then there should | 
 | 	 * be no outstanding references, so the subsystem is safe to | 
 | 	 * destroy. We scan across all subsystems rather than using | 
 | 	 * the per-hierarchy linked list of mounted subsystems since | 
 | 	 * we can be called via check_for_release() with no | 
 | 	 * synchronization other than RCU, and the subsystem linked | 
 | 	 * list isn't RCU-safe */ | 
 | 	int i; | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		struct cgroup_subsys_state *css; | 
 | 		/* Skip subsystems not in this hierarchy */ | 
 | 		if (ss->root != cgrp->root) | 
 | 			continue; | 
 | 		css = cgrp->subsys[ss->subsys_id]; | 
 | 		/* When called from check_for_release() it's possible | 
 | 		 * that by this point the cgroup has been removed | 
 | 		 * and the css deleted. But a false-positive doesn't | 
 | 		 * matter, since it can only happen if the cgroup | 
 | 		 * has been deleted and hence no longer needs the | 
 | 		 * release agent to be called anyway. */ | 
 | 		if (css && atomic_read(&css->refcnt)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
 | { | 
 | 	struct cgroup *cgrp = dentry->d_fsdata; | 
 | 	struct dentry *d; | 
 | 	struct cgroup *parent; | 
 | 	struct super_block *sb; | 
 | 	struct cgroupfs_root *root; | 
 |  | 
 | 	/* the vfs holds both inode->i_mutex already */ | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	if (atomic_read(&cgrp->count) != 0) { | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	if (!list_empty(&cgrp->children)) { | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	parent = cgrp->parent; | 
 | 	root = cgrp->root; | 
 | 	sb = root->sb; | 
 |  | 
 | 	/* | 
 | 	 * Call pre_destroy handlers of subsys. Notify subsystems | 
 | 	 * that rmdir() request comes. | 
 | 	 */ | 
 | 	cgroup_call_pre_destroy(cgrp); | 
 |  | 
 | 	if (cgroup_has_css_refs(cgrp)) { | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	spin_lock(&release_list_lock); | 
 | 	set_bit(CGRP_REMOVED, &cgrp->flags); | 
 | 	if (!list_empty(&cgrp->release_list)) | 
 | 		list_del(&cgrp->release_list); | 
 | 	spin_unlock(&release_list_lock); | 
 | 	/* delete my sibling from parent->children */ | 
 | 	list_del(&cgrp->sibling); | 
 | 	spin_lock(&cgrp->dentry->d_lock); | 
 | 	d = dget(cgrp->dentry); | 
 | 	cgrp->dentry = NULL; | 
 | 	spin_unlock(&d->d_lock); | 
 |  | 
 | 	cgroup_d_remove_dir(d); | 
 | 	dput(d); | 
 |  | 
 | 	set_bit(CGRP_RELEASABLE, &parent->flags); | 
 | 	check_for_release(parent); | 
 |  | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cgroup_init_subsys(struct cgroup_subsys *ss) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct list_head *l; | 
 |  | 
 | 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); | 
 |  | 
 | 	/* Create the top cgroup state for this subsystem */ | 
 | 	ss->root = &rootnode; | 
 | 	css = ss->create(ss, dummytop); | 
 | 	/* We don't handle early failures gracefully */ | 
 | 	BUG_ON(IS_ERR(css)); | 
 | 	init_cgroup_css(css, ss, dummytop); | 
 |  | 
 | 	/* Update all cgroup groups to contain a subsys | 
 | 	 * pointer to this state - since the subsystem is | 
 | 	 * newly registered, all tasks and hence all cgroup | 
 | 	 * groups are in the subsystem's top cgroup. */ | 
 | 	write_lock(&css_set_lock); | 
 | 	l = &init_css_set.list; | 
 | 	do { | 
 | 		struct css_set *cg = | 
 | 			list_entry(l, struct css_set, list); | 
 | 		cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; | 
 | 		l = l->next; | 
 | 	} while (l != &init_css_set.list); | 
 | 	write_unlock(&css_set_lock); | 
 |  | 
 |  	/* If this subsystem requested that it be notified with fork | 
 |  	 * events, we should send it one now for every process in the | 
 |  	 * system */ | 
 | 	if (ss->fork) { | 
 | 		struct task_struct *g, *p; | 
 |  | 
 | 		read_lock(&tasklist_lock); | 
 | 		do_each_thread(g, p) { | 
 | 			ss->fork(ss, p); | 
 | 		} while_each_thread(g, p); | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 |  | 
 | 	need_forkexit_callback |= ss->fork || ss->exit; | 
 |  | 
 | 	ss->active = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_init_early - cgroup initialization at system boot | 
 |  * | 
 |  * Initialize cgroups at system boot, and initialize any | 
 |  * subsystems that request early init. | 
 |  */ | 
 | int __init cgroup_init_early(void) | 
 | { | 
 | 	int i; | 
 | 	kref_init(&init_css_set.ref); | 
 | 	kref_get(&init_css_set.ref); | 
 | 	INIT_LIST_HEAD(&init_css_set.list); | 
 | 	INIT_LIST_HEAD(&init_css_set.cg_links); | 
 | 	INIT_LIST_HEAD(&init_css_set.tasks); | 
 | 	css_set_count = 1; | 
 | 	init_cgroup_root(&rootnode); | 
 | 	list_add(&rootnode.root_list, &roots); | 
 | 	root_count = 1; | 
 | 	init_task.cgroups = &init_css_set; | 
 |  | 
 | 	init_css_set_link.cg = &init_css_set; | 
 | 	list_add(&init_css_set_link.cgrp_link_list, | 
 | 		 &rootnode.top_cgroup.css_sets); | 
 | 	list_add(&init_css_set_link.cg_link_list, | 
 | 		 &init_css_set.cg_links); | 
 |  | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 |  | 
 | 		BUG_ON(!ss->name); | 
 | 		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); | 
 | 		BUG_ON(!ss->create); | 
 | 		BUG_ON(!ss->destroy); | 
 | 		if (ss->subsys_id != i) { | 
 | 			printk(KERN_ERR "cgroup: Subsys %s id == %d\n", | 
 | 			       ss->name, ss->subsys_id); | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		if (ss->early_init) | 
 | 			cgroup_init_subsys(ss); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_init - cgroup initialization | 
 |  * | 
 |  * Register cgroup filesystem and /proc file, and initialize | 
 |  * any subsystems that didn't request early init. | 
 |  */ | 
 | int __init cgroup_init(void) | 
 | { | 
 | 	int err; | 
 | 	int i; | 
 | 	struct proc_dir_entry *entry; | 
 |  | 
 | 	err = bdi_init(&cgroup_backing_dev_info); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		if (!ss->early_init) | 
 | 			cgroup_init_subsys(ss); | 
 | 	} | 
 |  | 
 | 	err = register_filesystem(&cgroup_fs_type); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	entry = create_proc_entry("cgroups", 0, NULL); | 
 | 	if (entry) | 
 | 		entry->proc_fops = &proc_cgroupstats_operations; | 
 |  | 
 | out: | 
 | 	if (err) | 
 | 		bdi_destroy(&cgroup_backing_dev_info); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * proc_cgroup_show() | 
 |  *  - Print task's cgroup paths into seq_file, one line for each hierarchy | 
 |  *  - Used for /proc/<pid>/cgroup. | 
 |  *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it | 
 |  *    doesn't really matter if tsk->cgroup changes after we read it, | 
 |  *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it | 
 |  *    anyway.  No need to check that tsk->cgroup != NULL, thanks to | 
 |  *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks | 
 |  *    cgroup to top_cgroup. | 
 |  */ | 
 |  | 
 | /* TODO: Use a proper seq_file iterator */ | 
 | static int proc_cgroup_show(struct seq_file *m, void *v) | 
 | { | 
 | 	struct pid *pid; | 
 | 	struct task_struct *tsk; | 
 | 	char *buf; | 
 | 	int retval; | 
 | 	struct cgroupfs_root *root; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		goto out; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	pid = m->private; | 
 | 	tsk = get_pid_task(pid, PIDTYPE_PID); | 
 | 	if (!tsk) | 
 | 		goto out_free; | 
 |  | 
 | 	retval = 0; | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  | 
 | 	for_each_root(root) { | 
 | 		struct cgroup_subsys *ss; | 
 | 		struct cgroup *cgrp; | 
 | 		int subsys_id; | 
 | 		int count = 0; | 
 |  | 
 | 		/* Skip this hierarchy if it has no active subsystems */ | 
 | 		if (!root->actual_subsys_bits) | 
 | 			continue; | 
 | 		for_each_subsys(root, ss) | 
 | 			seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 
 | 		seq_putc(m, ':'); | 
 | 		get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 
 | 		cgrp = task_cgroup(tsk, subsys_id); | 
 | 		retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 
 | 		if (retval < 0) | 
 | 			goto out_unlock; | 
 | 		seq_puts(m, buf); | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	put_task_struct(tsk); | 
 | out_free: | 
 | 	kfree(buf); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cgroup_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct pid *pid = PROC_I(inode)->pid; | 
 | 	return single_open(file, proc_cgroup_show, pid); | 
 | } | 
 |  | 
 | struct file_operations proc_cgroup_operations = { | 
 | 	.open		= cgroup_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= single_release, | 
 | }; | 
 |  | 
 | /* Display information about each subsystem and each hierarchy */ | 
 | static int proc_cgroupstats_show(struct seq_file *m, void *v) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n"); | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 		struct cgroup_subsys *ss = subsys[i]; | 
 | 		seq_printf(m, "%s\t%lu\t%d\n", | 
 | 			   ss->name, ss->root->subsys_bits, | 
 | 			   ss->root->number_of_cgroups); | 
 | 	} | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cgroupstats_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return single_open(file, proc_cgroupstats_show, 0); | 
 | } | 
 |  | 
 | static struct file_operations proc_cgroupstats_operations = { | 
 | 	.open = cgroupstats_open, | 
 | 	.read = seq_read, | 
 | 	.llseek = seq_lseek, | 
 | 	.release = single_release, | 
 | }; | 
 |  | 
 | /** | 
 |  * cgroup_fork - attach newly forked task to its parents cgroup. | 
 |  * @child: pointer to task_struct of forking parent process. | 
 |  * | 
 |  * Description: A task inherits its parent's cgroup at fork(). | 
 |  * | 
 |  * A pointer to the shared css_set was automatically copied in | 
 |  * fork.c by dup_task_struct().  However, we ignore that copy, since | 
 |  * it was not made under the protection of RCU or cgroup_mutex, so | 
 |  * might no longer be a valid cgroup pointer.  cgroup_attach_task() might | 
 |  * have already changed current->cgroups, allowing the previously | 
 |  * referenced cgroup group to be removed and freed. | 
 |  * | 
 |  * At the point that cgroup_fork() is called, 'current' is the parent | 
 |  * task, and the passed argument 'child' points to the child task. | 
 |  */ | 
 | void cgroup_fork(struct task_struct *child) | 
 | { | 
 | 	task_lock(current); | 
 | 	child->cgroups = current->cgroups; | 
 | 	get_css_set(child->cgroups); | 
 | 	task_unlock(current); | 
 | 	INIT_LIST_HEAD(&child->cg_list); | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_fork_callbacks - run fork callbacks | 
 |  * @child: the new task | 
 |  * | 
 |  * Called on a new task very soon before adding it to the | 
 |  * tasklist. No need to take any locks since no-one can | 
 |  * be operating on this task. | 
 |  */ | 
 | void cgroup_fork_callbacks(struct task_struct *child) | 
 | { | 
 | 	if (need_forkexit_callback) { | 
 | 		int i; | 
 | 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 			struct cgroup_subsys *ss = subsys[i]; | 
 | 			if (ss->fork) | 
 | 				ss->fork(ss, child); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_post_fork - called on a new task after adding it to the task list | 
 |  * @child: the task in question | 
 |  * | 
 |  * Adds the task to the list running through its css_set if necessary. | 
 |  * Has to be after the task is visible on the task list in case we race | 
 |  * with the first call to cgroup_iter_start() - to guarantee that the | 
 |  * new task ends up on its list. | 
 |  */ | 
 | void cgroup_post_fork(struct task_struct *child) | 
 | { | 
 | 	if (use_task_css_set_links) { | 
 | 		write_lock(&css_set_lock); | 
 | 		if (list_empty(&child->cg_list)) | 
 | 			list_add(&child->cg_list, &child->cgroups->tasks); | 
 | 		write_unlock(&css_set_lock); | 
 | 	} | 
 | } | 
 | /** | 
 |  * cgroup_exit - detach cgroup from exiting task | 
 |  * @tsk: pointer to task_struct of exiting process | 
 |  * @run_callback: run exit callbacks? | 
 |  * | 
 |  * Description: Detach cgroup from @tsk and release it. | 
 |  * | 
 |  * Note that cgroups marked notify_on_release force every task in | 
 |  * them to take the global cgroup_mutex mutex when exiting. | 
 |  * This could impact scaling on very large systems.  Be reluctant to | 
 |  * use notify_on_release cgroups where very high task exit scaling | 
 |  * is required on large systems. | 
 |  * | 
 |  * the_top_cgroup_hack: | 
 |  * | 
 |  *    Set the exiting tasks cgroup to the root cgroup (top_cgroup). | 
 |  * | 
 |  *    We call cgroup_exit() while the task is still competent to | 
 |  *    handle notify_on_release(), then leave the task attached to the | 
 |  *    root cgroup in each hierarchy for the remainder of its exit. | 
 |  * | 
 |  *    To do this properly, we would increment the reference count on | 
 |  *    top_cgroup, and near the very end of the kernel/exit.c do_exit() | 
 |  *    code we would add a second cgroup function call, to drop that | 
 |  *    reference.  This would just create an unnecessary hot spot on | 
 |  *    the top_cgroup reference count, to no avail. | 
 |  * | 
 |  *    Normally, holding a reference to a cgroup without bumping its | 
 |  *    count is unsafe.   The cgroup could go away, or someone could | 
 |  *    attach us to a different cgroup, decrementing the count on | 
 |  *    the first cgroup that we never incremented.  But in this case, | 
 |  *    top_cgroup isn't going away, and either task has PF_EXITING set, | 
 |  *    which wards off any cgroup_attach_task() attempts, or task is a failed | 
 |  *    fork, never visible to cgroup_attach_task. | 
 |  */ | 
 | void cgroup_exit(struct task_struct *tsk, int run_callbacks) | 
 | { | 
 | 	int i; | 
 | 	struct css_set *cg; | 
 |  | 
 | 	if (run_callbacks && need_forkexit_callback) { | 
 | 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
 | 			struct cgroup_subsys *ss = subsys[i]; | 
 | 			if (ss->exit) | 
 | 				ss->exit(ss, tsk); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unlink from the css_set task list if necessary. | 
 | 	 * Optimistically check cg_list before taking | 
 | 	 * css_set_lock | 
 | 	 */ | 
 | 	if (!list_empty(&tsk->cg_list)) { | 
 | 		write_lock(&css_set_lock); | 
 | 		if (!list_empty(&tsk->cg_list)) | 
 | 			list_del(&tsk->cg_list); | 
 | 		write_unlock(&css_set_lock); | 
 | 	} | 
 |  | 
 | 	/* Reassign the task to the init_css_set. */ | 
 | 	task_lock(tsk); | 
 | 	cg = tsk->cgroups; | 
 | 	tsk->cgroups = &init_css_set; | 
 | 	task_unlock(tsk); | 
 | 	if (cg) | 
 | 		put_css_set_taskexit(cg); | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_clone - clone the cgroup the given subsystem is attached to | 
 |  * @tsk: the task to be moved | 
 |  * @subsys: the given subsystem | 
 |  * | 
 |  * Duplicate the current cgroup in the hierarchy that the given | 
 |  * subsystem is attached to, and move this task into the new | 
 |  * child. | 
 |  */ | 
 | int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys) | 
 | { | 
 | 	struct dentry *dentry; | 
 | 	int ret = 0; | 
 | 	char nodename[MAX_CGROUP_TYPE_NAMELEN]; | 
 | 	struct cgroup *parent, *child; | 
 | 	struct inode *inode; | 
 | 	struct css_set *cg; | 
 | 	struct cgroupfs_root *root; | 
 | 	struct cgroup_subsys *ss; | 
 |  | 
 | 	/* We shouldn't be called by an unregistered subsystem */ | 
 | 	BUG_ON(!subsys->active); | 
 |  | 
 | 	/* First figure out what hierarchy and cgroup we're dealing | 
 | 	 * with, and pin them so we can drop cgroup_mutex */ | 
 | 	mutex_lock(&cgroup_mutex); | 
 |  again: | 
 | 	root = subsys->root; | 
 | 	if (root == &rootnode) { | 
 | 		printk(KERN_INFO | 
 | 		       "Not cloning cgroup for unused subsystem %s\n", | 
 | 		       subsys->name); | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		return 0; | 
 | 	} | 
 | 	cg = tsk->cgroups; | 
 | 	parent = task_cgroup(tsk, subsys->subsys_id); | 
 |  | 
 | 	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid); | 
 |  | 
 | 	/* Pin the hierarchy */ | 
 | 	atomic_inc(&parent->root->sb->s_active); | 
 |  | 
 | 	/* Keep the cgroup alive */ | 
 | 	get_css_set(cg); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 |  | 
 | 	/* Now do the VFS work to create a cgroup */ | 
 | 	inode = parent->dentry->d_inode; | 
 |  | 
 | 	/* Hold the parent directory mutex across this operation to | 
 | 	 * stop anyone else deleting the new cgroup */ | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename)); | 
 | 	if (IS_ERR(dentry)) { | 
 | 		printk(KERN_INFO | 
 | 		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename, | 
 | 		       PTR_ERR(dentry)); | 
 | 		ret = PTR_ERR(dentry); | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	/* Create the cgroup directory, which also creates the cgroup */ | 
 | 	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755); | 
 | 	child = __d_cgrp(dentry); | 
 | 	dput(dentry); | 
 | 	if (ret) { | 
 | 		printk(KERN_INFO | 
 | 		       "Failed to create cgroup %s: %d\n", nodename, | 
 | 		       ret); | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	if (!child) { | 
 | 		printk(KERN_INFO | 
 | 		       "Couldn't find new cgroup %s\n", nodename); | 
 | 		ret = -ENOMEM; | 
 | 		goto out_release; | 
 | 	} | 
 |  | 
 | 	/* The cgroup now exists. Retake cgroup_mutex and check | 
 | 	 * that we're still in the same state that we thought we | 
 | 	 * were. */ | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	if ((root != subsys->root) || | 
 | 	    (parent != task_cgroup(tsk, subsys->subsys_id))) { | 
 | 		/* Aargh, we raced ... */ | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		put_css_set(cg); | 
 |  | 
 | 		deactivate_super(parent->root->sb); | 
 | 		/* The cgroup is still accessible in the VFS, but | 
 | 		 * we're not going to try to rmdir() it at this | 
 | 		 * point. */ | 
 | 		printk(KERN_INFO | 
 | 		       "Race in cgroup_clone() - leaking cgroup %s\n", | 
 | 		       nodename); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* do any required auto-setup */ | 
 | 	for_each_subsys(root, ss) { | 
 | 		if (ss->post_clone) | 
 | 			ss->post_clone(ss, child); | 
 | 	} | 
 |  | 
 | 	/* All seems fine. Finish by moving the task into the new cgroup */ | 
 | 	ret = cgroup_attach_task(child, tsk); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 |  | 
 |  out_release: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	put_css_set(cg); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | 	deactivate_super(parent->root->sb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp | 
 |  * @cgrp: the cgroup in question | 
 |  * | 
 |  * See if @cgrp is a descendant of the current task's cgroup in | 
 |  * the appropriate hierarchy. | 
 |  * | 
 |  * If we are sending in dummytop, then presumably we are creating | 
 |  * the top cgroup in the subsystem. | 
 |  * | 
 |  * Called only by the ns (nsproxy) cgroup. | 
 |  */ | 
 | int cgroup_is_descendant(const struct cgroup *cgrp) | 
 | { | 
 | 	int ret; | 
 | 	struct cgroup *target; | 
 | 	int subsys_id; | 
 |  | 
 | 	if (cgrp == dummytop) | 
 | 		return 1; | 
 |  | 
 | 	get_first_subsys(cgrp, NULL, &subsys_id); | 
 | 	target = task_cgroup(current, subsys_id); | 
 | 	while (cgrp != target && cgrp!= cgrp->top_cgroup) | 
 | 		cgrp = cgrp->parent; | 
 | 	ret = (cgrp == target); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void check_for_release(struct cgroup *cgrp) | 
 | { | 
 | 	/* All of these checks rely on RCU to keep the cgroup | 
 | 	 * structure alive */ | 
 | 	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) | 
 | 	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { | 
 | 		/* Control Group is currently removeable. If it's not | 
 | 		 * already queued for a userspace notification, queue | 
 | 		 * it now */ | 
 | 		int need_schedule_work = 0; | 
 | 		spin_lock(&release_list_lock); | 
 | 		if (!cgroup_is_removed(cgrp) && | 
 | 		    list_empty(&cgrp->release_list)) { | 
 | 			list_add(&cgrp->release_list, &release_list); | 
 | 			need_schedule_work = 1; | 
 | 		} | 
 | 		spin_unlock(&release_list_lock); | 
 | 		if (need_schedule_work) | 
 | 			schedule_work(&release_agent_work); | 
 | 	} | 
 | } | 
 |  | 
 | void __css_put(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct cgroup *cgrp = css->cgroup; | 
 | 	rcu_read_lock(); | 
 | 	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) { | 
 | 		set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
 | 		check_for_release(cgrp); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Notify userspace when a cgroup is released, by running the | 
 |  * configured release agent with the name of the cgroup (path | 
 |  * relative to the root of cgroup file system) as the argument. | 
 |  * | 
 |  * Most likely, this user command will try to rmdir this cgroup. | 
 |  * | 
 |  * This races with the possibility that some other task will be | 
 |  * attached to this cgroup before it is removed, or that some other | 
 |  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok. | 
 |  * The presumed 'rmdir' will fail quietly if this cgroup is no longer | 
 |  * unused, and this cgroup will be reprieved from its death sentence, | 
 |  * to continue to serve a useful existence.  Next time it's released, | 
 |  * we will get notified again, if it still has 'notify_on_release' set. | 
 |  * | 
 |  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which | 
 |  * means only wait until the task is successfully execve()'d.  The | 
 |  * separate release agent task is forked by call_usermodehelper(), | 
 |  * then control in this thread returns here, without waiting for the | 
 |  * release agent task.  We don't bother to wait because the caller of | 
 |  * this routine has no use for the exit status of the release agent | 
 |  * task, so no sense holding our caller up for that. | 
 |  */ | 
 | static void cgroup_release_agent(struct work_struct *work) | 
 | { | 
 | 	BUG_ON(work != &release_agent_work); | 
 | 	mutex_lock(&cgroup_mutex); | 
 | 	spin_lock(&release_list_lock); | 
 | 	while (!list_empty(&release_list)) { | 
 | 		char *argv[3], *envp[3]; | 
 | 		int i; | 
 | 		char *pathbuf; | 
 | 		struct cgroup *cgrp = list_entry(release_list.next, | 
 | 						    struct cgroup, | 
 | 						    release_list); | 
 | 		list_del_init(&cgrp->release_list); | 
 | 		spin_unlock(&release_list_lock); | 
 | 		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 		if (!pathbuf) { | 
 | 			spin_lock(&release_list_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) { | 
 | 			kfree(pathbuf); | 
 | 			spin_lock(&release_list_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		i = 0; | 
 | 		argv[i++] = cgrp->root->release_agent_path; | 
 | 		argv[i++] = (char *)pathbuf; | 
 | 		argv[i] = NULL; | 
 |  | 
 | 		i = 0; | 
 | 		/* minimal command environment */ | 
 | 		envp[i++] = "HOME=/"; | 
 | 		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
 | 		envp[i] = NULL; | 
 |  | 
 | 		/* Drop the lock while we invoke the usermode helper, | 
 | 		 * since the exec could involve hitting disk and hence | 
 | 		 * be a slow process */ | 
 | 		mutex_unlock(&cgroup_mutex); | 
 | 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); | 
 | 		kfree(pathbuf); | 
 | 		mutex_lock(&cgroup_mutex); | 
 | 		spin_lock(&release_list_lock); | 
 | 	} | 
 | 	spin_unlock(&release_list_lock); | 
 | 	mutex_unlock(&cgroup_mutex); | 
 | } |