| /* bnx2.c: Broadcom NX2 network driver. | 
 |  * | 
 |  * Copyright (c) 2004, 2005, 2006 Broadcom Corporation | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * Written by: Michael Chan  (mchan@broadcom.com) | 
 |  */ | 
 |  | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <asm/bitops.h> | 
 | #include <asm/io.h> | 
 | #include <asm/irq.h> | 
 | #include <linux/delay.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/page.h> | 
 | #include <linux/time.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/mii.h> | 
 | #ifdef NETIF_F_HW_VLAN_TX | 
 | #include <linux/if_vlan.h> | 
 | #define BCM_VLAN 1 | 
 | #endif | 
 | #ifdef NETIF_F_TSO | 
 | #include <net/ip.h> | 
 | #include <net/tcp.h> | 
 | #include <net/checksum.h> | 
 | #define BCM_TSO 1 | 
 | #endif | 
 | #include <linux/workqueue.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/zlib.h> | 
 |  | 
 | #include "bnx2.h" | 
 | #include "bnx2_fw.h" | 
 |  | 
 | #define DRV_MODULE_NAME		"bnx2" | 
 | #define PFX DRV_MODULE_NAME	": " | 
 | #define DRV_MODULE_VERSION	"1.4.45" | 
 | #define DRV_MODULE_RELDATE	"September 29, 2006" | 
 |  | 
 | #define RUN_AT(x) (jiffies + (x)) | 
 |  | 
 | /* Time in jiffies before concluding the transmitter is hung. */ | 
 | #define TX_TIMEOUT  (5*HZ) | 
 |  | 
 | static const char version[] __devinitdata = | 
 | 	"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
 |  | 
 | MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>"); | 
 | MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_MODULE_VERSION); | 
 |  | 
 | static int disable_msi = 0; | 
 |  | 
 | module_param(disable_msi, int, 0); | 
 | MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); | 
 |  | 
 | typedef enum { | 
 | 	BCM5706 = 0, | 
 | 	NC370T, | 
 | 	NC370I, | 
 | 	BCM5706S, | 
 | 	NC370F, | 
 | 	BCM5708, | 
 | 	BCM5708S, | 
 | } board_t; | 
 |  | 
 | /* indexed by board_t, above */ | 
 | static const struct { | 
 | 	char *name; | 
 | } board_info[] __devinitdata = { | 
 | 	{ "Broadcom NetXtreme II BCM5706 1000Base-T" }, | 
 | 	{ "HP NC370T Multifunction Gigabit Server Adapter" }, | 
 | 	{ "HP NC370i Multifunction Gigabit Server Adapter" }, | 
 | 	{ "Broadcom NetXtreme II BCM5706 1000Base-SX" }, | 
 | 	{ "HP NC370F Multifunction Gigabit Server Adapter" }, | 
 | 	{ "Broadcom NetXtreme II BCM5708 1000Base-T" }, | 
 | 	{ "Broadcom NetXtreme II BCM5708 1000Base-SX" }, | 
 | 	}; | 
 |  | 
 | static struct pci_device_id bnx2_pci_tbl[] = { | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, | 
 | 	  PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, | 
 | 	  PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, | 
 | 	  PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S }, | 
 | 	{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S, | 
 | 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S }, | 
 | 	{ 0, } | 
 | }; | 
 |  | 
 | static struct flash_spec flash_table[] = | 
 | { | 
 | 	/* Slow EEPROM */ | 
 | 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, | 
 | 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, | 
 | 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, | 
 | 	 "EEPROM - slow"}, | 
 | 	/* Expansion entry 0001 */ | 
 | 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 0001"}, | 
 | 	/* Saifun SA25F010 (non-buffered flash) */ | 
 | 	/* strap, cfg1, & write1 need updates */ | 
 | 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, | 
 | 	 "Non-buffered flash (128kB)"}, | 
 | 	/* Saifun SA25F020 (non-buffered flash) */ | 
 | 	/* strap, cfg1, & write1 need updates */ | 
 | 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, | 
 | 	 "Non-buffered flash (256kB)"}, | 
 | 	/* Expansion entry 0100 */ | 
 | 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 0100"}, | 
 | 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ | 
 | 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, | 
 | 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, | 
 | 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, | 
 | 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, | 
 | 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/ | 
 | 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, | 
 | 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, | 
 | 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, | 
 | 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, | 
 | 	/* Saifun SA25F005 (non-buffered flash) */ | 
 | 	/* strap, cfg1, & write1 need updates */ | 
 | 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, | 
 | 	 "Non-buffered flash (64kB)"}, | 
 | 	/* Fast EEPROM */ | 
 | 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, | 
 | 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, | 
 | 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, | 
 | 	 "EEPROM - fast"}, | 
 | 	/* Expansion entry 1001 */ | 
 | 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 1001"}, | 
 | 	/* Expansion entry 1010 */ | 
 | 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 1010"}, | 
 | 	/* ATMEL AT45DB011B (buffered flash) */ | 
 | 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, | 
 | 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, | 
 | 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, | 
 | 	 "Buffered flash (128kB)"}, | 
 | 	/* Expansion entry 1100 */ | 
 | 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 1100"}, | 
 | 	/* Expansion entry 1101 */ | 
 | 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, | 
 | 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, | 
 | 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 1101"}, | 
 | 	/* Ateml Expansion entry 1110 */ | 
 | 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, | 
 | 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, | 
 | 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, | 
 | 	 "Entry 1110 (Atmel)"}, | 
 | 	/* ATMEL AT45DB021B (buffered flash) */ | 
 | 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, | 
 | 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, | 
 | 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, | 
 | 	 "Buffered flash (256kB)"}, | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl); | 
 |  | 
 | static inline u32 bnx2_tx_avail(struct bnx2 *bp) | 
 | { | 
 | 	u32 diff; | 
 |  | 
 | 	smp_mb(); | 
 | 	diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons); | 
 | 	if (diff > MAX_TX_DESC_CNT) | 
 | 		diff = (diff & MAX_TX_DESC_CNT) - 1; | 
 | 	return (bp->tx_ring_size - diff); | 
 | } | 
 |  | 
 | static u32 | 
 | bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset) | 
 | { | 
 | 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); | 
 | 	return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW)); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val) | 
 | { | 
 | 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); | 
 | 	REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val) | 
 | { | 
 | 	offset += cid_addr; | 
 | 	REG_WR(bp, BNX2_CTX_DATA_ADR, offset); | 
 | 	REG_WR(bp, BNX2_CTX_DATA, val); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val) | 
 | { | 
 | 	u32 val1; | 
 | 	int i, ret; | 
 |  | 
 | 	if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 | 		val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; | 
 |  | 
 | 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); | 
 | 		REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 |  | 
 | 		udelay(40); | 
 | 	} | 
 |  | 
 | 	val1 = (bp->phy_addr << 21) | (reg << 16) | | 
 | 		BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT | | 
 | 		BNX2_EMAC_MDIO_COMM_START_BUSY; | 
 | 	REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); | 
 |  | 
 | 	for (i = 0; i < 50; i++) { | 
 | 		udelay(10); | 
 |  | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); | 
 | 		if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { | 
 | 			udelay(5); | 
 |  | 
 | 			val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); | 
 | 			val1 &= BNX2_EMAC_MDIO_COMM_DATA; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) { | 
 | 		*val = 0x0; | 
 | 		ret = -EBUSY; | 
 | 	} | 
 | 	else { | 
 | 		*val = val1; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 | 		val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; | 
 |  | 
 | 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); | 
 | 		REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 |  | 
 | 		udelay(40); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val) | 
 | { | 
 | 	u32 val1; | 
 | 	int i, ret; | 
 |  | 
 | 	if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 | 		val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; | 
 |  | 
 | 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); | 
 | 		REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 |  | 
 | 		udelay(40); | 
 | 	} | 
 |  | 
 | 	val1 = (bp->phy_addr << 21) | (reg << 16) | val | | 
 | 		BNX2_EMAC_MDIO_COMM_COMMAND_WRITE | | 
 | 		BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT; | 
 | 	REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); | 
 |  | 
 | 	for (i = 0; i < 50; i++) { | 
 | 		udelay(10); | 
 |  | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); | 
 | 		if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { | 
 | 			udelay(5); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) | 
 |         	ret = -EBUSY; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 | 	if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { | 
 | 		val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 | 		val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; | 
 |  | 
 | 		REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); | 
 | 		REG_RD(bp, BNX2_EMAC_MDIO_MODE); | 
 |  | 
 | 		udelay(40); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_disable_int(struct bnx2 *bp) | 
 | { | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 	       BNX2_PCICFG_INT_ACK_CMD_MASK_INT); | 
 | 	REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_enable_int(struct bnx2 *bp) | 
 | { | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 	       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | | 
 | 	       BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx); | 
 |  | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 	       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_disable_int_sync(struct bnx2 *bp) | 
 | { | 
 | 	atomic_inc(&bp->intr_sem); | 
 | 	bnx2_disable_int(bp); | 
 | 	synchronize_irq(bp->pdev->irq); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_netif_stop(struct bnx2 *bp) | 
 | { | 
 | 	bnx2_disable_int_sync(bp); | 
 | 	if (netif_running(bp->dev)) { | 
 | 		netif_poll_disable(bp->dev); | 
 | 		netif_tx_disable(bp->dev); | 
 | 		bp->dev->trans_start = jiffies;	/* prevent tx timeout */ | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_netif_start(struct bnx2 *bp) | 
 | { | 
 | 	if (atomic_dec_and_test(&bp->intr_sem)) { | 
 | 		if (netif_running(bp->dev)) { | 
 | 			netif_wake_queue(bp->dev); | 
 | 			netif_poll_enable(bp->dev); | 
 | 			bnx2_enable_int(bp); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_free_mem(struct bnx2 *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (bp->status_blk) { | 
 | 		pci_free_consistent(bp->pdev, bp->status_stats_size, | 
 | 				    bp->status_blk, bp->status_blk_mapping); | 
 | 		bp->status_blk = NULL; | 
 | 		bp->stats_blk = NULL; | 
 | 	} | 
 | 	if (bp->tx_desc_ring) { | 
 | 		pci_free_consistent(bp->pdev, | 
 | 				    sizeof(struct tx_bd) * TX_DESC_CNT, | 
 | 				    bp->tx_desc_ring, bp->tx_desc_mapping); | 
 | 		bp->tx_desc_ring = NULL; | 
 | 	} | 
 | 	kfree(bp->tx_buf_ring); | 
 | 	bp->tx_buf_ring = NULL; | 
 | 	for (i = 0; i < bp->rx_max_ring; i++) { | 
 | 		if (bp->rx_desc_ring[i]) | 
 | 			pci_free_consistent(bp->pdev, | 
 | 					    sizeof(struct rx_bd) * RX_DESC_CNT, | 
 | 					    bp->rx_desc_ring[i], | 
 | 					    bp->rx_desc_mapping[i]); | 
 | 		bp->rx_desc_ring[i] = NULL; | 
 | 	} | 
 | 	vfree(bp->rx_buf_ring); | 
 | 	bp->rx_buf_ring = NULL; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_alloc_mem(struct bnx2 *bp) | 
 | { | 
 | 	int i, status_blk_size; | 
 |  | 
 | 	bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT, | 
 | 				  GFP_KERNEL); | 
 | 	if (bp->tx_buf_ring == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bp->tx_desc_ring = pci_alloc_consistent(bp->pdev, | 
 | 					        sizeof(struct tx_bd) * | 
 | 						TX_DESC_CNT, | 
 | 						&bp->tx_desc_mapping); | 
 | 	if (bp->tx_desc_ring == NULL) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT * | 
 | 				  bp->rx_max_ring); | 
 | 	if (bp->rx_buf_ring == NULL) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT * | 
 | 				   bp->rx_max_ring); | 
 |  | 
 | 	for (i = 0; i < bp->rx_max_ring; i++) { | 
 | 		bp->rx_desc_ring[i] = | 
 | 			pci_alloc_consistent(bp->pdev, | 
 | 					     sizeof(struct rx_bd) * RX_DESC_CNT, | 
 | 					     &bp->rx_desc_mapping[i]); | 
 | 		if (bp->rx_desc_ring[i] == NULL) | 
 | 			goto alloc_mem_err; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* Combine status and statistics blocks into one allocation. */ | 
 | 	status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block)); | 
 | 	bp->status_stats_size = status_blk_size + | 
 | 				sizeof(struct statistics_block); | 
 |  | 
 | 	bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size, | 
 | 					      &bp->status_blk_mapping); | 
 | 	if (bp->status_blk == NULL) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	memset(bp->status_blk, 0, bp->status_stats_size); | 
 |  | 
 | 	bp->stats_blk = (void *) ((unsigned long) bp->status_blk + | 
 | 				  status_blk_size); | 
 |  | 
 | 	bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size; | 
 |  | 
 | 	return 0; | 
 |  | 
 | alloc_mem_err: | 
 | 	bnx2_free_mem(bp); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_report_fw_link(struct bnx2 *bp) | 
 | { | 
 | 	u32 fw_link_status = 0; | 
 |  | 
 | 	if (bp->link_up) { | 
 | 		u32 bmsr; | 
 |  | 
 | 		switch (bp->line_speed) { | 
 | 		case SPEED_10: | 
 | 			if (bp->duplex == DUPLEX_HALF) | 
 | 				fw_link_status = BNX2_LINK_STATUS_10HALF; | 
 | 			else | 
 | 				fw_link_status = BNX2_LINK_STATUS_10FULL; | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			if (bp->duplex == DUPLEX_HALF) | 
 | 				fw_link_status = BNX2_LINK_STATUS_100HALF; | 
 | 			else | 
 | 				fw_link_status = BNX2_LINK_STATUS_100FULL; | 
 | 			break; | 
 | 		case SPEED_1000: | 
 | 			if (bp->duplex == DUPLEX_HALF) | 
 | 				fw_link_status = BNX2_LINK_STATUS_1000HALF; | 
 | 			else | 
 | 				fw_link_status = BNX2_LINK_STATUS_1000FULL; | 
 | 			break; | 
 | 		case SPEED_2500: | 
 | 			if (bp->duplex == DUPLEX_HALF) | 
 | 				fw_link_status = BNX2_LINK_STATUS_2500HALF; | 
 | 			else | 
 | 				fw_link_status = BNX2_LINK_STATUS_2500FULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		fw_link_status |= BNX2_LINK_STATUS_LINK_UP; | 
 |  | 
 | 		if (bp->autoneg) { | 
 | 			fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED; | 
 |  | 
 | 			bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 			bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 |  | 
 | 			if (!(bmsr & BMSR_ANEGCOMPLETE) || | 
 | 			    bp->phy_flags & PHY_PARALLEL_DETECT_FLAG) | 
 | 				fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET; | 
 | 			else | 
 | 				fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE; | 
 | 		} | 
 | 	} | 
 | 	else | 
 | 		fw_link_status = BNX2_LINK_STATUS_LINK_DOWN; | 
 |  | 
 | 	REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_report_link(struct bnx2 *bp) | 
 | { | 
 | 	if (bp->link_up) { | 
 | 		netif_carrier_on(bp->dev); | 
 | 		printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name); | 
 |  | 
 | 		printk("%d Mbps ", bp->line_speed); | 
 |  | 
 | 		if (bp->duplex == DUPLEX_FULL) | 
 | 			printk("full duplex"); | 
 | 		else | 
 | 			printk("half duplex"); | 
 |  | 
 | 		if (bp->flow_ctrl) { | 
 | 			if (bp->flow_ctrl & FLOW_CTRL_RX) { | 
 | 				printk(", receive "); | 
 | 				if (bp->flow_ctrl & FLOW_CTRL_TX) | 
 | 					printk("& transmit "); | 
 | 			} | 
 | 			else { | 
 | 				printk(", transmit "); | 
 | 			} | 
 | 			printk("flow control ON"); | 
 | 		} | 
 | 		printk("\n"); | 
 | 	} | 
 | 	else { | 
 | 		netif_carrier_off(bp->dev); | 
 | 		printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name); | 
 | 	} | 
 |  | 
 | 	bnx2_report_fw_link(bp); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_resolve_flow_ctrl(struct bnx2 *bp) | 
 | { | 
 | 	u32 local_adv, remote_adv; | 
 |  | 
 | 	bp->flow_ctrl = 0; | 
 | 	if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != | 
 | 		(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) { | 
 |  | 
 | 		if (bp->duplex == DUPLEX_FULL) { | 
 | 			bp->flow_ctrl = bp->req_flow_ctrl; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bp->duplex != DUPLEX_FULL) { | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((bp->phy_flags & PHY_SERDES_FLAG) && | 
 | 	    (CHIP_NUM(bp) == CHIP_NUM_5708)) { | 
 | 		u32 val; | 
 |  | 
 | 		bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); | 
 | 		if (val & BCM5708S_1000X_STAT1_TX_PAUSE) | 
 | 			bp->flow_ctrl |= FLOW_CTRL_TX; | 
 | 		if (val & BCM5708S_1000X_STAT1_RX_PAUSE) | 
 | 			bp->flow_ctrl |= FLOW_CTRL_RX; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); | 
 | 	bnx2_read_phy(bp, MII_LPA, &remote_adv); | 
 |  | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		u32 new_local_adv = 0; | 
 | 		u32 new_remote_adv = 0; | 
 |  | 
 | 		if (local_adv & ADVERTISE_1000XPAUSE) | 
 | 			new_local_adv |= ADVERTISE_PAUSE_CAP; | 
 | 		if (local_adv & ADVERTISE_1000XPSE_ASYM) | 
 | 			new_local_adv |= ADVERTISE_PAUSE_ASYM; | 
 | 		if (remote_adv & ADVERTISE_1000XPAUSE) | 
 | 			new_remote_adv |= ADVERTISE_PAUSE_CAP; | 
 | 		if (remote_adv & ADVERTISE_1000XPSE_ASYM) | 
 | 			new_remote_adv |= ADVERTISE_PAUSE_ASYM; | 
 |  | 
 | 		local_adv = new_local_adv; | 
 | 		remote_adv = new_remote_adv; | 
 | 	} | 
 |  | 
 | 	/* See Table 28B-3 of 802.3ab-1999 spec. */ | 
 | 	if (local_adv & ADVERTISE_PAUSE_CAP) { | 
 | 		if(local_adv & ADVERTISE_PAUSE_ASYM) { | 
 | 	                if (remote_adv & ADVERTISE_PAUSE_CAP) { | 
 | 				bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; | 
 | 			} | 
 | 			else if (remote_adv & ADVERTISE_PAUSE_ASYM) { | 
 | 				bp->flow_ctrl = FLOW_CTRL_RX; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			if (remote_adv & ADVERTISE_PAUSE_CAP) { | 
 | 				bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else if (local_adv & ADVERTISE_PAUSE_ASYM) { | 
 | 		if ((remote_adv & ADVERTISE_PAUSE_CAP) && | 
 | 			(remote_adv & ADVERTISE_PAUSE_ASYM)) { | 
 |  | 
 | 			bp->flow_ctrl = FLOW_CTRL_TX; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_5708s_linkup(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	bp->link_up = 1; | 
 | 	bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); | 
 | 	switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) { | 
 | 		case BCM5708S_1000X_STAT1_SPEED_10: | 
 | 			bp->line_speed = SPEED_10; | 
 | 			break; | 
 | 		case BCM5708S_1000X_STAT1_SPEED_100: | 
 | 			bp->line_speed = SPEED_100; | 
 | 			break; | 
 | 		case BCM5708S_1000X_STAT1_SPEED_1G: | 
 | 			bp->line_speed = SPEED_1000; | 
 | 			break; | 
 | 		case BCM5708S_1000X_STAT1_SPEED_2G5: | 
 | 			bp->line_speed = SPEED_2500; | 
 | 			break; | 
 | 	} | 
 | 	if (val & BCM5708S_1000X_STAT1_FD) | 
 | 		bp->duplex = DUPLEX_FULL; | 
 | 	else | 
 | 		bp->duplex = DUPLEX_HALF; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_5706s_linkup(struct bnx2 *bp) | 
 | { | 
 | 	u32 bmcr, local_adv, remote_adv, common; | 
 |  | 
 | 	bp->link_up = 1; | 
 | 	bp->line_speed = SPEED_1000; | 
 |  | 
 | 	bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 	if (bmcr & BMCR_FULLDPLX) { | 
 | 		bp->duplex = DUPLEX_FULL; | 
 | 	} | 
 | 	else { | 
 | 		bp->duplex = DUPLEX_HALF; | 
 | 	} | 
 |  | 
 | 	if (!(bmcr & BMCR_ANENABLE)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); | 
 | 	bnx2_read_phy(bp, MII_LPA, &remote_adv); | 
 |  | 
 | 	common = local_adv & remote_adv; | 
 | 	if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) { | 
 |  | 
 | 		if (common & ADVERTISE_1000XFULL) { | 
 | 			bp->duplex = DUPLEX_FULL; | 
 | 		} | 
 | 		else { | 
 | 			bp->duplex = DUPLEX_HALF; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_copper_linkup(struct bnx2 *bp) | 
 | { | 
 | 	u32 bmcr; | 
 |  | 
 | 	bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 	if (bmcr & BMCR_ANENABLE) { | 
 | 		u32 local_adv, remote_adv, common; | 
 |  | 
 | 		bnx2_read_phy(bp, MII_CTRL1000, &local_adv); | 
 | 		bnx2_read_phy(bp, MII_STAT1000, &remote_adv); | 
 |  | 
 | 		common = local_adv & (remote_adv >> 2); | 
 | 		if (common & ADVERTISE_1000FULL) { | 
 | 			bp->line_speed = SPEED_1000; | 
 | 			bp->duplex = DUPLEX_FULL; | 
 | 		} | 
 | 		else if (common & ADVERTISE_1000HALF) { | 
 | 			bp->line_speed = SPEED_1000; | 
 | 			bp->duplex = DUPLEX_HALF; | 
 | 		} | 
 | 		else { | 
 | 			bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); | 
 | 			bnx2_read_phy(bp, MII_LPA, &remote_adv); | 
 |  | 
 | 			common = local_adv & remote_adv; | 
 | 			if (common & ADVERTISE_100FULL) { | 
 | 				bp->line_speed = SPEED_100; | 
 | 				bp->duplex = DUPLEX_FULL; | 
 | 			} | 
 | 			else if (common & ADVERTISE_100HALF) { | 
 | 				bp->line_speed = SPEED_100; | 
 | 				bp->duplex = DUPLEX_HALF; | 
 | 			} | 
 | 			else if (common & ADVERTISE_10FULL) { | 
 | 				bp->line_speed = SPEED_10; | 
 | 				bp->duplex = DUPLEX_FULL; | 
 | 			} | 
 | 			else if (common & ADVERTISE_10HALF) { | 
 | 				bp->line_speed = SPEED_10; | 
 | 				bp->duplex = DUPLEX_HALF; | 
 | 			} | 
 | 			else { | 
 | 				bp->line_speed = 0; | 
 | 				bp->link_up = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		if (bmcr & BMCR_SPEED100) { | 
 | 			bp->line_speed = SPEED_100; | 
 | 		} | 
 | 		else { | 
 | 			bp->line_speed = SPEED_10; | 
 | 		} | 
 | 		if (bmcr & BMCR_FULLDPLX) { | 
 | 			bp->duplex = DUPLEX_FULL; | 
 | 		} | 
 | 		else { | 
 | 			bp->duplex = DUPLEX_HALF; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_mac_link(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620); | 
 | 	if (bp->link_up && (bp->line_speed == SPEED_1000) && | 
 | 		(bp->duplex == DUPLEX_HALF)) { | 
 | 		REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff); | 
 | 	} | 
 |  | 
 | 	/* Configure the EMAC mode register. */ | 
 | 	val = REG_RD(bp, BNX2_EMAC_MODE); | 
 |  | 
 | 	val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | | 
 | 		BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | | 
 | 		BNX2_EMAC_MODE_25G); | 
 |  | 
 | 	if (bp->link_up) { | 
 | 		switch (bp->line_speed) { | 
 | 			case SPEED_10: | 
 | 				if (CHIP_NUM(bp) == CHIP_NUM_5708) { | 
 | 					val |= BNX2_EMAC_MODE_PORT_MII_10; | 
 | 					break; | 
 | 				} | 
 | 				/* fall through */ | 
 | 			case SPEED_100: | 
 | 				val |= BNX2_EMAC_MODE_PORT_MII; | 
 | 				break; | 
 | 			case SPEED_2500: | 
 | 				val |= BNX2_EMAC_MODE_25G; | 
 | 				/* fall through */ | 
 | 			case SPEED_1000: | 
 | 				val |= BNX2_EMAC_MODE_PORT_GMII; | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		val |= BNX2_EMAC_MODE_PORT_GMII; | 
 | 	} | 
 |  | 
 | 	/* Set the MAC to operate in the appropriate duplex mode. */ | 
 | 	if (bp->duplex == DUPLEX_HALF) | 
 | 		val |= BNX2_EMAC_MODE_HALF_DUPLEX; | 
 | 	REG_WR(bp, BNX2_EMAC_MODE, val); | 
 |  | 
 | 	/* Enable/disable rx PAUSE. */ | 
 | 	bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN; | 
 |  | 
 | 	if (bp->flow_ctrl & FLOW_CTRL_RX) | 
 | 		bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN; | 
 | 	REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode); | 
 |  | 
 | 	/* Enable/disable tx PAUSE. */ | 
 | 	val = REG_RD(bp, BNX2_EMAC_TX_MODE); | 
 | 	val &= ~BNX2_EMAC_TX_MODE_FLOW_EN; | 
 |  | 
 | 	if (bp->flow_ctrl & FLOW_CTRL_TX) | 
 | 		val |= BNX2_EMAC_TX_MODE_FLOW_EN; | 
 | 	REG_WR(bp, BNX2_EMAC_TX_MODE, val); | 
 |  | 
 | 	/* Acknowledge the interrupt. */ | 
 | 	REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_link(struct bnx2 *bp) | 
 | { | 
 | 	u32 bmsr; | 
 | 	u8 link_up; | 
 |  | 
 | 	if (bp->loopback == MAC_LOOPBACK) { | 
 | 		bp->link_up = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	link_up = bp->link_up; | 
 |  | 
 | 	bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 	bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 |  | 
 | 	if ((bp->phy_flags & PHY_SERDES_FLAG) && | 
 | 	    (CHIP_NUM(bp) == CHIP_NUM_5706)) { | 
 | 		u32 val; | 
 |  | 
 | 		val = REG_RD(bp, BNX2_EMAC_STATUS); | 
 | 		if (val & BNX2_EMAC_STATUS_LINK) | 
 | 			bmsr |= BMSR_LSTATUS; | 
 | 		else | 
 | 			bmsr &= ~BMSR_LSTATUS; | 
 | 	} | 
 |  | 
 | 	if (bmsr & BMSR_LSTATUS) { | 
 | 		bp->link_up = 1; | 
 |  | 
 | 		if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 			if (CHIP_NUM(bp) == CHIP_NUM_5706) | 
 | 				bnx2_5706s_linkup(bp); | 
 | 			else if (CHIP_NUM(bp) == CHIP_NUM_5708) | 
 | 				bnx2_5708s_linkup(bp); | 
 | 		} | 
 | 		else { | 
 | 			bnx2_copper_linkup(bp); | 
 | 		} | 
 | 		bnx2_resolve_flow_ctrl(bp); | 
 | 	} | 
 | 	else { | 
 | 		if ((bp->phy_flags & PHY_SERDES_FLAG) && | 
 | 			(bp->autoneg & AUTONEG_SPEED)) { | 
 |  | 
 | 			u32 bmcr; | 
 |  | 
 | 			bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 			if (!(bmcr & BMCR_ANENABLE)) { | 
 | 				bnx2_write_phy(bp, MII_BMCR, bmcr | | 
 | 					BMCR_ANENABLE); | 
 | 			} | 
 | 		} | 
 | 		bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; | 
 | 		bp->link_up = 0; | 
 | 	} | 
 |  | 
 | 	if (bp->link_up != link_up) { | 
 | 		bnx2_report_link(bp); | 
 | 	} | 
 |  | 
 | 	bnx2_set_mac_link(bp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_reset_phy(struct bnx2 *bp) | 
 | { | 
 | 	int i; | 
 | 	u32 reg; | 
 |  | 
 |         bnx2_write_phy(bp, MII_BMCR, BMCR_RESET); | 
 |  | 
 | #define PHY_RESET_MAX_WAIT 100 | 
 | 	for (i = 0; i < PHY_RESET_MAX_WAIT; i++) { | 
 | 		udelay(10); | 
 |  | 
 | 		bnx2_read_phy(bp, MII_BMCR, ®); | 
 | 		if (!(reg & BMCR_RESET)) { | 
 | 			udelay(20); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (i == PHY_RESET_MAX_WAIT) { | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 | 
 | bnx2_phy_get_pause_adv(struct bnx2 *bp) | 
 | { | 
 | 	u32 adv = 0; | 
 |  | 
 | 	if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) == | 
 | 		(FLOW_CTRL_RX | FLOW_CTRL_TX)) { | 
 |  | 
 | 		if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 			adv = ADVERTISE_1000XPAUSE; | 
 | 		} | 
 | 		else { | 
 | 			adv = ADVERTISE_PAUSE_CAP; | 
 | 		} | 
 | 	} | 
 | 	else if (bp->req_flow_ctrl & FLOW_CTRL_TX) { | 
 | 		if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 			adv = ADVERTISE_1000XPSE_ASYM; | 
 | 		} | 
 | 		else { | 
 | 			adv = ADVERTISE_PAUSE_ASYM; | 
 | 		} | 
 | 	} | 
 | 	else if (bp->req_flow_ctrl & FLOW_CTRL_RX) { | 
 | 		if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 			adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM; | 
 | 		} | 
 | 		else { | 
 | 			adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; | 
 | 		} | 
 | 	} | 
 | 	return adv; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_setup_serdes_phy(struct bnx2 *bp) | 
 | { | 
 | 	u32 adv, bmcr, up1; | 
 | 	u32 new_adv = 0; | 
 |  | 
 | 	if (!(bp->autoneg & AUTONEG_SPEED)) { | 
 | 		u32 new_bmcr; | 
 | 		int force_link_down = 0; | 
 |  | 
 | 		if (CHIP_NUM(bp) == CHIP_NUM_5708) { | 
 | 			bnx2_read_phy(bp, BCM5708S_UP1, &up1); | 
 | 			if (up1 & BCM5708S_UP1_2G5) { | 
 | 				up1 &= ~BCM5708S_UP1_2G5; | 
 | 				bnx2_write_phy(bp, BCM5708S_UP1, up1); | 
 | 				force_link_down = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		bnx2_read_phy(bp, MII_ADVERTISE, &adv); | 
 | 		adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF); | 
 |  | 
 | 		bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 		new_bmcr = bmcr & ~BMCR_ANENABLE; | 
 | 		new_bmcr |= BMCR_SPEED1000; | 
 | 		if (bp->req_duplex == DUPLEX_FULL) { | 
 | 			adv |= ADVERTISE_1000XFULL; | 
 | 			new_bmcr |= BMCR_FULLDPLX; | 
 | 		} | 
 | 		else { | 
 | 			adv |= ADVERTISE_1000XHALF; | 
 | 			new_bmcr &= ~BMCR_FULLDPLX; | 
 | 		} | 
 | 		if ((new_bmcr != bmcr) || (force_link_down)) { | 
 | 			/* Force a link down visible on the other side */ | 
 | 			if (bp->link_up) { | 
 | 				bnx2_write_phy(bp, MII_ADVERTISE, adv & | 
 | 					       ~(ADVERTISE_1000XFULL | | 
 | 						 ADVERTISE_1000XHALF)); | 
 | 				bnx2_write_phy(bp, MII_BMCR, bmcr | | 
 | 					BMCR_ANRESTART | BMCR_ANENABLE); | 
 |  | 
 | 				bp->link_up = 0; | 
 | 				netif_carrier_off(bp->dev); | 
 | 				bnx2_write_phy(bp, MII_BMCR, new_bmcr); | 
 | 			} | 
 | 			bnx2_write_phy(bp, MII_ADVERTISE, adv); | 
 | 			bnx2_write_phy(bp, MII_BMCR, new_bmcr); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { | 
 | 		bnx2_read_phy(bp, BCM5708S_UP1, &up1); | 
 | 		up1 |= BCM5708S_UP1_2G5; | 
 | 		bnx2_write_phy(bp, BCM5708S_UP1, up1); | 
 | 	} | 
 |  | 
 | 	if (bp->advertising & ADVERTISED_1000baseT_Full) | 
 | 		new_adv |= ADVERTISE_1000XFULL; | 
 |  | 
 | 	new_adv |= bnx2_phy_get_pause_adv(bp); | 
 |  | 
 | 	bnx2_read_phy(bp, MII_ADVERTISE, &adv); | 
 | 	bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 |  | 
 | 	bp->serdes_an_pending = 0; | 
 | 	if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) { | 
 | 		/* Force a link down visible on the other side */ | 
 | 		if (bp->link_up) { | 
 | 			int i; | 
 |  | 
 | 			bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); | 
 | 			for (i = 0; i < 110; i++) { | 
 | 				udelay(100); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		bnx2_write_phy(bp, MII_ADVERTISE, new_adv); | 
 | 		bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | | 
 | 			BMCR_ANENABLE); | 
 | 		if (CHIP_NUM(bp) == CHIP_NUM_5706) { | 
 | 			/* Speed up link-up time when the link partner | 
 | 			 * does not autonegotiate which is very common | 
 | 			 * in blade servers. Some blade servers use | 
 | 			 * IPMI for kerboard input and it's important | 
 | 			 * to minimize link disruptions. Autoneg. involves | 
 | 			 * exchanging base pages plus 3 next pages and | 
 | 			 * normally completes in about 120 msec. | 
 | 			 */ | 
 | 			bp->current_interval = SERDES_AN_TIMEOUT; | 
 | 			bp->serdes_an_pending = 1; | 
 | 			mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define ETHTOOL_ALL_FIBRE_SPEED						\ | 
 | 	(ADVERTISED_1000baseT_Full) | 
 |  | 
 | #define ETHTOOL_ALL_COPPER_SPEED					\ | 
 | 	(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |		\ | 
 | 	ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |		\ | 
 | 	ADVERTISED_1000baseT_Full) | 
 |  | 
 | #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \ | 
 | 	ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA) | 
 |  | 
 | #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL) | 
 |  | 
 | static int | 
 | bnx2_setup_copper_phy(struct bnx2 *bp) | 
 | { | 
 | 	u32 bmcr; | 
 | 	u32 new_bmcr; | 
 |  | 
 | 	bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 |  | 
 | 	if (bp->autoneg & AUTONEG_SPEED) { | 
 | 		u32 adv_reg, adv1000_reg; | 
 | 		u32 new_adv_reg = 0; | 
 | 		u32 new_adv1000_reg = 0; | 
 |  | 
 | 		bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg); | 
 | 		adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP | | 
 | 			ADVERTISE_PAUSE_ASYM); | 
 |  | 
 | 		bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg); | 
 | 		adv1000_reg &= PHY_ALL_1000_SPEED; | 
 |  | 
 | 		if (bp->advertising & ADVERTISED_10baseT_Half) | 
 | 			new_adv_reg |= ADVERTISE_10HALF; | 
 | 		if (bp->advertising & ADVERTISED_10baseT_Full) | 
 | 			new_adv_reg |= ADVERTISE_10FULL; | 
 | 		if (bp->advertising & ADVERTISED_100baseT_Half) | 
 | 			new_adv_reg |= ADVERTISE_100HALF; | 
 | 		if (bp->advertising & ADVERTISED_100baseT_Full) | 
 | 			new_adv_reg |= ADVERTISE_100FULL; | 
 | 		if (bp->advertising & ADVERTISED_1000baseT_Full) | 
 | 			new_adv1000_reg |= ADVERTISE_1000FULL; | 
 |  | 
 | 		new_adv_reg |= ADVERTISE_CSMA; | 
 |  | 
 | 		new_adv_reg |= bnx2_phy_get_pause_adv(bp); | 
 |  | 
 | 		if ((adv1000_reg != new_adv1000_reg) || | 
 | 			(adv_reg != new_adv_reg) || | 
 | 			((bmcr & BMCR_ANENABLE) == 0)) { | 
 |  | 
 | 			bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg); | 
 | 			bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg); | 
 | 			bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART | | 
 | 				BMCR_ANENABLE); | 
 | 		} | 
 | 		else if (bp->link_up) { | 
 | 			/* Flow ctrl may have changed from auto to forced */ | 
 | 			/* or vice-versa. */ | 
 |  | 
 | 			bnx2_resolve_flow_ctrl(bp); | 
 | 			bnx2_set_mac_link(bp); | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	new_bmcr = 0; | 
 | 	if (bp->req_line_speed == SPEED_100) { | 
 | 		new_bmcr |= BMCR_SPEED100; | 
 | 	} | 
 | 	if (bp->req_duplex == DUPLEX_FULL) { | 
 | 		new_bmcr |= BMCR_FULLDPLX; | 
 | 	} | 
 | 	if (new_bmcr != bmcr) { | 
 | 		u32 bmsr; | 
 | 		int i = 0; | 
 |  | 
 | 		bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 		bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 |  | 
 | 		if (bmsr & BMSR_LSTATUS) { | 
 | 			/* Force link down */ | 
 | 			bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); | 
 | 			do { | 
 | 				udelay(100); | 
 | 				bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 				bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 				i++; | 
 | 			} while ((bmsr & BMSR_LSTATUS) && (i < 620)); | 
 | 		} | 
 |  | 
 | 		bnx2_write_phy(bp, MII_BMCR, new_bmcr); | 
 |  | 
 | 		/* Normally, the new speed is setup after the link has | 
 | 		 * gone down and up again. In some cases, link will not go | 
 | 		 * down so we need to set up the new speed here. | 
 | 		 */ | 
 | 		if (bmsr & BMSR_LSTATUS) { | 
 | 			bp->line_speed = bp->req_line_speed; | 
 | 			bp->duplex = bp->req_duplex; | 
 | 			bnx2_resolve_flow_ctrl(bp); | 
 | 			bnx2_set_mac_link(bp); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_setup_phy(struct bnx2 *bp) | 
 | { | 
 | 	if (bp->loopback == MAC_LOOPBACK) | 
 | 		return 0; | 
 |  | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		return (bnx2_setup_serdes_phy(bp)); | 
 | 	} | 
 | 	else { | 
 | 		return (bnx2_setup_copper_phy(bp)); | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_5708s_phy(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3); | 
 | 	bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE); | 
 | 	bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); | 
 |  | 
 | 	bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val); | 
 | 	val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN; | 
 | 	bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val); | 
 |  | 
 | 	bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val); | 
 | 	val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN; | 
 | 	bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val); | 
 |  | 
 | 	if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { | 
 | 		bnx2_read_phy(bp, BCM5708S_UP1, &val); | 
 | 		val |= BCM5708S_UP1_2G5; | 
 | 		bnx2_write_phy(bp, BCM5708S_UP1, val); | 
 | 	} | 
 |  | 
 | 	if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_B0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_B1)) { | 
 | 		/* increase tx signal amplitude */ | 
 | 		bnx2_write_phy(bp, BCM5708S_BLK_ADDR, | 
 | 			       BCM5708S_BLK_ADDR_TX_MISC); | 
 | 		bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val); | 
 | 		val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM; | 
 | 		bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val); | 
 | 		bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); | 
 | 	} | 
 |  | 
 | 	val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) & | 
 | 	      BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK; | 
 |  | 
 | 	if (val) { | 
 | 		u32 is_backplane; | 
 |  | 
 | 		is_backplane = REG_RD_IND(bp, bp->shmem_base + | 
 | 					  BNX2_SHARED_HW_CFG_CONFIG); | 
 | 		if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) { | 
 | 			bnx2_write_phy(bp, BCM5708S_BLK_ADDR, | 
 | 				       BCM5708S_BLK_ADDR_TX_MISC); | 
 | 			bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val); | 
 | 			bnx2_write_phy(bp, BCM5708S_BLK_ADDR, | 
 | 				       BCM5708S_BLK_ADDR_DIG); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_5706s_phy(struct bnx2 *bp) | 
 | { | 
 | 	bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; | 
 |  | 
 | 	if (CHIP_NUM(bp) == CHIP_NUM_5706) { | 
 |         	REG_WR(bp, BNX2_MISC_UNUSED0, 0x300); | 
 | 	} | 
 |  | 
 | 	if (bp->dev->mtu > 1500) { | 
 | 		u32 val; | 
 |  | 
 | 		/* Set extended packet length bit */ | 
 | 		bnx2_write_phy(bp, 0x18, 0x7); | 
 | 		bnx2_read_phy(bp, 0x18, &val); | 
 | 		bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000); | 
 |  | 
 | 		bnx2_write_phy(bp, 0x1c, 0x6c00); | 
 | 		bnx2_read_phy(bp, 0x1c, &val); | 
 | 		bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02); | 
 | 	} | 
 | 	else { | 
 | 		u32 val; | 
 |  | 
 | 		bnx2_write_phy(bp, 0x18, 0x7); | 
 | 		bnx2_read_phy(bp, 0x18, &val); | 
 | 		bnx2_write_phy(bp, 0x18, val & ~0x4007); | 
 |  | 
 | 		bnx2_write_phy(bp, 0x1c, 0x6c00); | 
 | 		bnx2_read_phy(bp, 0x1c, &val); | 
 | 		bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_copper_phy(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	bp->phy_flags |= PHY_CRC_FIX_FLAG; | 
 |  | 
 | 	if (bp->phy_flags & PHY_CRC_FIX_FLAG) { | 
 | 		bnx2_write_phy(bp, 0x18, 0x0c00); | 
 | 		bnx2_write_phy(bp, 0x17, 0x000a); | 
 | 		bnx2_write_phy(bp, 0x15, 0x310b); | 
 | 		bnx2_write_phy(bp, 0x17, 0x201f); | 
 | 		bnx2_write_phy(bp, 0x15, 0x9506); | 
 | 		bnx2_write_phy(bp, 0x17, 0x401f); | 
 | 		bnx2_write_phy(bp, 0x15, 0x14e2); | 
 | 		bnx2_write_phy(bp, 0x18, 0x0400); | 
 | 	} | 
 |  | 
 | 	if (bp->dev->mtu > 1500) { | 
 | 		/* Set extended packet length bit */ | 
 | 		bnx2_write_phy(bp, 0x18, 0x7); | 
 | 		bnx2_read_phy(bp, 0x18, &val); | 
 | 		bnx2_write_phy(bp, 0x18, val | 0x4000); | 
 |  | 
 | 		bnx2_read_phy(bp, 0x10, &val); | 
 | 		bnx2_write_phy(bp, 0x10, val | 0x1); | 
 | 	} | 
 | 	else { | 
 | 		bnx2_write_phy(bp, 0x18, 0x7); | 
 | 		bnx2_read_phy(bp, 0x18, &val); | 
 | 		bnx2_write_phy(bp, 0x18, val & ~0x4007); | 
 |  | 
 | 		bnx2_read_phy(bp, 0x10, &val); | 
 | 		bnx2_write_phy(bp, 0x10, val & ~0x1); | 
 | 	} | 
 |  | 
 | 	/* ethernet@wirespeed */ | 
 | 	bnx2_write_phy(bp, 0x18, 0x7007); | 
 | 	bnx2_read_phy(bp, 0x18, &val); | 
 | 	bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4)); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | bnx2_init_phy(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 | 	int rc = 0; | 
 |  | 
 | 	bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG; | 
 | 	bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG; | 
 |  | 
 |         REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); | 
 |  | 
 | 	bnx2_reset_phy(bp); | 
 |  | 
 | 	bnx2_read_phy(bp, MII_PHYSID1, &val); | 
 | 	bp->phy_id = val << 16; | 
 | 	bnx2_read_phy(bp, MII_PHYSID2, &val); | 
 | 	bp->phy_id |= val & 0xffff; | 
 |  | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		if (CHIP_NUM(bp) == CHIP_NUM_5706) | 
 | 			rc = bnx2_init_5706s_phy(bp); | 
 | 		else if (CHIP_NUM(bp) == CHIP_NUM_5708) | 
 | 			rc = bnx2_init_5708s_phy(bp); | 
 | 	} | 
 | 	else { | 
 | 		rc = bnx2_init_copper_phy(bp); | 
 | 	} | 
 |  | 
 | 	bnx2_setup_phy(bp); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_mac_loopback(struct bnx2 *bp) | 
 | { | 
 | 	u32 mac_mode; | 
 |  | 
 | 	mac_mode = REG_RD(bp, BNX2_EMAC_MODE); | 
 | 	mac_mode &= ~BNX2_EMAC_MODE_PORT; | 
 | 	mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK; | 
 | 	REG_WR(bp, BNX2_EMAC_MODE, mac_mode); | 
 | 	bp->link_up = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2_test_link(struct bnx2 *); | 
 |  | 
 | static int | 
 | bnx2_set_phy_loopback(struct bnx2 *bp) | 
 | { | 
 | 	u32 mac_mode; | 
 | 	int rc, i; | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 | 	rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX | | 
 | 			    BMCR_SPEED1000); | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		if (bnx2_test_link(bp) == 0) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	mac_mode = REG_RD(bp, BNX2_EMAC_MODE); | 
 | 	mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | | 
 | 		      BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | | 
 | 		      BNX2_EMAC_MODE_25G); | 
 |  | 
 | 	mac_mode |= BNX2_EMAC_MODE_PORT_GMII; | 
 | 	REG_WR(bp, BNX2_EMAC_MODE, mac_mode); | 
 | 	bp->link_up = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent) | 
 | { | 
 | 	int i; | 
 | 	u32 val; | 
 |  | 
 | 	bp->fw_wr_seq++; | 
 | 	msg_data |= bp->fw_wr_seq; | 
 |  | 
 | 	REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); | 
 |  | 
 | 	/* wait for an acknowledgement. */ | 
 | 	for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) { | 
 | 		msleep(10); | 
 |  | 
 | 		val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB); | 
 |  | 
 | 		if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ)) | 
 | 			break; | 
 | 	} | 
 | 	if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0) | 
 | 		return 0; | 
 |  | 
 | 	/* If we timed out, inform the firmware that this is the case. */ | 
 | 	if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) { | 
 | 		if (!silent) | 
 | 			printk(KERN_ERR PFX "fw sync timeout, reset code = " | 
 | 					    "%x\n", msg_data); | 
 |  | 
 | 		msg_data &= ~BNX2_DRV_MSG_CODE; | 
 | 		msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT; | 
 |  | 
 | 		REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); | 
 |  | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_init_context(struct bnx2 *bp) | 
 | { | 
 | 	u32 vcid; | 
 |  | 
 | 	vcid = 96; | 
 | 	while (vcid) { | 
 | 		u32 vcid_addr, pcid_addr, offset; | 
 |  | 
 | 		vcid--; | 
 |  | 
 | 		if (CHIP_ID(bp) == CHIP_ID_5706_A0) { | 
 | 			u32 new_vcid; | 
 |  | 
 | 			vcid_addr = GET_PCID_ADDR(vcid); | 
 | 			if (vcid & 0x8) { | 
 | 				new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7); | 
 | 			} | 
 | 			else { | 
 | 				new_vcid = vcid; | 
 | 			} | 
 | 			pcid_addr = GET_PCID_ADDR(new_vcid); | 
 | 		} | 
 | 		else { | 
 | 	    		vcid_addr = GET_CID_ADDR(vcid); | 
 | 			pcid_addr = vcid_addr; | 
 | 		} | 
 |  | 
 | 		REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00); | 
 | 		REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); | 
 |  | 
 | 		/* Zero out the context. */ | 
 | 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) { | 
 | 			CTX_WR(bp, 0x00, offset, 0); | 
 | 		} | 
 |  | 
 | 		REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr); | 
 | 		REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_alloc_bad_rbuf(struct bnx2 *bp) | 
 | { | 
 | 	u16 *good_mbuf; | 
 | 	u32 good_mbuf_cnt; | 
 | 	u32 val; | 
 |  | 
 | 	good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL); | 
 | 	if (good_mbuf == NULL) { | 
 | 		printk(KERN_ERR PFX "Failed to allocate memory in " | 
 | 				    "bnx2_alloc_bad_rbuf\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, | 
 | 		BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE); | 
 |  | 
 | 	good_mbuf_cnt = 0; | 
 |  | 
 | 	/* Allocate a bunch of mbufs and save the good ones in an array. */ | 
 | 	val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); | 
 | 	while (val & BNX2_RBUF_STATUS1_FREE_COUNT) { | 
 | 		REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ); | 
 |  | 
 | 		val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC); | 
 |  | 
 | 		val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE; | 
 |  | 
 | 		/* The addresses with Bit 9 set are bad memory blocks. */ | 
 | 		if (!(val & (1 << 9))) { | 
 | 			good_mbuf[good_mbuf_cnt] = (u16) val; | 
 | 			good_mbuf_cnt++; | 
 | 		} | 
 |  | 
 | 		val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); | 
 | 	} | 
 |  | 
 | 	/* Free the good ones back to the mbuf pool thus discarding | 
 | 	 * all the bad ones. */ | 
 | 	while (good_mbuf_cnt) { | 
 | 		good_mbuf_cnt--; | 
 |  | 
 | 		val = good_mbuf[good_mbuf_cnt]; | 
 | 		val = (val << 9) | val | 1; | 
 |  | 
 | 		REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val); | 
 | 	} | 
 | 	kfree(good_mbuf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_set_mac_addr(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 | 	u8 *mac_addr = bp->dev->dev_addr; | 
 |  | 
 | 	val = (mac_addr[0] << 8) | mac_addr[1]; | 
 |  | 
 | 	REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val); | 
 |  | 
 | 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | | 
 | 		(mac_addr[4] << 8) | mac_addr[5]; | 
 |  | 
 | 	REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val); | 
 | } | 
 |  | 
 | static inline int | 
 | bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct sw_bd *rx_buf = &bp->rx_buf_ring[index]; | 
 | 	dma_addr_t mapping; | 
 | 	struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)]; | 
 | 	unsigned long align; | 
 |  | 
 | 	skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size); | 
 | 	if (skb == NULL) { | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (unlikely((align = (unsigned long) skb->data & 0x7))) { | 
 | 		skb_reserve(skb, 8 - align); | 
 | 	} | 
 |  | 
 | 	mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size, | 
 | 		PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	rx_buf->skb = skb; | 
 | 	pci_unmap_addr_set(rx_buf, mapping, mapping); | 
 |  | 
 | 	rxbd->rx_bd_haddr_hi = (u64) mapping >> 32; | 
 | 	rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff; | 
 |  | 
 | 	bp->rx_prod_bseq += bp->rx_buf_use_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_phy_int(struct bnx2 *bp) | 
 | { | 
 | 	u32 new_link_state, old_link_state; | 
 |  | 
 | 	new_link_state = bp->status_blk->status_attn_bits & | 
 | 		STATUS_ATTN_BITS_LINK_STATE; | 
 | 	old_link_state = bp->status_blk->status_attn_bits_ack & | 
 | 		STATUS_ATTN_BITS_LINK_STATE; | 
 | 	if (new_link_state != old_link_state) { | 
 | 		if (new_link_state) { | 
 | 			REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, | 
 | 				STATUS_ATTN_BITS_LINK_STATE); | 
 | 		} | 
 | 		else { | 
 | 			REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, | 
 | 				STATUS_ATTN_BITS_LINK_STATE); | 
 | 		} | 
 | 		bnx2_set_link(bp); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_tx_int(struct bnx2 *bp) | 
 | { | 
 | 	struct status_block *sblk = bp->status_blk; | 
 | 	u16 hw_cons, sw_cons, sw_ring_cons; | 
 | 	int tx_free_bd = 0; | 
 |  | 
 | 	hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0; | 
 | 	if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { | 
 | 		hw_cons++; | 
 | 	} | 
 | 	sw_cons = bp->tx_cons; | 
 |  | 
 | 	while (sw_cons != hw_cons) { | 
 | 		struct sw_bd *tx_buf; | 
 | 		struct sk_buff *skb; | 
 | 		int i, last; | 
 |  | 
 | 		sw_ring_cons = TX_RING_IDX(sw_cons); | 
 |  | 
 | 		tx_buf = &bp->tx_buf_ring[sw_ring_cons]; | 
 | 		skb = tx_buf->skb; | 
 | #ifdef BCM_TSO | 
 | 		/* partial BD completions possible with TSO packets */ | 
 | 		if (skb_is_gso(skb)) { | 
 | 			u16 last_idx, last_ring_idx; | 
 |  | 
 | 			last_idx = sw_cons + | 
 | 				skb_shinfo(skb)->nr_frags + 1; | 
 | 			last_ring_idx = sw_ring_cons + | 
 | 				skb_shinfo(skb)->nr_frags + 1; | 
 | 			if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) { | 
 | 				last_idx++; | 
 | 			} | 
 | 			if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) { | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 		pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), | 
 | 			skb_headlen(skb), PCI_DMA_TODEVICE); | 
 |  | 
 | 		tx_buf->skb = NULL; | 
 | 		last = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 		for (i = 0; i < last; i++) { | 
 | 			sw_cons = NEXT_TX_BD(sw_cons); | 
 |  | 
 | 			pci_unmap_page(bp->pdev, | 
 | 				pci_unmap_addr( | 
 | 					&bp->tx_buf_ring[TX_RING_IDX(sw_cons)], | 
 | 				       	mapping), | 
 | 				skb_shinfo(skb)->frags[i].size, | 
 | 				PCI_DMA_TODEVICE); | 
 | 		} | 
 |  | 
 | 		sw_cons = NEXT_TX_BD(sw_cons); | 
 |  | 
 | 		tx_free_bd += last + 1; | 
 |  | 
 | 		dev_kfree_skb(skb); | 
 |  | 
 | 		hw_cons = bp->hw_tx_cons = | 
 | 			sblk->status_tx_quick_consumer_index0; | 
 |  | 
 | 		if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { | 
 | 			hw_cons++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bp->tx_cons = sw_cons; | 
 | 	/* Need to make the tx_cons update visible to bnx2_start_xmit() | 
 | 	 * before checking for netif_queue_stopped().  Without the | 
 | 	 * memory barrier, there is a small possibility that bnx2_start_xmit() | 
 | 	 * will miss it and cause the queue to be stopped forever. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (unlikely(netif_queue_stopped(bp->dev)) && | 
 | 		     (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) { | 
 | 		netif_tx_lock(bp->dev); | 
 | 		if ((netif_queue_stopped(bp->dev)) && | 
 | 		    (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) | 
 | 			netif_wake_queue(bp->dev); | 
 | 		netif_tx_unlock(bp->dev); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb, | 
 | 	u16 cons, u16 prod) | 
 | { | 
 | 	struct sw_bd *cons_rx_buf, *prod_rx_buf; | 
 | 	struct rx_bd *cons_bd, *prod_bd; | 
 |  | 
 | 	cons_rx_buf = &bp->rx_buf_ring[cons]; | 
 | 	prod_rx_buf = &bp->rx_buf_ring[prod]; | 
 |  | 
 | 	pci_dma_sync_single_for_device(bp->pdev, | 
 | 		pci_unmap_addr(cons_rx_buf, mapping), | 
 | 		bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	bp->rx_prod_bseq += bp->rx_buf_use_size; | 
 |  | 
 | 	prod_rx_buf->skb = skb; | 
 |  | 
 | 	if (cons == prod) | 
 | 		return; | 
 |  | 
 | 	pci_unmap_addr_set(prod_rx_buf, mapping, | 
 | 			pci_unmap_addr(cons_rx_buf, mapping)); | 
 |  | 
 | 	cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; | 
 | 	prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; | 
 | 	prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; | 
 | 	prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_rx_int(struct bnx2 *bp, int budget) | 
 | { | 
 | 	struct status_block *sblk = bp->status_blk; | 
 | 	u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod; | 
 | 	struct l2_fhdr *rx_hdr; | 
 | 	int rx_pkt = 0; | 
 |  | 
 | 	hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0; | 
 | 	if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) { | 
 | 		hw_cons++; | 
 | 	} | 
 | 	sw_cons = bp->rx_cons; | 
 | 	sw_prod = bp->rx_prod; | 
 |  | 
 | 	/* Memory barrier necessary as speculative reads of the rx | 
 | 	 * buffer can be ahead of the index in the status block | 
 | 	 */ | 
 | 	rmb(); | 
 | 	while (sw_cons != hw_cons) { | 
 | 		unsigned int len; | 
 | 		u32 status; | 
 | 		struct sw_bd *rx_buf; | 
 | 		struct sk_buff *skb; | 
 | 		dma_addr_t dma_addr; | 
 |  | 
 | 		sw_ring_cons = RX_RING_IDX(sw_cons); | 
 | 		sw_ring_prod = RX_RING_IDX(sw_prod); | 
 |  | 
 | 		rx_buf = &bp->rx_buf_ring[sw_ring_cons]; | 
 | 		skb = rx_buf->skb; | 
 |  | 
 | 		rx_buf->skb = NULL; | 
 |  | 
 | 		dma_addr = pci_unmap_addr(rx_buf, mapping); | 
 |  | 
 | 		pci_dma_sync_single_for_cpu(bp->pdev, dma_addr, | 
 | 			bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 		rx_hdr = (struct l2_fhdr *) skb->data; | 
 | 		len = rx_hdr->l2_fhdr_pkt_len - 4; | 
 |  | 
 | 		if ((status = rx_hdr->l2_fhdr_status) & | 
 | 			(L2_FHDR_ERRORS_BAD_CRC | | 
 | 			L2_FHDR_ERRORS_PHY_DECODE | | 
 | 			L2_FHDR_ERRORS_ALIGNMENT | | 
 | 			L2_FHDR_ERRORS_TOO_SHORT | | 
 | 			L2_FHDR_ERRORS_GIANT_FRAME)) { | 
 |  | 
 | 			goto reuse_rx; | 
 | 		} | 
 |  | 
 | 		/* Since we don't have a jumbo ring, copy small packets | 
 | 		 * if mtu > 1500 | 
 | 		 */ | 
 | 		if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) { | 
 | 			struct sk_buff *new_skb; | 
 |  | 
 | 			new_skb = netdev_alloc_skb(bp->dev, len + 2); | 
 | 			if (new_skb == NULL) | 
 | 				goto reuse_rx; | 
 |  | 
 | 			/* aligned copy */ | 
 | 			memcpy(new_skb->data, | 
 | 				skb->data + bp->rx_offset - 2, | 
 | 				len + 2); | 
 |  | 
 | 			skb_reserve(new_skb, 2); | 
 | 			skb_put(new_skb, len); | 
 |  | 
 | 			bnx2_reuse_rx_skb(bp, skb, | 
 | 				sw_ring_cons, sw_ring_prod); | 
 |  | 
 | 			skb = new_skb; | 
 | 		} | 
 | 		else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) { | 
 | 			pci_unmap_single(bp->pdev, dma_addr, | 
 | 				bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			skb_reserve(skb, bp->rx_offset); | 
 | 			skb_put(skb, len); | 
 | 		} | 
 | 		else { | 
 | reuse_rx: | 
 | 			bnx2_reuse_rx_skb(bp, skb, | 
 | 				sw_ring_cons, sw_ring_prod); | 
 | 			goto next_rx; | 
 | 		} | 
 |  | 
 | 		skb->protocol = eth_type_trans(skb, bp->dev); | 
 |  | 
 | 		if ((len > (bp->dev->mtu + ETH_HLEN)) && | 
 | 			(ntohs(skb->protocol) != 0x8100)) { | 
 |  | 
 | 			dev_kfree_skb(skb); | 
 | 			goto next_rx; | 
 |  | 
 | 		} | 
 |  | 
 | 		skb->ip_summed = CHECKSUM_NONE; | 
 | 		if (bp->rx_csum && | 
 | 			(status & (L2_FHDR_STATUS_TCP_SEGMENT | | 
 | 			L2_FHDR_STATUS_UDP_DATAGRAM))) { | 
 |  | 
 | 			if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM | | 
 | 					      L2_FHDR_ERRORS_UDP_XSUM)) == 0)) | 
 | 				skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 		} | 
 |  | 
 | #ifdef BCM_VLAN | 
 | 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) { | 
 | 			vlan_hwaccel_receive_skb(skb, bp->vlgrp, | 
 | 				rx_hdr->l2_fhdr_vlan_tag); | 
 | 		} | 
 | 		else | 
 | #endif | 
 | 			netif_receive_skb(skb); | 
 |  | 
 | 		bp->dev->last_rx = jiffies; | 
 | 		rx_pkt++; | 
 |  | 
 | next_rx: | 
 | 		sw_cons = NEXT_RX_BD(sw_cons); | 
 | 		sw_prod = NEXT_RX_BD(sw_prod); | 
 |  | 
 | 		if ((rx_pkt == budget)) | 
 | 			break; | 
 |  | 
 | 		/* Refresh hw_cons to see if there is new work */ | 
 | 		if (sw_cons == hw_cons) { | 
 | 			hw_cons = bp->hw_rx_cons = | 
 | 				sblk->status_rx_quick_consumer_index0; | 
 | 			if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) | 
 | 				hw_cons++; | 
 | 			rmb(); | 
 | 		} | 
 | 	} | 
 | 	bp->rx_cons = sw_cons; | 
 | 	bp->rx_prod = sw_prod; | 
 |  | 
 | 	REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod); | 
 |  | 
 | 	REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); | 
 |  | 
 | 	mmiowb(); | 
 |  | 
 | 	return rx_pkt; | 
 |  | 
 | } | 
 |  | 
 | /* MSI ISR - The only difference between this and the INTx ISR | 
 |  * is that the MSI interrupt is always serviced. | 
 |  */ | 
 | static irqreturn_t | 
 | bnx2_msi(int irq, void *dev_instance) | 
 | { | 
 | 	struct net_device *dev = dev_instance; | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	prefetch(bp->status_blk); | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 		BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | | 
 | 		BNX2_PCICFG_INT_ACK_CMD_MASK_INT); | 
 |  | 
 | 	/* Return here if interrupt is disabled. */ | 
 | 	if (unlikely(atomic_read(&bp->intr_sem) != 0)) | 
 | 		return IRQ_HANDLED; | 
 |  | 
 | 	netif_rx_schedule(dev); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static irqreturn_t | 
 | bnx2_interrupt(int irq, void *dev_instance) | 
 | { | 
 | 	struct net_device *dev = dev_instance; | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	/* When using INTx, it is possible for the interrupt to arrive | 
 | 	 * at the CPU before the status block posted prior to the | 
 | 	 * interrupt. Reading a register will flush the status block. | 
 | 	 * When using MSI, the MSI message will always complete after | 
 | 	 * the status block write. | 
 | 	 */ | 
 | 	if ((bp->status_blk->status_idx == bp->last_status_idx) && | 
 | 	    (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) & | 
 | 	     BNX2_PCICFG_MISC_STATUS_INTA_VALUE)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 		BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | | 
 | 		BNX2_PCICFG_INT_ACK_CMD_MASK_INT); | 
 |  | 
 | 	/* Return here if interrupt is shared and is disabled. */ | 
 | 	if (unlikely(atomic_read(&bp->intr_sem) != 0)) | 
 | 		return IRQ_HANDLED; | 
 |  | 
 | 	netif_rx_schedule(dev); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static inline int | 
 | bnx2_has_work(struct bnx2 *bp) | 
 | { | 
 | 	struct status_block *sblk = bp->status_blk; | 
 |  | 
 | 	if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) || | 
 | 	    (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)) | 
 | 		return 1; | 
 |  | 
 | 	if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) != | 
 | 	    bp->link_up) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_poll(struct net_device *dev, int *budget) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if ((bp->status_blk->status_attn_bits & | 
 | 		STATUS_ATTN_BITS_LINK_STATE) != | 
 | 		(bp->status_blk->status_attn_bits_ack & | 
 | 		STATUS_ATTN_BITS_LINK_STATE)) { | 
 |  | 
 | 		spin_lock(&bp->phy_lock); | 
 | 		bnx2_phy_int(bp); | 
 | 		spin_unlock(&bp->phy_lock); | 
 |  | 
 | 		/* This is needed to take care of transient status | 
 | 		 * during link changes. | 
 | 		 */ | 
 | 		REG_WR(bp, BNX2_HC_COMMAND, | 
 | 		       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); | 
 | 		REG_RD(bp, BNX2_HC_COMMAND); | 
 | 	} | 
 |  | 
 | 	if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons) | 
 | 		bnx2_tx_int(bp); | 
 |  | 
 | 	if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) { | 
 | 		int orig_budget = *budget; | 
 | 		int work_done; | 
 |  | 
 | 		if (orig_budget > dev->quota) | 
 | 			orig_budget = dev->quota; | 
 |  | 
 | 		work_done = bnx2_rx_int(bp, orig_budget); | 
 | 		*budget -= work_done; | 
 | 		dev->quota -= work_done; | 
 | 	} | 
 |  | 
 | 	bp->last_status_idx = bp->status_blk->status_idx; | 
 | 	rmb(); | 
 |  | 
 | 	if (!bnx2_has_work(bp)) { | 
 | 		netif_rx_complete(dev); | 
 | 		if (likely(bp->flags & USING_MSI_FLAG)) { | 
 | 			REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 			       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | | 
 | 			       bp->last_status_idx); | 
 | 			return 0; | 
 | 		} | 
 | 		REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 		       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | | 
 | 		       BNX2_PCICFG_INT_ACK_CMD_MASK_INT | | 
 | 		       bp->last_status_idx); | 
 |  | 
 | 		REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, | 
 | 		       BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | | 
 | 		       bp->last_status_idx); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Called with rtnl_lock from vlan functions and also netif_tx_lock | 
 |  * from set_multicast. | 
 |  */ | 
 | static void | 
 | bnx2_set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u32 rx_mode, sort_mode; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 |  | 
 | 	rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS | | 
 | 				  BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG); | 
 | 	sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN; | 
 | #ifdef BCM_VLAN | 
 | 	if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG)) | 
 | 		rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; | 
 | #else | 
 | 	if (!(bp->flags & ASF_ENABLE_FLAG)) | 
 | 		rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; | 
 | #endif | 
 | 	if (dev->flags & IFF_PROMISC) { | 
 | 		/* Promiscuous mode. */ | 
 | 		rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS; | 
 | 		sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN; | 
 | 	} | 
 | 	else if (dev->flags & IFF_ALLMULTI) { | 
 | 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { | 
 | 			REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), | 
 | 			       0xffffffff); | 
 |         	} | 
 | 		sort_mode |= BNX2_RPM_SORT_USER0_MC_EN; | 
 | 	} | 
 | 	else { | 
 | 		/* Accept one or more multicast(s). */ | 
 | 		struct dev_mc_list *mclist; | 
 | 		u32 mc_filter[NUM_MC_HASH_REGISTERS]; | 
 | 		u32 regidx; | 
 | 		u32 bit; | 
 | 		u32 crc; | 
 |  | 
 | 		memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS); | 
 |  | 
 | 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
 | 		     i++, mclist = mclist->next) { | 
 |  | 
 | 			crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr); | 
 | 			bit = crc & 0xff; | 
 | 			regidx = (bit & 0xe0) >> 5; | 
 | 			bit &= 0x1f; | 
 | 			mc_filter[regidx] |= (1 << bit); | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { | 
 | 			REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), | 
 | 			       mc_filter[i]); | 
 | 		} | 
 |  | 
 | 		sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN; | 
 | 	} | 
 |  | 
 | 	if (rx_mode != bp->rx_mode) { | 
 | 		bp->rx_mode = rx_mode; | 
 | 		REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode); | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); | 
 | 	REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode); | 
 | 	REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA); | 
 |  | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 | } | 
 |  | 
 | #define FW_BUF_SIZE	0x8000 | 
 |  | 
 | static int | 
 | bnx2_gunzip_init(struct bnx2 *bp) | 
 | { | 
 | 	if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL) | 
 | 		goto gunzip_nomem1; | 
 |  | 
 | 	if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL) | 
 | 		goto gunzip_nomem2; | 
 |  | 
 | 	bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL); | 
 | 	if (bp->strm->workspace == NULL) | 
 | 		goto gunzip_nomem3; | 
 |  | 
 | 	return 0; | 
 |  | 
 | gunzip_nomem3: | 
 | 	kfree(bp->strm); | 
 | 	bp->strm = NULL; | 
 |  | 
 | gunzip_nomem2: | 
 | 	vfree(bp->gunzip_buf); | 
 | 	bp->gunzip_buf = NULL; | 
 |  | 
 | gunzip_nomem1: | 
 | 	printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for " | 
 | 			    "uncompression.\n", bp->dev->name); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_gunzip_end(struct bnx2 *bp) | 
 | { | 
 | 	kfree(bp->strm->workspace); | 
 |  | 
 | 	kfree(bp->strm); | 
 | 	bp->strm = NULL; | 
 |  | 
 | 	if (bp->gunzip_buf) { | 
 | 		vfree(bp->gunzip_buf); | 
 | 		bp->gunzip_buf = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen) | 
 | { | 
 | 	int n, rc; | 
 |  | 
 | 	/* check gzip header */ | 
 | 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	n = 10; | 
 |  | 
 | #define FNAME	0x8 | 
 | 	if (zbuf[3] & FNAME) | 
 | 		while ((zbuf[n++] != 0) && (n < len)); | 
 |  | 
 | 	bp->strm->next_in = zbuf + n; | 
 | 	bp->strm->avail_in = len - n; | 
 | 	bp->strm->next_out = bp->gunzip_buf; | 
 | 	bp->strm->avail_out = FW_BUF_SIZE; | 
 |  | 
 | 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); | 
 | 	if (rc != Z_OK) | 
 | 		return rc; | 
 |  | 
 | 	rc = zlib_inflate(bp->strm, Z_FINISH); | 
 |  | 
 | 	*outlen = FW_BUF_SIZE - bp->strm->avail_out; | 
 | 	*outbuf = bp->gunzip_buf; | 
 |  | 
 | 	if ((rc != Z_OK) && (rc != Z_STREAM_END)) | 
 | 		printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n", | 
 | 		       bp->dev->name, bp->strm->msg); | 
 |  | 
 | 	zlib_inflateEnd(bp->strm); | 
 |  | 
 | 	if (rc == Z_STREAM_END) | 
 | 		return 0; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void | 
 | load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len, | 
 | 	u32 rv2p_proc) | 
 | { | 
 | 	int i; | 
 | 	u32 val; | 
 |  | 
 |  | 
 | 	for (i = 0; i < rv2p_code_len; i += 8) { | 
 | 		REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code)); | 
 | 		rv2p_code++; | 
 | 		REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code)); | 
 | 		rv2p_code++; | 
 |  | 
 | 		if (rv2p_proc == RV2P_PROC1) { | 
 | 			val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR; | 
 | 			REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val); | 
 | 		} | 
 | 		else { | 
 | 			val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR; | 
 | 			REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reset the processor, un-stall is done later. */ | 
 | 	if (rv2p_proc == RV2P_PROC1) { | 
 | 		REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET); | 
 | 	} | 
 | 	else { | 
 | 		REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw) | 
 | { | 
 | 	u32 offset; | 
 | 	u32 val; | 
 |  | 
 | 	/* Halt the CPU. */ | 
 | 	val = REG_RD_IND(bp, cpu_reg->mode); | 
 | 	val |= cpu_reg->mode_value_halt; | 
 | 	REG_WR_IND(bp, cpu_reg->mode, val); | 
 | 	REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); | 
 |  | 
 | 	/* Load the Text area. */ | 
 | 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); | 
 | 	if (fw->text) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { | 
 | 			REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j])); | 
 | 	        } | 
 | 	} | 
 |  | 
 | 	/* Load the Data area. */ | 
 | 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); | 
 | 	if (fw->data) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { | 
 | 			REG_WR_IND(bp, offset, fw->data[j]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Load the SBSS area. */ | 
 | 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); | 
 | 	if (fw->sbss) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { | 
 | 			REG_WR_IND(bp, offset, fw->sbss[j]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Load the BSS area. */ | 
 | 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); | 
 | 	if (fw->bss) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { | 
 | 			REG_WR_IND(bp, offset, fw->bss[j]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Load the Read-Only area. */ | 
 | 	offset = cpu_reg->spad_base + | 
 | 		(fw->rodata_addr - cpu_reg->mips_view_base); | 
 | 	if (fw->rodata) { | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { | 
 | 			REG_WR_IND(bp, offset, fw->rodata[j]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Clear the pre-fetch instruction. */ | 
 | 	REG_WR_IND(bp, cpu_reg->inst, 0); | 
 | 	REG_WR_IND(bp, cpu_reg->pc, fw->start_addr); | 
 |  | 
 | 	/* Start the CPU. */ | 
 | 	val = REG_RD_IND(bp, cpu_reg->mode); | 
 | 	val &= ~cpu_reg->mode_value_halt; | 
 | 	REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); | 
 | 	REG_WR_IND(bp, cpu_reg->mode, val); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_cpus(struct bnx2 *bp) | 
 | { | 
 | 	struct cpu_reg cpu_reg; | 
 | 	struct fw_info fw; | 
 | 	int rc = 0; | 
 | 	void *text; | 
 | 	u32 text_len; | 
 |  | 
 | 	if ((rc = bnx2_gunzip_init(bp)) != 0) | 
 | 		return rc; | 
 |  | 
 | 	/* Initialize the RV2P processor. */ | 
 | 	rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text, | 
 | 			 &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	load_rv2p_fw(bp, text, text_len, RV2P_PROC1); | 
 |  | 
 | 	rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text, | 
 | 			 &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	load_rv2p_fw(bp, text, text_len, RV2P_PROC2); | 
 |  | 
 | 	/* Initialize the RX Processor. */ | 
 | 	cpu_reg.mode = BNX2_RXP_CPU_MODE; | 
 | 	cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT; | 
 | 	cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA; | 
 | 	cpu_reg.state = BNX2_RXP_CPU_STATE; | 
 | 	cpu_reg.state_value_clear = 0xffffff; | 
 | 	cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE; | 
 | 	cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK; | 
 | 	cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER; | 
 | 	cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION; | 
 | 	cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT; | 
 | 	cpu_reg.spad_base = BNX2_RXP_SCRATCH; | 
 | 	cpu_reg.mips_view_base = 0x8000000; | 
 |  | 
 | 	fw.ver_major = bnx2_RXP_b06FwReleaseMajor; | 
 | 	fw.ver_minor = bnx2_RXP_b06FwReleaseMinor; | 
 | 	fw.ver_fix = bnx2_RXP_b06FwReleaseFix; | 
 | 	fw.start_addr = bnx2_RXP_b06FwStartAddr; | 
 |  | 
 | 	fw.text_addr = bnx2_RXP_b06FwTextAddr; | 
 | 	fw.text_len = bnx2_RXP_b06FwTextLen; | 
 | 	fw.text_index = 0; | 
 |  | 
 | 	rc = bnx2_gunzip(bp, bnx2_RXP_b06FwText, sizeof(bnx2_RXP_b06FwText), | 
 | 			 &text, &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	fw.text = text; | 
 |  | 
 | 	fw.data_addr = bnx2_RXP_b06FwDataAddr; | 
 | 	fw.data_len = bnx2_RXP_b06FwDataLen; | 
 | 	fw.data_index = 0; | 
 | 	fw.data = bnx2_RXP_b06FwData; | 
 |  | 
 | 	fw.sbss_addr = bnx2_RXP_b06FwSbssAddr; | 
 | 	fw.sbss_len = bnx2_RXP_b06FwSbssLen; | 
 | 	fw.sbss_index = 0; | 
 | 	fw.sbss = bnx2_RXP_b06FwSbss; | 
 |  | 
 | 	fw.bss_addr = bnx2_RXP_b06FwBssAddr; | 
 | 	fw.bss_len = bnx2_RXP_b06FwBssLen; | 
 | 	fw.bss_index = 0; | 
 | 	fw.bss = bnx2_RXP_b06FwBss; | 
 |  | 
 | 	fw.rodata_addr = bnx2_RXP_b06FwRodataAddr; | 
 | 	fw.rodata_len = bnx2_RXP_b06FwRodataLen; | 
 | 	fw.rodata_index = 0; | 
 | 	fw.rodata = bnx2_RXP_b06FwRodata; | 
 |  | 
 | 	load_cpu_fw(bp, &cpu_reg, &fw); | 
 |  | 
 | 	/* Initialize the TX Processor. */ | 
 | 	cpu_reg.mode = BNX2_TXP_CPU_MODE; | 
 | 	cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT; | 
 | 	cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA; | 
 | 	cpu_reg.state = BNX2_TXP_CPU_STATE; | 
 | 	cpu_reg.state_value_clear = 0xffffff; | 
 | 	cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE; | 
 | 	cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK; | 
 | 	cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER; | 
 | 	cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION; | 
 | 	cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT; | 
 | 	cpu_reg.spad_base = BNX2_TXP_SCRATCH; | 
 | 	cpu_reg.mips_view_base = 0x8000000; | 
 |  | 
 | 	fw.ver_major = bnx2_TXP_b06FwReleaseMajor; | 
 | 	fw.ver_minor = bnx2_TXP_b06FwReleaseMinor; | 
 | 	fw.ver_fix = bnx2_TXP_b06FwReleaseFix; | 
 | 	fw.start_addr = bnx2_TXP_b06FwStartAddr; | 
 |  | 
 | 	fw.text_addr = bnx2_TXP_b06FwTextAddr; | 
 | 	fw.text_len = bnx2_TXP_b06FwTextLen; | 
 | 	fw.text_index = 0; | 
 |  | 
 | 	rc = bnx2_gunzip(bp, bnx2_TXP_b06FwText, sizeof(bnx2_TXP_b06FwText), | 
 | 			 &text, &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	fw.text = text; | 
 |  | 
 | 	fw.data_addr = bnx2_TXP_b06FwDataAddr; | 
 | 	fw.data_len = bnx2_TXP_b06FwDataLen; | 
 | 	fw.data_index = 0; | 
 | 	fw.data = bnx2_TXP_b06FwData; | 
 |  | 
 | 	fw.sbss_addr = bnx2_TXP_b06FwSbssAddr; | 
 | 	fw.sbss_len = bnx2_TXP_b06FwSbssLen; | 
 | 	fw.sbss_index = 0; | 
 | 	fw.sbss = bnx2_TXP_b06FwSbss; | 
 |  | 
 | 	fw.bss_addr = bnx2_TXP_b06FwBssAddr; | 
 | 	fw.bss_len = bnx2_TXP_b06FwBssLen; | 
 | 	fw.bss_index = 0; | 
 | 	fw.bss = bnx2_TXP_b06FwBss; | 
 |  | 
 | 	fw.rodata_addr = bnx2_TXP_b06FwRodataAddr; | 
 | 	fw.rodata_len = bnx2_TXP_b06FwRodataLen; | 
 | 	fw.rodata_index = 0; | 
 | 	fw.rodata = bnx2_TXP_b06FwRodata; | 
 |  | 
 | 	load_cpu_fw(bp, &cpu_reg, &fw); | 
 |  | 
 | 	/* Initialize the TX Patch-up Processor. */ | 
 | 	cpu_reg.mode = BNX2_TPAT_CPU_MODE; | 
 | 	cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT; | 
 | 	cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA; | 
 | 	cpu_reg.state = BNX2_TPAT_CPU_STATE; | 
 | 	cpu_reg.state_value_clear = 0xffffff; | 
 | 	cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE; | 
 | 	cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK; | 
 | 	cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER; | 
 | 	cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION; | 
 | 	cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT; | 
 | 	cpu_reg.spad_base = BNX2_TPAT_SCRATCH; | 
 | 	cpu_reg.mips_view_base = 0x8000000; | 
 |  | 
 | 	fw.ver_major = bnx2_TPAT_b06FwReleaseMajor; | 
 | 	fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor; | 
 | 	fw.ver_fix = bnx2_TPAT_b06FwReleaseFix; | 
 | 	fw.start_addr = bnx2_TPAT_b06FwStartAddr; | 
 |  | 
 | 	fw.text_addr = bnx2_TPAT_b06FwTextAddr; | 
 | 	fw.text_len = bnx2_TPAT_b06FwTextLen; | 
 | 	fw.text_index = 0; | 
 |  | 
 | 	rc = bnx2_gunzip(bp, bnx2_TPAT_b06FwText, sizeof(bnx2_TPAT_b06FwText), | 
 | 			 &text, &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	fw.text = text; | 
 |  | 
 | 	fw.data_addr = bnx2_TPAT_b06FwDataAddr; | 
 | 	fw.data_len = bnx2_TPAT_b06FwDataLen; | 
 | 	fw.data_index = 0; | 
 | 	fw.data = bnx2_TPAT_b06FwData; | 
 |  | 
 | 	fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr; | 
 | 	fw.sbss_len = bnx2_TPAT_b06FwSbssLen; | 
 | 	fw.sbss_index = 0; | 
 | 	fw.sbss = bnx2_TPAT_b06FwSbss; | 
 |  | 
 | 	fw.bss_addr = bnx2_TPAT_b06FwBssAddr; | 
 | 	fw.bss_len = bnx2_TPAT_b06FwBssLen; | 
 | 	fw.bss_index = 0; | 
 | 	fw.bss = bnx2_TPAT_b06FwBss; | 
 |  | 
 | 	fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr; | 
 | 	fw.rodata_len = bnx2_TPAT_b06FwRodataLen; | 
 | 	fw.rodata_index = 0; | 
 | 	fw.rodata = bnx2_TPAT_b06FwRodata; | 
 |  | 
 | 	load_cpu_fw(bp, &cpu_reg, &fw); | 
 |  | 
 | 	/* Initialize the Completion Processor. */ | 
 | 	cpu_reg.mode = BNX2_COM_CPU_MODE; | 
 | 	cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT; | 
 | 	cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA; | 
 | 	cpu_reg.state = BNX2_COM_CPU_STATE; | 
 | 	cpu_reg.state_value_clear = 0xffffff; | 
 | 	cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE; | 
 | 	cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK; | 
 | 	cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER; | 
 | 	cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION; | 
 | 	cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT; | 
 | 	cpu_reg.spad_base = BNX2_COM_SCRATCH; | 
 | 	cpu_reg.mips_view_base = 0x8000000; | 
 |  | 
 | 	fw.ver_major = bnx2_COM_b06FwReleaseMajor; | 
 | 	fw.ver_minor = bnx2_COM_b06FwReleaseMinor; | 
 | 	fw.ver_fix = bnx2_COM_b06FwReleaseFix; | 
 | 	fw.start_addr = bnx2_COM_b06FwStartAddr; | 
 |  | 
 | 	fw.text_addr = bnx2_COM_b06FwTextAddr; | 
 | 	fw.text_len = bnx2_COM_b06FwTextLen; | 
 | 	fw.text_index = 0; | 
 |  | 
 | 	rc = bnx2_gunzip(bp, bnx2_COM_b06FwText, sizeof(bnx2_COM_b06FwText), | 
 | 			 &text, &text_len); | 
 | 	if (rc) | 
 | 		goto init_cpu_err; | 
 |  | 
 | 	fw.text = text; | 
 |  | 
 | 	fw.data_addr = bnx2_COM_b06FwDataAddr; | 
 | 	fw.data_len = bnx2_COM_b06FwDataLen; | 
 | 	fw.data_index = 0; | 
 | 	fw.data = bnx2_COM_b06FwData; | 
 |  | 
 | 	fw.sbss_addr = bnx2_COM_b06FwSbssAddr; | 
 | 	fw.sbss_len = bnx2_COM_b06FwSbssLen; | 
 | 	fw.sbss_index = 0; | 
 | 	fw.sbss = bnx2_COM_b06FwSbss; | 
 |  | 
 | 	fw.bss_addr = bnx2_COM_b06FwBssAddr; | 
 | 	fw.bss_len = bnx2_COM_b06FwBssLen; | 
 | 	fw.bss_index = 0; | 
 | 	fw.bss = bnx2_COM_b06FwBss; | 
 |  | 
 | 	fw.rodata_addr = bnx2_COM_b06FwRodataAddr; | 
 | 	fw.rodata_len = bnx2_COM_b06FwRodataLen; | 
 | 	fw.rodata_index = 0; | 
 | 	fw.rodata = bnx2_COM_b06FwRodata; | 
 |  | 
 | 	load_cpu_fw(bp, &cpu_reg, &fw); | 
 |  | 
 | init_cpu_err: | 
 | 	bnx2_gunzip_end(bp); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_power_state(struct bnx2 *bp, pci_power_t state) | 
 | { | 
 | 	u16 pmcsr; | 
 |  | 
 | 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); | 
 |  | 
 | 	switch (state) { | 
 | 	case PCI_D0: { | 
 | 		u32 val; | 
 |  | 
 | 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
 | 			(pmcsr & ~PCI_PM_CTRL_STATE_MASK) | | 
 | 			PCI_PM_CTRL_PME_STATUS); | 
 |  | 
 | 		if (pmcsr & PCI_PM_CTRL_STATE_MASK) | 
 | 			/* delay required during transition out of D3hot */ | 
 | 			msleep(20); | 
 |  | 
 | 		val = REG_RD(bp, BNX2_EMAC_MODE); | 
 | 		val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD; | 
 | 		val &= ~BNX2_EMAC_MODE_MPKT; | 
 | 		REG_WR(bp, BNX2_EMAC_MODE, val); | 
 |  | 
 | 		val = REG_RD(bp, BNX2_RPM_CONFIG); | 
 | 		val &= ~BNX2_RPM_CONFIG_ACPI_ENA; | 
 | 		REG_WR(bp, BNX2_RPM_CONFIG, val); | 
 | 		break; | 
 | 	} | 
 | 	case PCI_D3hot: { | 
 | 		int i; | 
 | 		u32 val, wol_msg; | 
 |  | 
 | 		if (bp->wol) { | 
 | 			u32 advertising; | 
 | 			u8 autoneg; | 
 |  | 
 | 			autoneg = bp->autoneg; | 
 | 			advertising = bp->advertising; | 
 |  | 
 | 			bp->autoneg = AUTONEG_SPEED; | 
 | 			bp->advertising = ADVERTISED_10baseT_Half | | 
 | 				ADVERTISED_10baseT_Full | | 
 | 				ADVERTISED_100baseT_Half | | 
 | 				ADVERTISED_100baseT_Full | | 
 | 				ADVERTISED_Autoneg; | 
 |  | 
 | 			bnx2_setup_copper_phy(bp); | 
 |  | 
 | 			bp->autoneg = autoneg; | 
 | 			bp->advertising = advertising; | 
 |  | 
 | 			bnx2_set_mac_addr(bp); | 
 |  | 
 | 			val = REG_RD(bp, BNX2_EMAC_MODE); | 
 |  | 
 | 			/* Enable port mode. */ | 
 | 			val &= ~BNX2_EMAC_MODE_PORT; | 
 | 			val |= BNX2_EMAC_MODE_PORT_MII | | 
 | 			       BNX2_EMAC_MODE_MPKT_RCVD | | 
 | 			       BNX2_EMAC_MODE_ACPI_RCVD | | 
 | 			       BNX2_EMAC_MODE_MPKT; | 
 |  | 
 | 			REG_WR(bp, BNX2_EMAC_MODE, val); | 
 |  | 
 | 			/* receive all multicast */ | 
 | 			for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { | 
 | 				REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), | 
 | 				       0xffffffff); | 
 | 			} | 
 | 			REG_WR(bp, BNX2_EMAC_RX_MODE, | 
 | 			       BNX2_EMAC_RX_MODE_SORT_MODE); | 
 |  | 
 | 			val = 1 | BNX2_RPM_SORT_USER0_BC_EN | | 
 | 			      BNX2_RPM_SORT_USER0_MC_EN; | 
 | 			REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); | 
 | 			REG_WR(bp, BNX2_RPM_SORT_USER0, val); | 
 | 			REG_WR(bp, BNX2_RPM_SORT_USER0, val | | 
 | 			       BNX2_RPM_SORT_USER0_ENA); | 
 |  | 
 | 			/* Need to enable EMAC and RPM for WOL. */ | 
 | 			REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, | 
 | 			       BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE | | 
 | 			       BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE | | 
 | 			       BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE); | 
 |  | 
 | 			val = REG_RD(bp, BNX2_RPM_CONFIG); | 
 | 			val &= ~BNX2_RPM_CONFIG_ACPI_ENA; | 
 | 			REG_WR(bp, BNX2_RPM_CONFIG, val); | 
 |  | 
 | 			wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL; | 
 | 		} | 
 | 		else { | 
 | 			wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; | 
 | 		} | 
 |  | 
 | 		if (!(bp->flags & NO_WOL_FLAG)) | 
 | 			bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0); | 
 |  | 
 | 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 		if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || | 
 | 		    (CHIP_ID(bp) == CHIP_ID_5706_A1)) { | 
 |  | 
 | 			if (bp->wol) | 
 | 				pmcsr |= 3; | 
 | 		} | 
 | 		else { | 
 | 			pmcsr |= 3; | 
 | 		} | 
 | 		if (bp->wol) { | 
 | 			pmcsr |= PCI_PM_CTRL_PME_ENABLE; | 
 | 		} | 
 | 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
 | 				      pmcsr); | 
 |  | 
 | 		/* No more memory access after this point until | 
 | 		 * device is brought back to D0. | 
 | 		 */ | 
 | 		udelay(50); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_acquire_nvram_lock(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 | 	int j; | 
 |  | 
 | 	/* Request access to the flash interface. */ | 
 | 	REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2); | 
 | 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 		val = REG_RD(bp, BNX2_NVM_SW_ARB); | 
 | 		if (val & BNX2_NVM_SW_ARB_ARB_ARB2) | 
 | 			break; | 
 |  | 
 | 		udelay(5); | 
 | 	} | 
 |  | 
 | 	if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_release_nvram_lock(struct bnx2 *bp) | 
 | { | 
 | 	int j; | 
 | 	u32 val; | 
 |  | 
 | 	/* Relinquish nvram interface. */ | 
 | 	REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2); | 
 |  | 
 | 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 		val = REG_RD(bp, BNX2_NVM_SW_ARB); | 
 | 		if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2)) | 
 | 			break; | 
 |  | 
 | 		udelay(5); | 
 | 	} | 
 |  | 
 | 	if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | bnx2_enable_nvram_write(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = REG_RD(bp, BNX2_MISC_CFG); | 
 | 	REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI); | 
 |  | 
 | 	if (!bp->flash_info->buffered) { | 
 | 		int j; | 
 |  | 
 | 		REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); | 
 | 		REG_WR(bp, BNX2_NVM_COMMAND, | 
 | 		       BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT); | 
 |  | 
 | 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 			udelay(5); | 
 |  | 
 | 			val = REG_RD(bp, BNX2_NVM_COMMAND); | 
 | 			if (val & BNX2_NVM_COMMAND_DONE) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 			return -EBUSY; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_disable_nvram_write(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = REG_RD(bp, BNX2_MISC_CFG); | 
 | 	REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | bnx2_enable_nvram_access(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); | 
 | 	/* Enable both bits, even on read. */ | 
 | 	REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, | 
 | 	       val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_disable_nvram_access(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); | 
 | 	/* Disable both bits, even after read. */ | 
 | 	REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, | 
 | 		val & ~(BNX2_NVM_ACCESS_ENABLE_EN | | 
 | 			BNX2_NVM_ACCESS_ENABLE_WR_EN)); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset) | 
 | { | 
 | 	u32 cmd; | 
 | 	int j; | 
 |  | 
 | 	if (bp->flash_info->buffered) | 
 | 		/* Buffered flash, no erase needed */ | 
 | 		return 0; | 
 |  | 
 | 	/* Build an erase command */ | 
 | 	cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR | | 
 | 	      BNX2_NVM_COMMAND_DOIT; | 
 |  | 
 | 	/* Need to clear DONE bit separately. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); | 
 |  | 
 | 	/* Address of the NVRAM to read from. */ | 
 | 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); | 
 |  | 
 | 	/* Issue an erase command. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, cmd); | 
 |  | 
 | 	/* Wait for completion. */ | 
 | 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 		u32 val; | 
 |  | 
 | 		udelay(5); | 
 |  | 
 | 		val = REG_RD(bp, BNX2_NVM_COMMAND); | 
 | 		if (val & BNX2_NVM_COMMAND_DONE) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags) | 
 | { | 
 | 	u32 cmd; | 
 | 	int j; | 
 |  | 
 | 	/* Build the command word. */ | 
 | 	cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags; | 
 |  | 
 | 	/* Calculate an offset of a buffered flash. */ | 
 | 	if (bp->flash_info->buffered) { | 
 | 		offset = ((offset / bp->flash_info->page_size) << | 
 | 			   bp->flash_info->page_bits) + | 
 | 			  (offset % bp->flash_info->page_size); | 
 | 	} | 
 |  | 
 | 	/* Need to clear DONE bit separately. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); | 
 |  | 
 | 	/* Address of the NVRAM to read from. */ | 
 | 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); | 
 |  | 
 | 	/* Issue a read command. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, cmd); | 
 |  | 
 | 	/* Wait for completion. */ | 
 | 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 		u32 val; | 
 |  | 
 | 		udelay(5); | 
 |  | 
 | 		val = REG_RD(bp, BNX2_NVM_COMMAND); | 
 | 		if (val & BNX2_NVM_COMMAND_DONE) { | 
 | 			val = REG_RD(bp, BNX2_NVM_READ); | 
 |  | 
 | 			val = be32_to_cpu(val); | 
 | 			memcpy(ret_val, &val, 4); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags) | 
 | { | 
 | 	u32 cmd, val32; | 
 | 	int j; | 
 |  | 
 | 	/* Build the command word. */ | 
 | 	cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags; | 
 |  | 
 | 	/* Calculate an offset of a buffered flash. */ | 
 | 	if (bp->flash_info->buffered) { | 
 | 		offset = ((offset / bp->flash_info->page_size) << | 
 | 			  bp->flash_info->page_bits) + | 
 | 			 (offset % bp->flash_info->page_size); | 
 | 	} | 
 |  | 
 | 	/* Need to clear DONE bit separately. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); | 
 |  | 
 | 	memcpy(&val32, val, 4); | 
 | 	val32 = cpu_to_be32(val32); | 
 |  | 
 | 	/* Write the data. */ | 
 | 	REG_WR(bp, BNX2_NVM_WRITE, val32); | 
 |  | 
 | 	/* Address of the NVRAM to write to. */ | 
 | 	REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); | 
 |  | 
 | 	/* Issue the write command. */ | 
 | 	REG_WR(bp, BNX2_NVM_COMMAND, cmd); | 
 |  | 
 | 	/* Wait for completion. */ | 
 | 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { | 
 | 		udelay(5); | 
 |  | 
 | 		if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE) | 
 | 			break; | 
 | 	} | 
 | 	if (j >= NVRAM_TIMEOUT_COUNT) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_nvram(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 | 	int j, entry_count, rc; | 
 | 	struct flash_spec *flash; | 
 |  | 
 | 	/* Determine the selected interface. */ | 
 | 	val = REG_RD(bp, BNX2_NVM_CFG1); | 
 |  | 
 | 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec); | 
 |  | 
 | 	rc = 0; | 
 | 	if (val & 0x40000000) { | 
 |  | 
 | 		/* Flash interface has been reconfigured */ | 
 | 		for (j = 0, flash = &flash_table[0]; j < entry_count; | 
 | 		     j++, flash++) { | 
 | 			if ((val & FLASH_BACKUP_STRAP_MASK) == | 
 | 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { | 
 | 				bp->flash_info = flash; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		u32 mask; | 
 | 		/* Not yet been reconfigured */ | 
 |  | 
 | 		if (val & (1 << 23)) | 
 | 			mask = FLASH_BACKUP_STRAP_MASK; | 
 | 		else | 
 | 			mask = FLASH_STRAP_MASK; | 
 |  | 
 | 		for (j = 0, flash = &flash_table[0]; j < entry_count; | 
 | 			j++, flash++) { | 
 |  | 
 | 			if ((val & mask) == (flash->strapping & mask)) { | 
 | 				bp->flash_info = flash; | 
 |  | 
 | 				/* Request access to the flash interface. */ | 
 | 				if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) | 
 | 					return rc; | 
 |  | 
 | 				/* Enable access to flash interface */ | 
 | 				bnx2_enable_nvram_access(bp); | 
 |  | 
 | 				/* Reconfigure the flash interface */ | 
 | 				REG_WR(bp, BNX2_NVM_CFG1, flash->config1); | 
 | 				REG_WR(bp, BNX2_NVM_CFG2, flash->config2); | 
 | 				REG_WR(bp, BNX2_NVM_CFG3, flash->config3); | 
 | 				REG_WR(bp, BNX2_NVM_WRITE1, flash->write1); | 
 |  | 
 | 				/* Disable access to flash interface */ | 
 | 				bnx2_disable_nvram_access(bp); | 
 | 				bnx2_release_nvram_lock(bp); | 
 |  | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} /* if (val & 0x40000000) */ | 
 |  | 
 | 	if (j == entry_count) { | 
 | 		bp->flash_info = NULL; | 
 | 		printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2); | 
 | 	val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK; | 
 | 	if (val) | 
 | 		bp->flash_size = val; | 
 | 	else | 
 | 		bp->flash_size = bp->flash_info->total_size; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf, | 
 | 		int buf_size) | 
 | { | 
 | 	int rc = 0; | 
 | 	u32 cmd_flags, offset32, len32, extra; | 
 |  | 
 | 	if (buf_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Request access to the flash interface. */ | 
 | 	if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) | 
 | 		return rc; | 
 |  | 
 | 	/* Enable access to flash interface */ | 
 | 	bnx2_enable_nvram_access(bp); | 
 |  | 
 | 	len32 = buf_size; | 
 | 	offset32 = offset; | 
 | 	extra = 0; | 
 |  | 
 | 	cmd_flags = 0; | 
 |  | 
 | 	if (offset32 & 3) { | 
 | 		u8 buf[4]; | 
 | 		u32 pre_len; | 
 |  | 
 | 		offset32 &= ~3; | 
 | 		pre_len = 4 - (offset & 3); | 
 |  | 
 | 		if (pre_len >= len32) { | 
 | 			pre_len = len32; | 
 | 			cmd_flags = BNX2_NVM_COMMAND_FIRST | | 
 | 				    BNX2_NVM_COMMAND_LAST; | 
 | 		} | 
 | 		else { | 
 | 			cmd_flags = BNX2_NVM_COMMAND_FIRST; | 
 | 		} | 
 |  | 
 | 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); | 
 |  | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		memcpy(ret_buf, buf + (offset & 3), pre_len); | 
 |  | 
 | 		offset32 += 4; | 
 | 		ret_buf += pre_len; | 
 | 		len32 -= pre_len; | 
 | 	} | 
 | 	if (len32 & 3) { | 
 | 		extra = 4 - (len32 & 3); | 
 | 		len32 = (len32 + 4) & ~3; | 
 | 	} | 
 |  | 
 | 	if (len32 == 4) { | 
 | 		u8 buf[4]; | 
 |  | 
 | 		if (cmd_flags) | 
 | 			cmd_flags = BNX2_NVM_COMMAND_LAST; | 
 | 		else | 
 | 			cmd_flags = BNX2_NVM_COMMAND_FIRST | | 
 | 				    BNX2_NVM_COMMAND_LAST; | 
 |  | 
 | 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); | 
 |  | 
 | 		memcpy(ret_buf, buf, 4 - extra); | 
 | 	} | 
 | 	else if (len32 > 0) { | 
 | 		u8 buf[4]; | 
 |  | 
 | 		/* Read the first word. */ | 
 | 		if (cmd_flags) | 
 | 			cmd_flags = 0; | 
 | 		else | 
 | 			cmd_flags = BNX2_NVM_COMMAND_FIRST; | 
 |  | 
 | 		rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags); | 
 |  | 
 | 		/* Advance to the next dword. */ | 
 | 		offset32 += 4; | 
 | 		ret_buf += 4; | 
 | 		len32 -= 4; | 
 |  | 
 | 		while (len32 > 4 && rc == 0) { | 
 | 			rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0); | 
 |  | 
 | 			/* Advance to the next dword. */ | 
 | 			offset32 += 4; | 
 | 			ret_buf += 4; | 
 | 			len32 -= 4; | 
 | 		} | 
 |  | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		cmd_flags = BNX2_NVM_COMMAND_LAST; | 
 | 		rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); | 
 |  | 
 | 		memcpy(ret_buf, buf, 4 - extra); | 
 | 	} | 
 |  | 
 | 	/* Disable access to flash interface */ | 
 | 	bnx2_disable_nvram_access(bp); | 
 |  | 
 | 	bnx2_release_nvram_lock(bp); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf, | 
 | 		int buf_size) | 
 | { | 
 | 	u32 written, offset32, len32; | 
 | 	u8 *buf, start[4], end[4], *flash_buffer = NULL; | 
 | 	int rc = 0; | 
 | 	int align_start, align_end; | 
 |  | 
 | 	buf = data_buf; | 
 | 	offset32 = offset; | 
 | 	len32 = buf_size; | 
 | 	align_start = align_end = 0; | 
 |  | 
 | 	if ((align_start = (offset32 & 3))) { | 
 | 		offset32 &= ~3; | 
 | 		len32 += align_start; | 
 | 		if ((rc = bnx2_nvram_read(bp, offset32, start, 4))) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	if (len32 & 3) { | 
 | 	       	if ((len32 > 4) || !align_start) { | 
 | 			align_end = 4 - (len32 & 3); | 
 | 			len32 += align_end; | 
 | 			if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, | 
 | 				end, 4))) { | 
 | 				return rc; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (align_start || align_end) { | 
 | 		buf = kmalloc(len32, GFP_KERNEL); | 
 | 		if (buf == 0) | 
 | 			return -ENOMEM; | 
 | 		if (align_start) { | 
 | 			memcpy(buf, start, 4); | 
 | 		} | 
 | 		if (align_end) { | 
 | 			memcpy(buf + len32 - 4, end, 4); | 
 | 		} | 
 | 		memcpy(buf + align_start, data_buf, buf_size); | 
 | 	} | 
 |  | 
 | 	if (bp->flash_info->buffered == 0) { | 
 | 		flash_buffer = kmalloc(264, GFP_KERNEL); | 
 | 		if (flash_buffer == NULL) { | 
 | 			rc = -ENOMEM; | 
 | 			goto nvram_write_end; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	written = 0; | 
 | 	while ((written < len32) && (rc == 0)) { | 
 | 		u32 page_start, page_end, data_start, data_end; | 
 | 		u32 addr, cmd_flags; | 
 | 		int i; | 
 |  | 
 | 	        /* Find the page_start addr */ | 
 | 		page_start = offset32 + written; | 
 | 		page_start -= (page_start % bp->flash_info->page_size); | 
 | 		/* Find the page_end addr */ | 
 | 		page_end = page_start + bp->flash_info->page_size; | 
 | 		/* Find the data_start addr */ | 
 | 		data_start = (written == 0) ? offset32 : page_start; | 
 | 		/* Find the data_end addr */ | 
 | 		data_end = (page_end > offset32 + len32) ? | 
 | 			(offset32 + len32) : page_end; | 
 |  | 
 | 		/* Request access to the flash interface. */ | 
 | 		if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) | 
 | 			goto nvram_write_end; | 
 |  | 
 | 		/* Enable access to flash interface */ | 
 | 		bnx2_enable_nvram_access(bp); | 
 |  | 
 | 		cmd_flags = BNX2_NVM_COMMAND_FIRST; | 
 | 		if (bp->flash_info->buffered == 0) { | 
 | 			int j; | 
 |  | 
 | 			/* Read the whole page into the buffer | 
 | 			 * (non-buffer flash only) */ | 
 | 			for (j = 0; j < bp->flash_info->page_size; j += 4) { | 
 | 				if (j == (bp->flash_info->page_size - 4)) { | 
 | 					cmd_flags |= BNX2_NVM_COMMAND_LAST; | 
 | 				} | 
 | 				rc = bnx2_nvram_read_dword(bp, | 
 | 					page_start + j, | 
 | 					&flash_buffer[j], | 
 | 					cmd_flags); | 
 |  | 
 | 				if (rc) | 
 | 					goto nvram_write_end; | 
 |  | 
 | 				cmd_flags = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Enable writes to flash interface (unlock write-protect) */ | 
 | 		if ((rc = bnx2_enable_nvram_write(bp)) != 0) | 
 | 			goto nvram_write_end; | 
 |  | 
 | 		/* Erase the page */ | 
 | 		if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0) | 
 | 			goto nvram_write_end; | 
 |  | 
 | 		/* Re-enable the write again for the actual write */ | 
 | 		bnx2_enable_nvram_write(bp); | 
 |  | 
 | 		/* Loop to write back the buffer data from page_start to | 
 | 		 * data_start */ | 
 | 		i = 0; | 
 | 		if (bp->flash_info->buffered == 0) { | 
 | 			for (addr = page_start; addr < data_start; | 
 | 				addr += 4, i += 4) { | 
 |  | 
 | 				rc = bnx2_nvram_write_dword(bp, addr, | 
 | 					&flash_buffer[i], cmd_flags); | 
 |  | 
 | 				if (rc != 0) | 
 | 					goto nvram_write_end; | 
 |  | 
 | 				cmd_flags = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Loop to write the new data from data_start to data_end */ | 
 | 		for (addr = data_start; addr < data_end; addr += 4, i += 4) { | 
 | 			if ((addr == page_end - 4) || | 
 | 				((bp->flash_info->buffered) && | 
 | 				 (addr == data_end - 4))) { | 
 |  | 
 | 				cmd_flags |= BNX2_NVM_COMMAND_LAST; | 
 | 			} | 
 | 			rc = bnx2_nvram_write_dword(bp, addr, buf, | 
 | 				cmd_flags); | 
 |  | 
 | 			if (rc != 0) | 
 | 				goto nvram_write_end; | 
 |  | 
 | 			cmd_flags = 0; | 
 | 			buf += 4; | 
 | 		} | 
 |  | 
 | 		/* Loop to write back the buffer data from data_end | 
 | 		 * to page_end */ | 
 | 		if (bp->flash_info->buffered == 0) { | 
 | 			for (addr = data_end; addr < page_end; | 
 | 				addr += 4, i += 4) { | 
 |  | 
 | 				if (addr == page_end-4) { | 
 | 					cmd_flags = BNX2_NVM_COMMAND_LAST; | 
 |                 		} | 
 | 				rc = bnx2_nvram_write_dword(bp, addr, | 
 | 					&flash_buffer[i], cmd_flags); | 
 |  | 
 | 				if (rc != 0) | 
 | 					goto nvram_write_end; | 
 |  | 
 | 				cmd_flags = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Disable writes to flash interface (lock write-protect) */ | 
 | 		bnx2_disable_nvram_write(bp); | 
 |  | 
 | 		/* Disable access to flash interface */ | 
 | 		bnx2_disable_nvram_access(bp); | 
 | 		bnx2_release_nvram_lock(bp); | 
 |  | 
 | 		/* Increment written */ | 
 | 		written += data_end - data_start; | 
 | 	} | 
 |  | 
 | nvram_write_end: | 
 | 	if (bp->flash_info->buffered == 0) | 
 | 		kfree(flash_buffer); | 
 |  | 
 | 	if (align_start || align_end) | 
 | 		kfree(buf); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_reset_chip(struct bnx2 *bp, u32 reset_code) | 
 | { | 
 | 	u32 val; | 
 | 	int i, rc = 0; | 
 |  | 
 | 	/* Wait for the current PCI transaction to complete before | 
 | 	 * issuing a reset. */ | 
 | 	REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS, | 
 | 	       BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | | 
 | 	       BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | | 
 | 	       BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | | 
 | 	       BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); | 
 | 	val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS); | 
 | 	udelay(5); | 
 |  | 
 | 	/* Wait for the firmware to tell us it is ok to issue a reset. */ | 
 | 	bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1); | 
 |  | 
 | 	/* Deposit a driver reset signature so the firmware knows that | 
 | 	 * this is a soft reset. */ | 
 | 	REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE, | 
 | 		   BNX2_DRV_RESET_SIGNATURE_MAGIC); | 
 |  | 
 | 	/* Do a dummy read to force the chip to complete all current transaction | 
 | 	 * before we issue a reset. */ | 
 | 	val = REG_RD(bp, BNX2_MISC_ID); | 
 |  | 
 | 	val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | | 
 | 	      BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | | 
 | 	      BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; | 
 |  | 
 | 	/* Chip reset. */ | 
 | 	REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val); | 
 |  | 
 | 	if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5706_A1)) | 
 | 		msleep(15); | 
 |  | 
 | 	/* Reset takes approximate 30 usec */ | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG); | 
 | 		if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | | 
 | 			    BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { | 
 | 			break; | 
 | 		} | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | 	if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | | 
 | 		   BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { | 
 | 		printk(KERN_ERR PFX "Chip reset did not complete\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* Make sure byte swapping is properly configured. */ | 
 | 	val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0); | 
 | 	if (val != 0x01020304) { | 
 | 		printk(KERN_ERR PFX "Chip not in correct endian mode\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Wait for the firmware to finish its initialization. */ | 
 | 	rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) { | 
 | 		/* Adjust the voltage regular to two steps lower.  The default | 
 | 		 * of this register is 0x0000000e. */ | 
 | 		REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa); | 
 |  | 
 | 		/* Remove bad rbuf memory from the free pool. */ | 
 | 		rc = bnx2_alloc_bad_rbuf(bp); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_chip(struct bnx2 *bp) | 
 | { | 
 | 	u32 val; | 
 | 	int rc; | 
 |  | 
 | 	/* Make sure the interrupt is not active. */ | 
 | 	REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT); | 
 |  | 
 | 	val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP | | 
 | 	      BNX2_DMA_CONFIG_DATA_WORD_SWAP | | 
 | #ifdef __BIG_ENDIAN | 
 | 	      BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | | 
 | #endif | 
 | 	      BNX2_DMA_CONFIG_CNTL_WORD_SWAP | | 
 | 	      DMA_READ_CHANS << 12 | | 
 | 	      DMA_WRITE_CHANS << 16; | 
 |  | 
 | 	val |= (0x2 << 20) | (1 << 11); | 
 |  | 
 | 	if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133)) | 
 | 		val |= (1 << 23); | 
 |  | 
 | 	if ((CHIP_NUM(bp) == CHIP_NUM_5706) && | 
 | 	    (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG)) | 
 | 		val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA; | 
 |  | 
 | 	REG_WR(bp, BNX2_DMA_CONFIG, val); | 
 |  | 
 | 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) { | 
 | 		val = REG_RD(bp, BNX2_TDMA_CONFIG); | 
 | 		val |= BNX2_TDMA_CONFIG_ONE_DMA; | 
 | 		REG_WR(bp, BNX2_TDMA_CONFIG, val); | 
 | 	} | 
 |  | 
 | 	if (bp->flags & PCIX_FLAG) { | 
 | 		u16 val16; | 
 |  | 
 | 		pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, | 
 | 				     &val16); | 
 | 		pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, | 
 | 				      val16 & ~PCI_X_CMD_ERO); | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, | 
 | 	       BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | | 
 | 	       BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | | 
 | 	       BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); | 
 |  | 
 | 	/* Initialize context mapping and zero out the quick contexts.  The | 
 | 	 * context block must have already been enabled. */ | 
 | 	bnx2_init_context(bp); | 
 |  | 
 | 	if ((rc = bnx2_init_cpus(bp)) != 0) | 
 | 		return rc; | 
 |  | 
 | 	bnx2_init_nvram(bp); | 
 |  | 
 | 	bnx2_set_mac_addr(bp); | 
 |  | 
 | 	val = REG_RD(bp, BNX2_MQ_CONFIG); | 
 | 	val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE; | 
 | 	val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; | 
 | 	REG_WR(bp, BNX2_MQ_CONFIG, val); | 
 |  | 
 | 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); | 
 | 	REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val); | 
 | 	REG_WR(bp, BNX2_MQ_KNL_WIND_END, val); | 
 |  | 
 | 	val = (BCM_PAGE_BITS - 8) << 24; | 
 | 	REG_WR(bp, BNX2_RV2P_CONFIG, val); | 
 |  | 
 | 	/* Configure page size. */ | 
 | 	val = REG_RD(bp, BNX2_TBDR_CONFIG); | 
 | 	val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE; | 
 | 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; | 
 | 	REG_WR(bp, BNX2_TBDR_CONFIG, val); | 
 |  | 
 | 	val = bp->mac_addr[0] + | 
 | 	      (bp->mac_addr[1] << 8) + | 
 | 	      (bp->mac_addr[2] << 16) + | 
 | 	      bp->mac_addr[3] + | 
 | 	      (bp->mac_addr[4] << 8) + | 
 | 	      (bp->mac_addr[5] << 16); | 
 | 	REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val); | 
 |  | 
 | 	/* Program the MTU.  Also include 4 bytes for CRC32. */ | 
 | 	val = bp->dev->mtu + ETH_HLEN + 4; | 
 | 	if (val > (MAX_ETHERNET_PACKET_SIZE + 4)) | 
 | 		val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA; | 
 | 	REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val); | 
 |  | 
 | 	bp->last_status_idx = 0; | 
 | 	bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE; | 
 |  | 
 | 	/* Set up how to generate a link change interrupt. */ | 
 | 	REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_STATUS_ADDR_L, | 
 | 	       (u64) bp->status_blk_mapping & 0xffffffff); | 
 | 	REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L, | 
 | 	       (u64) bp->stats_blk_mapping & 0xffffffff); | 
 | 	REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H, | 
 | 	       (u64) bp->stats_blk_mapping >> 32); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, | 
 | 	       (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP, | 
 | 	       (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_COMP_PROD_TRIP, | 
 | 	       (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_COM_TICKS, | 
 | 	       (bp->com_ticks_int << 16) | bp->com_ticks); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_CMD_TICKS, | 
 | 	       (bp->cmd_ticks_int << 16) | bp->cmd_ticks); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00); | 
 | 	REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */ | 
 |  | 
 | 	if (CHIP_ID(bp) == CHIP_ID_5706_A1) | 
 | 		REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS); | 
 | 	else { | 
 | 		REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE | | 
 | 		       BNX2_HC_CONFIG_TX_TMR_MODE | | 
 | 		       BNX2_HC_CONFIG_COLLECT_STATS); | 
 | 	} | 
 |  | 
 | 	/* Clear internal stats counters. */ | 
 | 	REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); | 
 |  | 
 | 	if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) & | 
 | 	    BNX2_PORT_FEATURE_ASF_ENABLED) | 
 | 		bp->flags |= ASF_ENABLE_FLAG; | 
 |  | 
 | 	/* Initialize the receive filter. */ | 
 | 	bnx2_set_rx_mode(bp->dev); | 
 |  | 
 | 	rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET, | 
 | 			  0); | 
 |  | 
 | 	REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff); | 
 | 	REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS); | 
 |  | 
 | 	udelay(20); | 
 |  | 
 | 	bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | bnx2_init_tx_ring(struct bnx2 *bp) | 
 | { | 
 | 	struct tx_bd *txbd; | 
 | 	u32 val; | 
 |  | 
 | 	bp->tx_wake_thresh = bp->tx_ring_size / 2; | 
 |  | 
 | 	txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT]; | 
 |  | 
 | 	txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32; | 
 | 	txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff; | 
 |  | 
 | 	bp->tx_prod = 0; | 
 | 	bp->tx_cons = 0; | 
 | 	bp->hw_tx_cons = 0; | 
 | 	bp->tx_prod_bseq = 0; | 
 |  | 
 | 	val = BNX2_L2CTX_TYPE_TYPE_L2; | 
 | 	val |= BNX2_L2CTX_TYPE_SIZE_L2; | 
 | 	CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val); | 
 |  | 
 | 	val = BNX2_L2CTX_CMD_TYPE_TYPE_L2; | 
 | 	val |= 8 << 16; | 
 | 	CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val); | 
 |  | 
 | 	val = (u64) bp->tx_desc_mapping >> 32; | 
 | 	CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val); | 
 |  | 
 | 	val = (u64) bp->tx_desc_mapping & 0xffffffff; | 
 | 	CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_init_rx_ring(struct bnx2 *bp) | 
 | { | 
 | 	struct rx_bd *rxbd; | 
 | 	int i; | 
 | 	u16 prod, ring_prod; | 
 | 	u32 val; | 
 |  | 
 | 	/* 8 for CRC and VLAN */ | 
 | 	bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8; | 
 | 	/* 8 for alignment */ | 
 | 	bp->rx_buf_size = bp->rx_buf_use_size + 8; | 
 |  | 
 | 	ring_prod = prod = bp->rx_prod = 0; | 
 | 	bp->rx_cons = 0; | 
 | 	bp->hw_rx_cons = 0; | 
 | 	bp->rx_prod_bseq = 0; | 
 |  | 
 | 	for (i = 0; i < bp->rx_max_ring; i++) { | 
 | 		int j; | 
 |  | 
 | 		rxbd = &bp->rx_desc_ring[i][0]; | 
 | 		for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) { | 
 | 			rxbd->rx_bd_len = bp->rx_buf_use_size; | 
 | 			rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END; | 
 | 		} | 
 | 		if (i == (bp->rx_max_ring - 1)) | 
 | 			j = 0; | 
 | 		else | 
 | 			j = i + 1; | 
 | 		rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32; | 
 | 		rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] & | 
 | 				       0xffffffff; | 
 | 	} | 
 |  | 
 | 	val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; | 
 | 	val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2; | 
 | 	val |= 0x02 << 8; | 
 | 	CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val); | 
 |  | 
 | 	val = (u64) bp->rx_desc_mapping[0] >> 32; | 
 | 	CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val); | 
 |  | 
 | 	val = (u64) bp->rx_desc_mapping[0] & 0xffffffff; | 
 | 	CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val); | 
 |  | 
 | 	for (i = 0; i < bp->rx_ring_size; i++) { | 
 | 		if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) { | 
 | 			break; | 
 | 		} | 
 | 		prod = NEXT_RX_BD(prod); | 
 | 		ring_prod = RX_RING_IDX(prod); | 
 | 	} | 
 | 	bp->rx_prod = prod; | 
 |  | 
 | 	REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod); | 
 |  | 
 | 	REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); | 
 | } | 
 |  | 
 | static void | 
 | bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size) | 
 | { | 
 | 	u32 num_rings, max; | 
 |  | 
 | 	bp->rx_ring_size = size; | 
 | 	num_rings = 1; | 
 | 	while (size > MAX_RX_DESC_CNT) { | 
 | 		size -= MAX_RX_DESC_CNT; | 
 | 		num_rings++; | 
 | 	} | 
 | 	/* round to next power of 2 */ | 
 | 	max = MAX_RX_RINGS; | 
 | 	while ((max & num_rings) == 0) | 
 | 		max >>= 1; | 
 |  | 
 | 	if (num_rings != max) | 
 | 		max <<= 1; | 
 |  | 
 | 	bp->rx_max_ring = max; | 
 | 	bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_free_tx_skbs(struct bnx2 *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (bp->tx_buf_ring == NULL) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < TX_DESC_CNT; ) { | 
 | 		struct sw_bd *tx_buf = &bp->tx_buf_ring[i]; | 
 | 		struct sk_buff *skb = tx_buf->skb; | 
 | 		int j, last; | 
 |  | 
 | 		if (skb == NULL) { | 
 | 			i++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), | 
 | 			skb_headlen(skb), PCI_DMA_TODEVICE); | 
 |  | 
 | 		tx_buf->skb = NULL; | 
 |  | 
 | 		last = skb_shinfo(skb)->nr_frags; | 
 | 		for (j = 0; j < last; j++) { | 
 | 			tx_buf = &bp->tx_buf_ring[i + j + 1]; | 
 | 			pci_unmap_page(bp->pdev, | 
 | 				pci_unmap_addr(tx_buf, mapping), | 
 | 				skb_shinfo(skb)->frags[j].size, | 
 | 				PCI_DMA_TODEVICE); | 
 | 		} | 
 | 		dev_kfree_skb(skb); | 
 | 		i += j + 1; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | bnx2_free_rx_skbs(struct bnx2 *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (bp->rx_buf_ring == NULL) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < bp->rx_max_ring_idx; i++) { | 
 | 		struct sw_bd *rx_buf = &bp->rx_buf_ring[i]; | 
 | 		struct sk_buff *skb = rx_buf->skb; | 
 |  | 
 | 		if (skb == NULL) | 
 | 			continue; | 
 |  | 
 | 		pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping), | 
 | 			bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 		rx_buf->skb = NULL; | 
 |  | 
 | 		dev_kfree_skb(skb); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_free_skbs(struct bnx2 *bp) | 
 | { | 
 | 	bnx2_free_tx_skbs(bp); | 
 | 	bnx2_free_rx_skbs(bp); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_reset_nic(struct bnx2 *bp, u32 reset_code) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = bnx2_reset_chip(bp, reset_code); | 
 | 	bnx2_free_skbs(bp); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if ((rc = bnx2_init_chip(bp)) != 0) | 
 | 		return rc; | 
 |  | 
 | 	bnx2_init_tx_ring(bp); | 
 | 	bnx2_init_rx_ring(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_init_nic(struct bnx2 *bp) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0) | 
 | 		return rc; | 
 |  | 
 | 	bnx2_init_phy(bp); | 
 | 	bnx2_set_link(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_test_registers(struct bnx2 *bp) | 
 | { | 
 | 	int ret; | 
 | 	int i; | 
 | 	static const struct { | 
 | 		u16   offset; | 
 | 		u16   flags; | 
 | 		u32   rw_mask; | 
 | 		u32   ro_mask; | 
 | 	} reg_tbl[] = { | 
 | 		{ 0x006c, 0, 0x00000000, 0x0000003f }, | 
 | 		{ 0x0090, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x0094, 0, 0x00000000, 0x00000000 }, | 
 |  | 
 | 		{ 0x0404, 0, 0x00003f00, 0x00000000 }, | 
 | 		{ 0x0418, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x041c, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x0420, 0, 0x00000000, 0x80ffffff }, | 
 | 		{ 0x0424, 0, 0x00000000, 0x00000000 }, | 
 | 		{ 0x0428, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x0450, 0, 0x00000000, 0x0000ffff }, | 
 | 		{ 0x0454, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x0458, 0, 0x00000000, 0xffffffff }, | 
 |  | 
 | 		{ 0x0808, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x0854, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x0868, 0, 0x00000000, 0x77777777 }, | 
 | 		{ 0x086c, 0, 0x00000000, 0x77777777 }, | 
 | 		{ 0x0870, 0, 0x00000000, 0x77777777 }, | 
 | 		{ 0x0874, 0, 0x00000000, 0x77777777 }, | 
 |  | 
 | 		{ 0x0c00, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x0c04, 0, 0x00000000, 0x03ff0001 }, | 
 | 		{ 0x0c08, 0, 0x0f0ff073, 0x00000000 }, | 
 |  | 
 | 		{ 0x1000, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x1004, 0, 0x00000000, 0x000f0001 }, | 
 |  | 
 | 		{ 0x1408, 0, 0x01c00800, 0x00000000 }, | 
 | 		{ 0x149c, 0, 0x8000ffff, 0x00000000 }, | 
 | 		{ 0x14a8, 0, 0x00000000, 0x000001ff }, | 
 | 		{ 0x14ac, 0, 0x0fffffff, 0x10000000 }, | 
 | 		{ 0x14b0, 0, 0x00000002, 0x00000001 }, | 
 | 		{ 0x14b8, 0, 0x00000000, 0x00000000 }, | 
 | 		{ 0x14c0, 0, 0x00000000, 0x00000009 }, | 
 | 		{ 0x14c4, 0, 0x00003fff, 0x00000000 }, | 
 | 		{ 0x14cc, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x14d0, 0, 0xffffffff, 0x00000000 }, | 
 |  | 
 | 		{ 0x1800, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x1804, 0, 0x00000000, 0x00000003 }, | 
 |  | 
 | 		{ 0x2800, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x2804, 0, 0x00000000, 0x00003f01 }, | 
 | 		{ 0x2808, 0, 0x0f3f3f03, 0x00000000 }, | 
 | 		{ 0x2810, 0, 0xffff0000, 0x00000000 }, | 
 | 		{ 0x2814, 0, 0xffff0000, 0x00000000 }, | 
 | 		{ 0x2818, 0, 0xffff0000, 0x00000000 }, | 
 | 		{ 0x281c, 0, 0xffff0000, 0x00000000 }, | 
 | 		{ 0x2834, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x2840, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x2844, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x2848, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x284c, 0, 0xf800f800, 0x07ff07ff }, | 
 |  | 
 | 		{ 0x2c00, 0, 0x00000000, 0x00000011 }, | 
 | 		{ 0x2c04, 0, 0x00000000, 0x00030007 }, | 
 |  | 
 | 		{ 0x3c00, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x3c04, 0, 0x00000000, 0x00070000 }, | 
 | 		{ 0x3c08, 0, 0x00007f71, 0x07f00000 }, | 
 | 		{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 }, | 
 | 		{ 0x3c10, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x3c14, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x3c18, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x3c1c, 0, 0xfffff000, 0x00000000 }, | 
 | 		{ 0x3c20, 0, 0xffffff00, 0x00000000 }, | 
 |  | 
 | 		{ 0x5004, 0, 0x00000000, 0x0000007f }, | 
 | 		{ 0x5008, 0, 0x0f0007ff, 0x00000000 }, | 
 | 		{ 0x500c, 0, 0xf800f800, 0x07ff07ff }, | 
 |  | 
 | 		{ 0x5c00, 0, 0x00000000, 0x00000001 }, | 
 | 		{ 0x5c04, 0, 0x00000000, 0x0003000f }, | 
 | 		{ 0x5c08, 0, 0x00000003, 0x00000000 }, | 
 | 		{ 0x5c0c, 0, 0x0000fff8, 0x00000000 }, | 
 | 		{ 0x5c10, 0, 0x00000000, 0xffffffff }, | 
 | 		{ 0x5c80, 0, 0x00000000, 0x0f7113f1 }, | 
 | 		{ 0x5c84, 0, 0x00000000, 0x0000f333 }, | 
 | 		{ 0x5c88, 0, 0x00000000, 0x00077373 }, | 
 | 		{ 0x5c8c, 0, 0x00000000, 0x0007f737 }, | 
 |  | 
 | 		{ 0x6808, 0, 0x0000ff7f, 0x00000000 }, | 
 | 		{ 0x680c, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x6810, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x6814, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x6818, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x681c, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x6820, 0, 0x00ff00ff, 0x00000000 }, | 
 | 		{ 0x6824, 0, 0x00ff00ff, 0x00000000 }, | 
 | 		{ 0x6828, 0, 0x00ff00ff, 0x00000000 }, | 
 | 		{ 0x682c, 0, 0x03ff03ff, 0x00000000 }, | 
 | 		{ 0x6830, 0, 0x03ff03ff, 0x00000000 }, | 
 | 		{ 0x6834, 0, 0x03ff03ff, 0x00000000 }, | 
 | 		{ 0x6838, 0, 0x03ff03ff, 0x00000000 }, | 
 | 		{ 0x683c, 0, 0x0000ffff, 0x00000000 }, | 
 | 		{ 0x6840, 0, 0x00000ff0, 0x00000000 }, | 
 | 		{ 0x6844, 0, 0x00ffff00, 0x00000000 }, | 
 | 		{ 0x684c, 0, 0xffffffff, 0x00000000 }, | 
 | 		{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 }, | 
 | 		{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 }, | 
 | 		{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 }, | 
 | 		{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 }, | 
 | 		{ 0x6908, 0, 0x00000000, 0x0001ff0f }, | 
 | 		{ 0x690c, 0, 0x00000000, 0x0ffe00f0 }, | 
 |  | 
 | 		{ 0xffff, 0, 0x00000000, 0x00000000 }, | 
 | 	}; | 
 |  | 
 | 	ret = 0; | 
 | 	for (i = 0; reg_tbl[i].offset != 0xffff; i++) { | 
 | 		u32 offset, rw_mask, ro_mask, save_val, val; | 
 |  | 
 | 		offset = (u32) reg_tbl[i].offset; | 
 | 		rw_mask = reg_tbl[i].rw_mask; | 
 | 		ro_mask = reg_tbl[i].ro_mask; | 
 |  | 
 | 		save_val = readl(bp->regview + offset); | 
 |  | 
 | 		writel(0, bp->regview + offset); | 
 |  | 
 | 		val = readl(bp->regview + offset); | 
 | 		if ((val & rw_mask) != 0) { | 
 | 			goto reg_test_err; | 
 | 		} | 
 |  | 
 | 		if ((val & ro_mask) != (save_val & ro_mask)) { | 
 | 			goto reg_test_err; | 
 | 		} | 
 |  | 
 | 		writel(0xffffffff, bp->regview + offset); | 
 |  | 
 | 		val = readl(bp->regview + offset); | 
 | 		if ((val & rw_mask) != rw_mask) { | 
 | 			goto reg_test_err; | 
 | 		} | 
 |  | 
 | 		if ((val & ro_mask) != (save_val & ro_mask)) { | 
 | 			goto reg_test_err; | 
 | 		} | 
 |  | 
 | 		writel(save_val, bp->regview + offset); | 
 | 		continue; | 
 |  | 
 | reg_test_err: | 
 | 		writel(save_val, bp->regview + offset); | 
 | 		ret = -ENODEV; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size) | 
 | { | 
 | 	static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555, | 
 | 		0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa }; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < sizeof(test_pattern) / 4; i++) { | 
 | 		u32 offset; | 
 |  | 
 | 		for (offset = 0; offset < size; offset += 4) { | 
 |  | 
 | 			REG_WR_IND(bp, start + offset, test_pattern[i]); | 
 |  | 
 | 			if (REG_RD_IND(bp, start + offset) != | 
 | 				test_pattern[i]) { | 
 | 				return -ENODEV; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_test_memory(struct bnx2 *bp) | 
 | { | 
 | 	int ret = 0; | 
 | 	int i; | 
 | 	static const struct { | 
 | 		u32   offset; | 
 | 		u32   len; | 
 | 	} mem_tbl[] = { | 
 | 		{ 0x60000,  0x4000 }, | 
 | 		{ 0xa0000,  0x3000 }, | 
 | 		{ 0xe0000,  0x4000 }, | 
 | 		{ 0x120000, 0x4000 }, | 
 | 		{ 0x1a0000, 0x4000 }, | 
 | 		{ 0x160000, 0x4000 }, | 
 | 		{ 0xffffffff, 0    }, | 
 | 	}; | 
 |  | 
 | 	for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) { | 
 | 		if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset, | 
 | 			mem_tbl[i].len)) != 0) { | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define BNX2_MAC_LOOPBACK	0 | 
 | #define BNX2_PHY_LOOPBACK	1 | 
 |  | 
 | static int | 
 | bnx2_run_loopback(struct bnx2 *bp, int loopback_mode) | 
 | { | 
 | 	unsigned int pkt_size, num_pkts, i; | 
 | 	struct sk_buff *skb, *rx_skb; | 
 | 	unsigned char *packet; | 
 | 	u16 rx_start_idx, rx_idx; | 
 | 	dma_addr_t map; | 
 | 	struct tx_bd *txbd; | 
 | 	struct sw_bd *rx_buf; | 
 | 	struct l2_fhdr *rx_hdr; | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	if (loopback_mode == BNX2_MAC_LOOPBACK) { | 
 | 		bp->loopback = MAC_LOOPBACK; | 
 | 		bnx2_set_mac_loopback(bp); | 
 | 	} | 
 | 	else if (loopback_mode == BNX2_PHY_LOOPBACK) { | 
 | 		bp->loopback = 0; | 
 | 		bnx2_set_phy_loopback(bp); | 
 | 	} | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	pkt_size = 1514; | 
 | 	skb = netdev_alloc_skb(bp->dev, pkt_size); | 
 | 	if (!skb) | 
 | 		return -ENOMEM; | 
 | 	packet = skb_put(skb, pkt_size); | 
 | 	memcpy(packet, bp->mac_addr, 6); | 
 | 	memset(packet + 6, 0x0, 8); | 
 | 	for (i = 14; i < pkt_size; i++) | 
 | 		packet[i] = (unsigned char) (i & 0xff); | 
 |  | 
 | 	map = pci_map_single(bp->pdev, skb->data, pkt_size, | 
 | 		PCI_DMA_TODEVICE); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_COMMAND, | 
 | 	       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); | 
 |  | 
 | 	REG_RD(bp, BNX2_HC_COMMAND); | 
 |  | 
 | 	udelay(5); | 
 | 	rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0; | 
 |  | 
 | 	num_pkts = 0; | 
 |  | 
 | 	txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)]; | 
 |  | 
 | 	txbd->tx_bd_haddr_hi = (u64) map >> 32; | 
 | 	txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff; | 
 | 	txbd->tx_bd_mss_nbytes = pkt_size; | 
 | 	txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END; | 
 |  | 
 | 	num_pkts++; | 
 | 	bp->tx_prod = NEXT_TX_BD(bp->tx_prod); | 
 | 	bp->tx_prod_bseq += pkt_size; | 
 |  | 
 | 	REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod); | 
 | 	REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); | 
 |  | 
 | 	udelay(100); | 
 |  | 
 | 	REG_WR(bp, BNX2_HC_COMMAND, | 
 | 	       bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); | 
 |  | 
 | 	REG_RD(bp, BNX2_HC_COMMAND); | 
 |  | 
 | 	udelay(5); | 
 |  | 
 | 	pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE); | 
 | 	dev_kfree_skb(skb); | 
 |  | 
 | 	if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) { | 
 | 		goto loopback_test_done; | 
 | 	} | 
 |  | 
 | 	rx_idx = bp->status_blk->status_rx_quick_consumer_index0; | 
 | 	if (rx_idx != rx_start_idx + num_pkts) { | 
 | 		goto loopback_test_done; | 
 | 	} | 
 |  | 
 | 	rx_buf = &bp->rx_buf_ring[rx_start_idx]; | 
 | 	rx_skb = rx_buf->skb; | 
 |  | 
 | 	rx_hdr = (struct l2_fhdr *) rx_skb->data; | 
 | 	skb_reserve(rx_skb, bp->rx_offset); | 
 |  | 
 | 	pci_dma_sync_single_for_cpu(bp->pdev, | 
 | 		pci_unmap_addr(rx_buf, mapping), | 
 | 		bp->rx_buf_size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	if (rx_hdr->l2_fhdr_status & | 
 | 		(L2_FHDR_ERRORS_BAD_CRC | | 
 | 		L2_FHDR_ERRORS_PHY_DECODE | | 
 | 		L2_FHDR_ERRORS_ALIGNMENT | | 
 | 		L2_FHDR_ERRORS_TOO_SHORT | | 
 | 		L2_FHDR_ERRORS_GIANT_FRAME)) { | 
 |  | 
 | 		goto loopback_test_done; | 
 | 	} | 
 |  | 
 | 	if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) { | 
 | 		goto loopback_test_done; | 
 | 	} | 
 |  | 
 | 	for (i = 14; i < pkt_size; i++) { | 
 | 		if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) { | 
 | 			goto loopback_test_done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | loopback_test_done: | 
 | 	bp->loopback = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define BNX2_MAC_LOOPBACK_FAILED	1 | 
 | #define BNX2_PHY_LOOPBACK_FAILED	2 | 
 | #define BNX2_LOOPBACK_FAILED		(BNX2_MAC_LOOPBACK_FAILED |	\ | 
 | 					 BNX2_PHY_LOOPBACK_FAILED) | 
 |  | 
 | static int | 
 | bnx2_test_loopback(struct bnx2 *bp) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return BNX2_LOOPBACK_FAILED; | 
 |  | 
 | 	bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET); | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 | 	bnx2_init_phy(bp); | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 | 	if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK)) | 
 | 		rc |= BNX2_MAC_LOOPBACK_FAILED; | 
 | 	if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK)) | 
 | 		rc |= BNX2_PHY_LOOPBACK_FAILED; | 
 | 	return rc; | 
 | } | 
 |  | 
 | #define NVRAM_SIZE 0x200 | 
 | #define CRC32_RESIDUAL 0xdebb20e3 | 
 |  | 
 | static int | 
 | bnx2_test_nvram(struct bnx2 *bp) | 
 | { | 
 | 	u32 buf[NVRAM_SIZE / 4]; | 
 | 	u8 *data = (u8 *) buf; | 
 | 	int rc = 0; | 
 | 	u32 magic, csum; | 
 |  | 
 | 	if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0) | 
 | 		goto test_nvram_done; | 
 |  | 
 |         magic = be32_to_cpu(buf[0]); | 
 | 	if (magic != 0x669955aa) { | 
 | 		rc = -ENODEV; | 
 | 		goto test_nvram_done; | 
 | 	} | 
 |  | 
 | 	if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0) | 
 | 		goto test_nvram_done; | 
 |  | 
 | 	csum = ether_crc_le(0x100, data); | 
 | 	if (csum != CRC32_RESIDUAL) { | 
 | 		rc = -ENODEV; | 
 | 		goto test_nvram_done; | 
 | 	} | 
 |  | 
 | 	csum = ether_crc_le(0x100, data + 0x100); | 
 | 	if (csum != CRC32_RESIDUAL) { | 
 | 		rc = -ENODEV; | 
 | 	} | 
 |  | 
 | test_nvram_done: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_test_link(struct bnx2 *bp) | 
 | { | 
 | 	u32 bmsr; | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 | 	bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 	bnx2_read_phy(bp, MII_BMSR, &bmsr); | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 	if (bmsr & BMSR_LSTATUS) { | 
 | 		return 0; | 
 | 	} | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_test_intr(struct bnx2 *bp) | 
 | { | 
 | 	int i; | 
 | 	u16 status_idx; | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff; | 
 |  | 
 | 	/* This register is not touched during run-time. */ | 
 | 	REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); | 
 | 	REG_RD(bp, BNX2_HC_COMMAND); | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) != | 
 | 			status_idx) { | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		msleep_interruptible(10); | 
 | 	} | 
 | 	if (i < 10) | 
 | 		return 0; | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_timer(unsigned long data) | 
 | { | 
 | 	struct bnx2 *bp = (struct bnx2 *) data; | 
 | 	u32 msg; | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_read(&bp->intr_sem) != 0) | 
 | 		goto bnx2_restart_timer; | 
 |  | 
 | 	msg = (u32) ++bp->fw_drv_pulse_wr_seq; | 
 | 	REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg); | 
 |  | 
 | 	bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT); | 
 |  | 
 | 	if ((bp->phy_flags & PHY_SERDES_FLAG) && | 
 | 	    (CHIP_NUM(bp) == CHIP_NUM_5706)) { | 
 |  | 
 | 		spin_lock(&bp->phy_lock); | 
 | 		if (bp->serdes_an_pending) { | 
 | 			bp->serdes_an_pending--; | 
 | 		} | 
 | 		else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) { | 
 | 			u32 bmcr; | 
 |  | 
 | 			bp->current_interval = bp->timer_interval; | 
 |  | 
 | 			bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 |  | 
 | 			if (bmcr & BMCR_ANENABLE) { | 
 | 				u32 phy1, phy2; | 
 |  | 
 | 				bnx2_write_phy(bp, 0x1c, 0x7c00); | 
 | 				bnx2_read_phy(bp, 0x1c, &phy1); | 
 |  | 
 | 				bnx2_write_phy(bp, 0x17, 0x0f01); | 
 | 				bnx2_read_phy(bp, 0x15, &phy2); | 
 | 				bnx2_write_phy(bp, 0x17, 0x0f01); | 
 | 				bnx2_read_phy(bp, 0x15, &phy2); | 
 |  | 
 | 				if ((phy1 & 0x10) &&	/* SIGNAL DETECT */ | 
 | 					!(phy2 & 0x20)) {	/* no CONFIG */ | 
 |  | 
 | 					bmcr &= ~BMCR_ANENABLE; | 
 | 					bmcr |= BMCR_SPEED1000 | | 
 | 						BMCR_FULLDPLX; | 
 | 					bnx2_write_phy(bp, MII_BMCR, bmcr); | 
 | 					bp->phy_flags |= | 
 | 						PHY_PARALLEL_DETECT_FLAG; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) && | 
 | 			(bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) { | 
 | 			u32 phy2; | 
 |  | 
 | 			bnx2_write_phy(bp, 0x17, 0x0f01); | 
 | 			bnx2_read_phy(bp, 0x15, &phy2); | 
 | 			if (phy2 & 0x20) { | 
 | 				u32 bmcr; | 
 |  | 
 | 				bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 				bmcr |= BMCR_ANENABLE; | 
 | 				bnx2_write_phy(bp, MII_BMCR, bmcr); | 
 |  | 
 | 				bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; | 
 |  | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 			bp->current_interval = bp->timer_interval; | 
 |  | 
 | 		spin_unlock(&bp->phy_lock); | 
 | 	} | 
 |  | 
 | bnx2_restart_timer: | 
 | 	mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 | } | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static int | 
 | bnx2_open(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	bnx2_set_power_state(bp, PCI_D0); | 
 | 	bnx2_disable_int(bp); | 
 |  | 
 | 	rc = bnx2_alloc_mem(bp); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if ((CHIP_ID(bp) != CHIP_ID_5706_A0) && | 
 | 		(CHIP_ID(bp) != CHIP_ID_5706_A1) && | 
 | 		!disable_msi) { | 
 |  | 
 | 		if (pci_enable_msi(bp->pdev) == 0) { | 
 | 			bp->flags |= USING_MSI_FLAG; | 
 | 			rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name, | 
 | 					dev); | 
 | 		} | 
 | 		else { | 
 | 			rc = request_irq(bp->pdev->irq, bnx2_interrupt, | 
 | 					IRQF_SHARED, dev->name, dev); | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		rc = request_irq(bp->pdev->irq, bnx2_interrupt, IRQF_SHARED, | 
 | 				dev->name, dev); | 
 | 	} | 
 | 	if (rc) { | 
 | 		bnx2_free_mem(bp); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	rc = bnx2_init_nic(bp); | 
 |  | 
 | 	if (rc) { | 
 | 		free_irq(bp->pdev->irq, dev); | 
 | 		if (bp->flags & USING_MSI_FLAG) { | 
 | 			pci_disable_msi(bp->pdev); | 
 | 			bp->flags &= ~USING_MSI_FLAG; | 
 | 		} | 
 | 		bnx2_free_skbs(bp); | 
 | 		bnx2_free_mem(bp); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 |  | 
 | 	atomic_set(&bp->intr_sem, 0); | 
 |  | 
 | 	bnx2_enable_int(bp); | 
 |  | 
 | 	if (bp->flags & USING_MSI_FLAG) { | 
 | 		/* Test MSI to make sure it is working | 
 | 		 * If MSI test fails, go back to INTx mode | 
 | 		 */ | 
 | 		if (bnx2_test_intr(bp) != 0) { | 
 | 			printk(KERN_WARNING PFX "%s: No interrupt was generated" | 
 | 			       " using MSI, switching to INTx mode. Please" | 
 | 			       " report this failure to the PCI maintainer" | 
 | 			       " and include system chipset information.\n", | 
 | 			       bp->dev->name); | 
 |  | 
 | 			bnx2_disable_int(bp); | 
 | 			free_irq(bp->pdev->irq, dev); | 
 | 			pci_disable_msi(bp->pdev); | 
 | 			bp->flags &= ~USING_MSI_FLAG; | 
 |  | 
 | 			rc = bnx2_init_nic(bp); | 
 |  | 
 | 			if (!rc) { | 
 | 				rc = request_irq(bp->pdev->irq, bnx2_interrupt, | 
 | 					IRQF_SHARED, dev->name, dev); | 
 | 			} | 
 | 			if (rc) { | 
 | 				bnx2_free_skbs(bp); | 
 | 				bnx2_free_mem(bp); | 
 | 				del_timer_sync(&bp->timer); | 
 | 				return rc; | 
 | 			} | 
 | 			bnx2_enable_int(bp); | 
 | 		} | 
 | 	} | 
 | 	if (bp->flags & USING_MSI_FLAG) { | 
 | 		printk(KERN_INFO PFX "%s: using MSI\n", dev->name); | 
 | 	} | 
 |  | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_reset_task(void *data) | 
 | { | 
 | 	struct bnx2 *bp = data; | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return; | 
 |  | 
 | 	bp->in_reset_task = 1; | 
 | 	bnx2_netif_stop(bp); | 
 |  | 
 | 	bnx2_init_nic(bp); | 
 |  | 
 | 	atomic_set(&bp->intr_sem, 1); | 
 | 	bnx2_netif_start(bp); | 
 | 	bp->in_reset_task = 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	/* This allows the netif to be shutdown gracefully before resetting */ | 
 | 	schedule_work(&bp->reset_task); | 
 | } | 
 |  | 
 | #ifdef BCM_VLAN | 
 | /* Called with rtnl_lock */ | 
 | static void | 
 | bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	bnx2_netif_stop(bp); | 
 |  | 
 | 	bp->vlgrp = vlgrp; | 
 | 	bnx2_set_rx_mode(dev); | 
 |  | 
 | 	bnx2_netif_start(bp); | 
 | } | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static void | 
 | bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	bnx2_netif_stop(bp); | 
 |  | 
 | 	if (bp->vlgrp) | 
 | 		bp->vlgrp->vlan_devices[vid] = NULL; | 
 | 	bnx2_set_rx_mode(dev); | 
 |  | 
 | 	bnx2_netif_start(bp); | 
 | } | 
 | #endif | 
 |  | 
 | /* Called with netif_tx_lock. | 
 |  * bnx2_tx_int() runs without netif_tx_lock unless it needs to call | 
 |  * netif_wake_queue(). | 
 |  */ | 
 | static int | 
 | bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	dma_addr_t mapping; | 
 | 	struct tx_bd *txbd; | 
 | 	struct sw_bd *tx_buf; | 
 | 	u32 len, vlan_tag_flags, last_frag, mss; | 
 | 	u16 prod, ring_prod; | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) { | 
 | 		netif_stop_queue(dev); | 
 | 		printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n", | 
 | 			dev->name); | 
 |  | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 | 	len = skb_headlen(skb); | 
 | 	prod = bp->tx_prod; | 
 | 	ring_prod = TX_RING_IDX(prod); | 
 |  | 
 | 	vlan_tag_flags = 0; | 
 | 	if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 		vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; | 
 | 	} | 
 |  | 
 | 	if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) { | 
 | 		vlan_tag_flags |= | 
 | 			(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16)); | 
 | 	} | 
 | #ifdef BCM_TSO | 
 | 	if ((mss = skb_shinfo(skb)->gso_size) && | 
 | 		(skb->len > (bp->dev->mtu + ETH_HLEN))) { | 
 | 		u32 tcp_opt_len, ip_tcp_len; | 
 |  | 
 | 		if (skb_header_cloned(skb) && | 
 | 		    pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) { | 
 | 			dev_kfree_skb(skb); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 |  | 
 | 		tcp_opt_len = ((skb->h.th->doff - 5) * 4); | 
 | 		vlan_tag_flags |= TX_BD_FLAGS_SW_LSO; | 
 |  | 
 | 		tcp_opt_len = 0; | 
 | 		if (skb->h.th->doff > 5) { | 
 | 			tcp_opt_len = (skb->h.th->doff - 5) << 2; | 
 | 		} | 
 | 		ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr); | 
 |  | 
 | 		skb->nh.iph->check = 0; | 
 | 		skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len); | 
 | 		skb->h.th->check = | 
 | 			~csum_tcpudp_magic(skb->nh.iph->saddr, | 
 | 					    skb->nh.iph->daddr, | 
 | 					    0, IPPROTO_TCP, 0); | 
 |  | 
 | 		if (tcp_opt_len || (skb->nh.iph->ihl > 5)) { | 
 | 			vlan_tag_flags |= ((skb->nh.iph->ihl - 5) + | 
 | 				(tcp_opt_len >> 2)) << 8; | 
 | 		} | 
 | 	} | 
 | 	else | 
 | #endif | 
 | 	{ | 
 | 		mss = 0; | 
 | 	} | 
 |  | 
 | 	mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE); | 
 |  | 
 | 	tx_buf = &bp->tx_buf_ring[ring_prod]; | 
 | 	tx_buf->skb = skb; | 
 | 	pci_unmap_addr_set(tx_buf, mapping, mapping); | 
 |  | 
 | 	txbd = &bp->tx_desc_ring[ring_prod]; | 
 |  | 
 | 	txbd->tx_bd_haddr_hi = (u64) mapping >> 32; | 
 | 	txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; | 
 | 	txbd->tx_bd_mss_nbytes = len | (mss << 16); | 
 | 	txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START; | 
 |  | 
 | 	last_frag = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 	for (i = 0; i < last_frag; i++) { | 
 | 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 |  | 
 | 		prod = NEXT_TX_BD(prod); | 
 | 		ring_prod = TX_RING_IDX(prod); | 
 | 		txbd = &bp->tx_desc_ring[ring_prod]; | 
 |  | 
 | 		len = frag->size; | 
 | 		mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset, | 
 | 			len, PCI_DMA_TODEVICE); | 
 | 		pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod], | 
 | 				mapping, mapping); | 
 |  | 
 | 		txbd->tx_bd_haddr_hi = (u64) mapping >> 32; | 
 | 		txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; | 
 | 		txbd->tx_bd_mss_nbytes = len | (mss << 16); | 
 | 		txbd->tx_bd_vlan_tag_flags = vlan_tag_flags; | 
 |  | 
 | 	} | 
 | 	txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END; | 
 |  | 
 | 	prod = NEXT_TX_BD(prod); | 
 | 	bp->tx_prod_bseq += skb->len; | 
 |  | 
 | 	REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod); | 
 | 	REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); | 
 |  | 
 | 	mmiowb(); | 
 |  | 
 | 	bp->tx_prod = prod; | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 | 	if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) { | 
 | 		netif_stop_queue(dev); | 
 | 		if (bnx2_tx_avail(bp) > bp->tx_wake_thresh) | 
 | 			netif_wake_queue(dev); | 
 | 	} | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static int | 
 | bnx2_close(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u32 reset_code; | 
 |  | 
 | 	/* Calling flush_scheduled_work() may deadlock because | 
 | 	 * linkwatch_event() may be on the workqueue and it will try to get | 
 | 	 * the rtnl_lock which we are holding. | 
 | 	 */ | 
 | 	while (bp->in_reset_task) | 
 | 		msleep(1); | 
 |  | 
 | 	bnx2_netif_stop(bp); | 
 | 	del_timer_sync(&bp->timer); | 
 | 	if (bp->flags & NO_WOL_FLAG) | 
 | 		reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN; | 
 | 	else if (bp->wol) | 
 | 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; | 
 | 	else | 
 | 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; | 
 | 	bnx2_reset_chip(bp, reset_code); | 
 | 	free_irq(bp->pdev->irq, dev); | 
 | 	if (bp->flags & USING_MSI_FLAG) { | 
 | 		pci_disable_msi(bp->pdev); | 
 | 		bp->flags &= ~USING_MSI_FLAG; | 
 | 	} | 
 | 	bnx2_free_skbs(bp); | 
 | 	bnx2_free_mem(bp); | 
 | 	bp->link_up = 0; | 
 | 	netif_carrier_off(bp->dev); | 
 | 	bnx2_set_power_state(bp, PCI_D3hot); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define GET_NET_STATS64(ctr)					\ | 
 | 	(unsigned long) ((unsigned long) (ctr##_hi) << 32) +	\ | 
 | 	(unsigned long) (ctr##_lo) | 
 |  | 
 | #define GET_NET_STATS32(ctr)		\ | 
 | 	(ctr##_lo) | 
 |  | 
 | #if (BITS_PER_LONG == 64) | 
 | #define GET_NET_STATS	GET_NET_STATS64 | 
 | #else | 
 | #define GET_NET_STATS	GET_NET_STATS32 | 
 | #endif | 
 |  | 
 | static struct net_device_stats * | 
 | bnx2_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	struct statistics_block *stats_blk = bp->stats_blk; | 
 | 	struct net_device_stats *net_stats = &bp->net_stats; | 
 |  | 
 | 	if (bp->stats_blk == NULL) { | 
 | 		return net_stats; | 
 | 	} | 
 | 	net_stats->rx_packets = | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) + | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) + | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts); | 
 |  | 
 | 	net_stats->tx_packets = | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) + | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) + | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts); | 
 |  | 
 | 	net_stats->rx_bytes = | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCInOctets); | 
 |  | 
 | 	net_stats->tx_bytes = | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCOutOctets); | 
 |  | 
 | 	net_stats->multicast = | 
 | 		GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts); | 
 |  | 
 | 	net_stats->collisions = | 
 | 		(unsigned long) stats_blk->stat_EtherStatsCollisions; | 
 |  | 
 | 	net_stats->rx_length_errors = | 
 | 		(unsigned long) (stats_blk->stat_EtherStatsUndersizePkts + | 
 | 		stats_blk->stat_EtherStatsOverrsizePkts); | 
 |  | 
 | 	net_stats->rx_over_errors = | 
 | 		(unsigned long) stats_blk->stat_IfInMBUFDiscards; | 
 |  | 
 | 	net_stats->rx_frame_errors = | 
 | 		(unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors; | 
 |  | 
 | 	net_stats->rx_crc_errors = | 
 | 		(unsigned long) stats_blk->stat_Dot3StatsFCSErrors; | 
 |  | 
 | 	net_stats->rx_errors = net_stats->rx_length_errors + | 
 | 		net_stats->rx_over_errors + net_stats->rx_frame_errors + | 
 | 		net_stats->rx_crc_errors; | 
 |  | 
 | 	net_stats->tx_aborted_errors = | 
 |     		(unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions + | 
 | 		stats_blk->stat_Dot3StatsLateCollisions); | 
 |  | 
 | 	if ((CHIP_NUM(bp) == CHIP_NUM_5706) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_A0)) | 
 | 		net_stats->tx_carrier_errors = 0; | 
 | 	else { | 
 | 		net_stats->tx_carrier_errors = | 
 | 			(unsigned long) | 
 | 			stats_blk->stat_Dot3StatsCarrierSenseErrors; | 
 | 	} | 
 |  | 
 | 	net_stats->tx_errors = | 
 |     		(unsigned long) | 
 | 		stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors | 
 | 		+ | 
 | 		net_stats->tx_aborted_errors + | 
 | 		net_stats->tx_carrier_errors; | 
 |  | 
 | 	net_stats->rx_missed_errors = | 
 | 		(unsigned long) (stats_blk->stat_IfInMBUFDiscards + | 
 | 		stats_blk->stat_FwRxDrop); | 
 |  | 
 | 	return net_stats; | 
 | } | 
 |  | 
 | /* All ethtool functions called with rtnl_lock */ | 
 |  | 
 | static int | 
 | bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	cmd->supported = SUPPORTED_Autoneg; | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		cmd->supported |= SUPPORTED_1000baseT_Full | | 
 | 			SUPPORTED_FIBRE; | 
 |  | 
 | 		cmd->port = PORT_FIBRE; | 
 | 	} | 
 | 	else { | 
 | 		cmd->supported |= SUPPORTED_10baseT_Half | | 
 | 			SUPPORTED_10baseT_Full | | 
 | 			SUPPORTED_100baseT_Half | | 
 | 			SUPPORTED_100baseT_Full | | 
 | 			SUPPORTED_1000baseT_Full | | 
 | 			SUPPORTED_TP; | 
 |  | 
 | 		cmd->port = PORT_TP; | 
 | 	} | 
 |  | 
 | 	cmd->advertising = bp->advertising; | 
 |  | 
 | 	if (bp->autoneg & AUTONEG_SPEED) { | 
 | 		cmd->autoneg = AUTONEG_ENABLE; | 
 | 	} | 
 | 	else { | 
 | 		cmd->autoneg = AUTONEG_DISABLE; | 
 | 	} | 
 |  | 
 | 	if (netif_carrier_ok(dev)) { | 
 | 		cmd->speed = bp->line_speed; | 
 | 		cmd->duplex = bp->duplex; | 
 | 	} | 
 | 	else { | 
 | 		cmd->speed = -1; | 
 | 		cmd->duplex = -1; | 
 | 	} | 
 |  | 
 | 	cmd->transceiver = XCVR_INTERNAL; | 
 | 	cmd->phy_address = bp->phy_addr; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u8 autoneg = bp->autoneg; | 
 | 	u8 req_duplex = bp->req_duplex; | 
 | 	u16 req_line_speed = bp->req_line_speed; | 
 | 	u32 advertising = bp->advertising; | 
 |  | 
 | 	if (cmd->autoneg == AUTONEG_ENABLE) { | 
 | 		autoneg |= AUTONEG_SPEED; | 
 |  | 
 | 		cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED; | 
 |  | 
 | 		/* allow advertising 1 speed */ | 
 | 		if ((cmd->advertising == ADVERTISED_10baseT_Half) || | 
 | 			(cmd->advertising == ADVERTISED_10baseT_Full) || | 
 | 			(cmd->advertising == ADVERTISED_100baseT_Half) || | 
 | 			(cmd->advertising == ADVERTISED_100baseT_Full)) { | 
 |  | 
 | 			if (bp->phy_flags & PHY_SERDES_FLAG) | 
 | 				return -EINVAL; | 
 |  | 
 | 			advertising = cmd->advertising; | 
 |  | 
 | 		} | 
 | 		else if (cmd->advertising == ADVERTISED_1000baseT_Full) { | 
 | 			advertising = cmd->advertising; | 
 | 		} | 
 | 		else if (cmd->advertising == ADVERTISED_1000baseT_Half) { | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		else { | 
 | 			if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 				advertising = ETHTOOL_ALL_FIBRE_SPEED; | 
 | 			} | 
 | 			else { | 
 | 				advertising = ETHTOOL_ALL_COPPER_SPEED; | 
 | 			} | 
 | 		} | 
 | 		advertising |= ADVERTISED_Autoneg; | 
 | 	} | 
 | 	else { | 
 | 		if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 			if ((cmd->speed != SPEED_1000) || | 
 | 				(cmd->duplex != DUPLEX_FULL)) { | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 | 		else if (cmd->speed == SPEED_1000) { | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		autoneg &= ~AUTONEG_SPEED; | 
 | 		req_line_speed = cmd->speed; | 
 | 		req_duplex = cmd->duplex; | 
 | 		advertising = 0; | 
 | 	} | 
 |  | 
 | 	bp->autoneg = autoneg; | 
 | 	bp->advertising = advertising; | 
 | 	bp->req_line_speed = req_line_speed; | 
 | 	bp->req_duplex = req_duplex; | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 |  | 
 | 	bnx2_setup_phy(bp); | 
 |  | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	strcpy(info->driver, DRV_MODULE_NAME); | 
 | 	strcpy(info->version, DRV_MODULE_VERSION); | 
 | 	strcpy(info->bus_info, pci_name(bp->pdev)); | 
 | 	info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0'; | 
 | 	info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0'; | 
 | 	info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0'; | 
 | 	info->fw_version[1] = info->fw_version[3] = '.'; | 
 | 	info->fw_version[5] = 0; | 
 | } | 
 |  | 
 | #define BNX2_REGDUMP_LEN		(32 * 1024) | 
 |  | 
 | static int | 
 | bnx2_get_regs_len(struct net_device *dev) | 
 | { | 
 | 	return BNX2_REGDUMP_LEN; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) | 
 | { | 
 | 	u32 *p = _p, i, offset; | 
 | 	u8 *orig_p = _p; | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c, | 
 | 				 0x0800, 0x0880, 0x0c00, 0x0c10, | 
 | 				 0x0c30, 0x0d08, 0x1000, 0x101c, | 
 | 				 0x1040, 0x1048, 0x1080, 0x10a4, | 
 | 				 0x1400, 0x1490, 0x1498, 0x14f0, | 
 | 				 0x1500, 0x155c, 0x1580, 0x15dc, | 
 | 				 0x1600, 0x1658, 0x1680, 0x16d8, | 
 | 				 0x1800, 0x1820, 0x1840, 0x1854, | 
 | 				 0x1880, 0x1894, 0x1900, 0x1984, | 
 | 				 0x1c00, 0x1c0c, 0x1c40, 0x1c54, | 
 | 				 0x1c80, 0x1c94, 0x1d00, 0x1d84, | 
 | 				 0x2000, 0x2030, 0x23c0, 0x2400, | 
 | 				 0x2800, 0x2820, 0x2830, 0x2850, | 
 | 				 0x2b40, 0x2c10, 0x2fc0, 0x3058, | 
 | 				 0x3c00, 0x3c94, 0x4000, 0x4010, | 
 | 				 0x4080, 0x4090, 0x43c0, 0x4458, | 
 | 				 0x4c00, 0x4c18, 0x4c40, 0x4c54, | 
 | 				 0x4fc0, 0x5010, 0x53c0, 0x5444, | 
 | 				 0x5c00, 0x5c18, 0x5c80, 0x5c90, | 
 | 				 0x5fc0, 0x6000, 0x6400, 0x6428, | 
 | 				 0x6800, 0x6848, 0x684c, 0x6860, | 
 | 				 0x6888, 0x6910, 0x8000 }; | 
 |  | 
 | 	regs->version = 0; | 
 |  | 
 | 	memset(p, 0, BNX2_REGDUMP_LEN); | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return; | 
 |  | 
 | 	i = 0; | 
 | 	offset = reg_boundaries[0]; | 
 | 	p += offset; | 
 | 	while (offset < BNX2_REGDUMP_LEN) { | 
 | 		*p++ = REG_RD(bp, offset); | 
 | 		offset += 4; | 
 | 		if (offset == reg_boundaries[i + 1]) { | 
 | 			offset = reg_boundaries[i + 2]; | 
 | 			p = (u32 *) (orig_p + offset); | 
 | 			i += 2; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (bp->flags & NO_WOL_FLAG) { | 
 | 		wol->supported = 0; | 
 | 		wol->wolopts = 0; | 
 | 	} | 
 | 	else { | 
 | 		wol->supported = WAKE_MAGIC; | 
 | 		if (bp->wol) | 
 | 			wol->wolopts = WAKE_MAGIC; | 
 | 		else | 
 | 			wol->wolopts = 0; | 
 | 	} | 
 | 	memset(&wol->sopass, 0, sizeof(wol->sopass)); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (wol->wolopts & ~WAKE_MAGIC) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (wol->wolopts & WAKE_MAGIC) { | 
 | 		if (bp->flags & NO_WOL_FLAG) | 
 | 			return -EINVAL; | 
 |  | 
 | 		bp->wol = 1; | 
 | 	} | 
 | 	else { | 
 | 		bp->wol = 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_nway_reset(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u32 bmcr; | 
 |  | 
 | 	if (!(bp->autoneg & AUTONEG_SPEED)) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 |  | 
 | 	/* Force a link down visible on the other side */ | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); | 
 | 		spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 		msleep(20); | 
 |  | 
 | 		spin_lock_bh(&bp->phy_lock); | 
 | 		if (CHIP_NUM(bp) == CHIP_NUM_5706) { | 
 | 			bp->current_interval = SERDES_AN_TIMEOUT; | 
 | 			bp->serdes_an_pending = 1; | 
 | 			mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2_read_phy(bp, MII_BMCR, &bmcr); | 
 | 	bmcr &= ~BMCR_LOOPBACK; | 
 | 	bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); | 
 |  | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_get_eeprom_len(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (bp->flash_info == NULL) | 
 | 		return 0; | 
 |  | 
 | 	return (int) bp->flash_size; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, | 
 | 		u8 *eebuf) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	/* parameters already validated in ethtool_get_eeprom */ | 
 |  | 
 | 	rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, | 
 | 		u8 *eebuf) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	/* parameters already validated in ethtool_set_eeprom */ | 
 |  | 
 | 	rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	memset(coal, 0, sizeof(struct ethtool_coalesce)); | 
 |  | 
 | 	coal->rx_coalesce_usecs = bp->rx_ticks; | 
 | 	coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip; | 
 | 	coal->rx_coalesce_usecs_irq = bp->rx_ticks_int; | 
 | 	coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int; | 
 |  | 
 | 	coal->tx_coalesce_usecs = bp->tx_ticks; | 
 | 	coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip; | 
 | 	coal->tx_coalesce_usecs_irq = bp->tx_ticks_int; | 
 | 	coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int; | 
 |  | 
 | 	coal->stats_block_coalesce_usecs = bp->stats_ticks; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	bp->rx_ticks = (u16) coal->rx_coalesce_usecs; | 
 | 	if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff; | 
 |  | 
 | 	bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames; | 
 | 	if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff; | 
 |  | 
 | 	bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq; | 
 | 	if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff; | 
 |  | 
 | 	bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq; | 
 | 	if (bp->rx_quick_cons_trip_int > 0xff) | 
 | 		bp->rx_quick_cons_trip_int = 0xff; | 
 |  | 
 | 	bp->tx_ticks = (u16) coal->tx_coalesce_usecs; | 
 | 	if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff; | 
 |  | 
 | 	bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames; | 
 | 	if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff; | 
 |  | 
 | 	bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq; | 
 | 	if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff; | 
 |  | 
 | 	bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq; | 
 | 	if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int = | 
 | 		0xff; | 
 |  | 
 | 	bp->stats_ticks = coal->stats_block_coalesce_usecs; | 
 | 	if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00; | 
 | 	bp->stats_ticks &= 0xffff00; | 
 |  | 
 | 	if (netif_running(bp->dev)) { | 
 | 		bnx2_netif_stop(bp); | 
 | 		bnx2_init_nic(bp); | 
 | 		bnx2_netif_start(bp); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT; | 
 | 	ering->rx_mini_max_pending = 0; | 
 | 	ering->rx_jumbo_max_pending = 0; | 
 |  | 
 | 	ering->rx_pending = bp->rx_ring_size; | 
 | 	ering->rx_mini_pending = 0; | 
 | 	ering->rx_jumbo_pending = 0; | 
 |  | 
 | 	ering->tx_max_pending = MAX_TX_DESC_CNT; | 
 | 	ering->tx_pending = bp->tx_ring_size; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) || | 
 | 		(ering->tx_pending > MAX_TX_DESC_CNT) || | 
 | 		(ering->tx_pending <= MAX_SKB_FRAGS)) { | 
 |  | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (netif_running(bp->dev)) { | 
 | 		bnx2_netif_stop(bp); | 
 | 		bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); | 
 | 		bnx2_free_skbs(bp); | 
 | 		bnx2_free_mem(bp); | 
 | 	} | 
 |  | 
 | 	bnx2_set_rx_ring_size(bp, ering->rx_pending); | 
 | 	bp->tx_ring_size = ering->tx_pending; | 
 |  | 
 | 	if (netif_running(bp->dev)) { | 
 | 		int rc; | 
 |  | 
 | 		rc = bnx2_alloc_mem(bp); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 		bnx2_init_nic(bp); | 
 | 		bnx2_netif_start(bp); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0); | 
 | 	epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0); | 
 | 	epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	bp->req_flow_ctrl = 0; | 
 | 	if (epause->rx_pause) | 
 | 		bp->req_flow_ctrl |= FLOW_CTRL_RX; | 
 | 	if (epause->tx_pause) | 
 | 		bp->req_flow_ctrl |= FLOW_CTRL_TX; | 
 |  | 
 | 	if (epause->autoneg) { | 
 | 		bp->autoneg |= AUTONEG_FLOW_CTRL; | 
 | 	} | 
 | 	else { | 
 | 		bp->autoneg &= ~AUTONEG_FLOW_CTRL; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&bp->phy_lock); | 
 |  | 
 | 	bnx2_setup_phy(bp); | 
 |  | 
 | 	spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 | 
 | bnx2_get_rx_csum(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	return bp->rx_csum; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_rx_csum(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	bp->rx_csum = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_set_tso(struct net_device *dev, u32 data) | 
 | { | 
 | 	if (data) | 
 | 		dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN; | 
 | 	else | 
 | 		dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define BNX2_NUM_STATS 46 | 
 |  | 
 | static struct { | 
 | 	char string[ETH_GSTRING_LEN]; | 
 | } bnx2_stats_str_arr[BNX2_NUM_STATS] = { | 
 | 	{ "rx_bytes" }, | 
 | 	{ "rx_error_bytes" }, | 
 | 	{ "tx_bytes" }, | 
 | 	{ "tx_error_bytes" }, | 
 | 	{ "rx_ucast_packets" }, | 
 | 	{ "rx_mcast_packets" }, | 
 | 	{ "rx_bcast_packets" }, | 
 | 	{ "tx_ucast_packets" }, | 
 | 	{ "tx_mcast_packets" }, | 
 | 	{ "tx_bcast_packets" }, | 
 | 	{ "tx_mac_errors" }, | 
 | 	{ "tx_carrier_errors" }, | 
 | 	{ "rx_crc_errors" }, | 
 | 	{ "rx_align_errors" }, | 
 | 	{ "tx_single_collisions" }, | 
 | 	{ "tx_multi_collisions" }, | 
 | 	{ "tx_deferred" }, | 
 | 	{ "tx_excess_collisions" }, | 
 | 	{ "tx_late_collisions" }, | 
 | 	{ "tx_total_collisions" }, | 
 | 	{ "rx_fragments" }, | 
 | 	{ "rx_jabbers" }, | 
 | 	{ "rx_undersize_packets" }, | 
 | 	{ "rx_oversize_packets" }, | 
 | 	{ "rx_64_byte_packets" }, | 
 | 	{ "rx_65_to_127_byte_packets" }, | 
 | 	{ "rx_128_to_255_byte_packets" }, | 
 | 	{ "rx_256_to_511_byte_packets" }, | 
 | 	{ "rx_512_to_1023_byte_packets" }, | 
 | 	{ "rx_1024_to_1522_byte_packets" }, | 
 | 	{ "rx_1523_to_9022_byte_packets" }, | 
 | 	{ "tx_64_byte_packets" }, | 
 | 	{ "tx_65_to_127_byte_packets" }, | 
 | 	{ "tx_128_to_255_byte_packets" }, | 
 | 	{ "tx_256_to_511_byte_packets" }, | 
 | 	{ "tx_512_to_1023_byte_packets" }, | 
 | 	{ "tx_1024_to_1522_byte_packets" }, | 
 | 	{ "tx_1523_to_9022_byte_packets" }, | 
 | 	{ "rx_xon_frames" }, | 
 | 	{ "rx_xoff_frames" }, | 
 | 	{ "tx_xon_frames" }, | 
 | 	{ "tx_xoff_frames" }, | 
 | 	{ "rx_mac_ctrl_frames" }, | 
 | 	{ "rx_filtered_packets" }, | 
 | 	{ "rx_discards" }, | 
 | 	{ "rx_fw_discards" }, | 
 | }; | 
 |  | 
 | #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4) | 
 |  | 
 | static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = { | 
 |     STATS_OFFSET32(stat_IfHCInOctets_hi), | 
 |     STATS_OFFSET32(stat_IfHCInBadOctets_hi), | 
 |     STATS_OFFSET32(stat_IfHCOutOctets_hi), | 
 |     STATS_OFFSET32(stat_IfHCOutBadOctets_hi), | 
 |     STATS_OFFSET32(stat_IfHCInUcastPkts_hi), | 
 |     STATS_OFFSET32(stat_IfHCInMulticastPkts_hi), | 
 |     STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi), | 
 |     STATS_OFFSET32(stat_IfHCOutUcastPkts_hi), | 
 |     STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi), | 
 |     STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi), | 
 |     STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors), | 
 |     STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors), | 
 |     STATS_OFFSET32(stat_Dot3StatsFCSErrors), | 
 |     STATS_OFFSET32(stat_Dot3StatsAlignmentErrors), | 
 |     STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames), | 
 |     STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames), | 
 |     STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions), | 
 |     STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions), | 
 |     STATS_OFFSET32(stat_Dot3StatsLateCollisions), | 
 |     STATS_OFFSET32(stat_EtherStatsCollisions), | 
 |     STATS_OFFSET32(stat_EtherStatsFragments), | 
 |     STATS_OFFSET32(stat_EtherStatsJabbers), | 
 |     STATS_OFFSET32(stat_EtherStatsUndersizePkts), | 
 |     STATS_OFFSET32(stat_EtherStatsOverrsizePkts), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx64Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx64Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets), | 
 |     STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets), | 
 |     STATS_OFFSET32(stat_XonPauseFramesReceived), | 
 |     STATS_OFFSET32(stat_XoffPauseFramesReceived), | 
 |     STATS_OFFSET32(stat_OutXonSent), | 
 |     STATS_OFFSET32(stat_OutXoffSent), | 
 |     STATS_OFFSET32(stat_MacControlFramesReceived), | 
 |     STATS_OFFSET32(stat_IfInFramesL2FilterDiscards), | 
 |     STATS_OFFSET32(stat_IfInMBUFDiscards), | 
 |     STATS_OFFSET32(stat_FwRxDrop), | 
 | }; | 
 |  | 
 | /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are | 
 |  * skipped because of errata. | 
 |  */ | 
 | static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = { | 
 | 	8,0,8,8,8,8,8,8,8,8, | 
 | 	4,0,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4, | 
 | }; | 
 |  | 
 | static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = { | 
 | 	8,0,8,8,8,8,8,8,8,8, | 
 | 	4,4,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4,4,4,4,4, | 
 | 	4,4,4,4,4,4, | 
 | }; | 
 |  | 
 | #define BNX2_NUM_TESTS 6 | 
 |  | 
 | static struct { | 
 | 	char string[ETH_GSTRING_LEN]; | 
 | } bnx2_tests_str_arr[BNX2_NUM_TESTS] = { | 
 | 	{ "register_test (offline)" }, | 
 | 	{ "memory_test (offline)" }, | 
 | 	{ "loopback_test (offline)" }, | 
 | 	{ "nvram_test (online)" }, | 
 | 	{ "interrupt_test (online)" }, | 
 | 	{ "link_test (online)" }, | 
 | }; | 
 |  | 
 | static int | 
 | bnx2_self_test_count(struct net_device *dev) | 
 | { | 
 | 	return BNX2_NUM_TESTS; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS); | 
 | 	if (etest->flags & ETH_TEST_FL_OFFLINE) { | 
 | 		bnx2_netif_stop(bp); | 
 | 		bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG); | 
 | 		bnx2_free_skbs(bp); | 
 |  | 
 | 		if (bnx2_test_registers(bp) != 0) { | 
 | 			buf[0] = 1; | 
 | 			etest->flags |= ETH_TEST_FL_FAILED; | 
 | 		} | 
 | 		if (bnx2_test_memory(bp) != 0) { | 
 | 			buf[1] = 1; | 
 | 			etest->flags |= ETH_TEST_FL_FAILED; | 
 | 		} | 
 | 		if ((buf[2] = bnx2_test_loopback(bp)) != 0) | 
 | 			etest->flags |= ETH_TEST_FL_FAILED; | 
 |  | 
 | 		if (!netif_running(bp->dev)) { | 
 | 			bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); | 
 | 		} | 
 | 		else { | 
 | 			bnx2_init_nic(bp); | 
 | 			bnx2_netif_start(bp); | 
 | 		} | 
 |  | 
 | 		/* wait for link up */ | 
 | 		msleep_interruptible(3000); | 
 | 		if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG)) | 
 | 			msleep_interruptible(4000); | 
 | 	} | 
 |  | 
 | 	if (bnx2_test_nvram(bp) != 0) { | 
 | 		buf[3] = 1; | 
 | 		etest->flags |= ETH_TEST_FL_FAILED; | 
 | 	} | 
 | 	if (bnx2_test_intr(bp) != 0) { | 
 | 		buf[4] = 1; | 
 | 		etest->flags |= ETH_TEST_FL_FAILED; | 
 | 	} | 
 |  | 
 | 	if (bnx2_test_link(bp) != 0) { | 
 | 		buf[5] = 1; | 
 | 		etest->flags |= ETH_TEST_FL_FAILED; | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf) | 
 | { | 
 | 	switch (stringset) { | 
 | 	case ETH_SS_STATS: | 
 | 		memcpy(buf, bnx2_stats_str_arr, | 
 | 			sizeof(bnx2_stats_str_arr)); | 
 | 		break; | 
 | 	case ETH_SS_TEST: | 
 | 		memcpy(buf, bnx2_tests_str_arr, | 
 | 			sizeof(bnx2_tests_str_arr)); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_get_stats_count(struct net_device *dev) | 
 | { | 
 | 	return BNX2_NUM_STATS; | 
 | } | 
 |  | 
 | static void | 
 | bnx2_get_ethtool_stats(struct net_device *dev, | 
 | 		struct ethtool_stats *stats, u64 *buf) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int i; | 
 | 	u32 *hw_stats = (u32 *) bp->stats_blk; | 
 | 	u8 *stats_len_arr = NULL; | 
 |  | 
 | 	if (hw_stats == NULL) { | 
 | 		memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5706_A1) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5706_A2) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_A0)) | 
 | 		stats_len_arr = bnx2_5706_stats_len_arr; | 
 | 	else | 
 | 		stats_len_arr = bnx2_5708_stats_len_arr; | 
 |  | 
 | 	for (i = 0; i < BNX2_NUM_STATS; i++) { | 
 | 		if (stats_len_arr[i] == 0) { | 
 | 			/* skip this counter */ | 
 | 			buf[i] = 0; | 
 | 			continue; | 
 | 		} | 
 | 		if (stats_len_arr[i] == 4) { | 
 | 			/* 4-byte counter */ | 
 | 			buf[i] = (u64) | 
 | 				*(hw_stats + bnx2_stats_offset_arr[i]); | 
 | 			continue; | 
 | 		} | 
 | 		/* 8-byte counter */ | 
 | 		buf[i] = (((u64) *(hw_stats + | 
 | 					bnx2_stats_offset_arr[i])) << 32) + | 
 | 				*(hw_stats + bnx2_stats_offset_arr[i] + 1); | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | bnx2_phys_id(struct net_device *dev, u32 data) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int i; | 
 | 	u32 save; | 
 |  | 
 | 	if (data == 0) | 
 | 		data = 2; | 
 |  | 
 | 	save = REG_RD(bp, BNX2_MISC_CFG); | 
 | 	REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC); | 
 |  | 
 | 	for (i = 0; i < (data * 2); i++) { | 
 | 		if ((i % 2) == 0) { | 
 | 			REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE); | 
 | 		} | 
 | 		else { | 
 | 			REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE | | 
 | 				BNX2_EMAC_LED_1000MB_OVERRIDE | | 
 | 				BNX2_EMAC_LED_100MB_OVERRIDE | | 
 | 				BNX2_EMAC_LED_10MB_OVERRIDE | | 
 | 				BNX2_EMAC_LED_TRAFFIC_OVERRIDE | | 
 | 				BNX2_EMAC_LED_TRAFFIC); | 
 | 		} | 
 | 		msleep_interruptible(500); | 
 | 		if (signal_pending(current)) | 
 | 			break; | 
 | 	} | 
 | 	REG_WR(bp, BNX2_EMAC_LED, 0); | 
 | 	REG_WR(bp, BNX2_MISC_CFG, save); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct ethtool_ops bnx2_ethtool_ops = { | 
 | 	.get_settings		= bnx2_get_settings, | 
 | 	.set_settings		= bnx2_set_settings, | 
 | 	.get_drvinfo		= bnx2_get_drvinfo, | 
 | 	.get_regs_len		= bnx2_get_regs_len, | 
 | 	.get_regs		= bnx2_get_regs, | 
 | 	.get_wol		= bnx2_get_wol, | 
 | 	.set_wol		= bnx2_set_wol, | 
 | 	.nway_reset		= bnx2_nway_reset, | 
 | 	.get_link		= ethtool_op_get_link, | 
 | 	.get_eeprom_len		= bnx2_get_eeprom_len, | 
 | 	.get_eeprom		= bnx2_get_eeprom, | 
 | 	.set_eeprom		= bnx2_set_eeprom, | 
 | 	.get_coalesce		= bnx2_get_coalesce, | 
 | 	.set_coalesce		= bnx2_set_coalesce, | 
 | 	.get_ringparam		= bnx2_get_ringparam, | 
 | 	.set_ringparam		= bnx2_set_ringparam, | 
 | 	.get_pauseparam		= bnx2_get_pauseparam, | 
 | 	.set_pauseparam		= bnx2_set_pauseparam, | 
 | 	.get_rx_csum		= bnx2_get_rx_csum, | 
 | 	.set_rx_csum		= bnx2_set_rx_csum, | 
 | 	.get_tx_csum		= ethtool_op_get_tx_csum, | 
 | 	.set_tx_csum		= ethtool_op_set_tx_csum, | 
 | 	.get_sg			= ethtool_op_get_sg, | 
 | 	.set_sg			= ethtool_op_set_sg, | 
 | #ifdef BCM_TSO | 
 | 	.get_tso		= ethtool_op_get_tso, | 
 | 	.set_tso		= bnx2_set_tso, | 
 | #endif | 
 | 	.self_test_count	= bnx2_self_test_count, | 
 | 	.self_test		= bnx2_self_test, | 
 | 	.get_strings		= bnx2_get_strings, | 
 | 	.phys_id		= bnx2_phys_id, | 
 | 	.get_stats_count	= bnx2_get_stats_count, | 
 | 	.get_ethtool_stats	= bnx2_get_ethtool_stats, | 
 | 	.get_perm_addr		= ethtool_op_get_perm_addr, | 
 | }; | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static int | 
 | bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	int err; | 
 |  | 
 | 	switch(cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 		data->phy_id = bp->phy_addr; | 
 |  | 
 | 		/* fallthru */ | 
 | 	case SIOCGMIIREG: { | 
 | 		u32 mii_regval; | 
 |  | 
 | 		spin_lock_bh(&bp->phy_lock); | 
 | 		err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval); | 
 | 		spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 		data->val_out = mii_regval; | 
 |  | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	case SIOCSMIIREG: | 
 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 			return -EPERM; | 
 |  | 
 | 		spin_lock_bh(&bp->phy_lock); | 
 | 		err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in); | 
 | 		spin_unlock_bh(&bp->phy_lock); | 
 |  | 
 | 		return err; | 
 |  | 
 | 	default: | 
 | 		/* do nothing */ | 
 | 		break; | 
 | 	} | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static int | 
 | bnx2_change_mac_addr(struct net_device *dev, void *p) | 
 | { | 
 | 	struct sockaddr *addr = p; | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 | 	if (netif_running(dev)) | 
 | 		bnx2_set_mac_addr(bp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Called with rtnl_lock */ | 
 | static int | 
 | bnx2_change_mtu(struct net_device *dev, int new_mtu) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) || | 
 | 		((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dev->mtu = new_mtu; | 
 | 	if (netif_running(dev)) { | 
 | 		bnx2_netif_stop(bp); | 
 |  | 
 | 		bnx2_init_nic(bp); | 
 |  | 
 | 		bnx2_netif_start(bp); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) | 
 | static void | 
 | poll_bnx2(struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	disable_irq(bp->pdev->irq); | 
 | 	bnx2_interrupt(bp->pdev->irq, dev); | 
 | 	enable_irq(bp->pdev->irq); | 
 | } | 
 | #endif | 
 |  | 
 | static int __devinit | 
 | bnx2_init_board(struct pci_dev *pdev, struct net_device *dev) | 
 | { | 
 | 	struct bnx2 *bp; | 
 | 	unsigned long mem_len; | 
 | 	int rc; | 
 | 	u32 reg; | 
 |  | 
 | 	SET_MODULE_OWNER(dev); | 
 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | 	bp->flags = 0; | 
 | 	bp->phy_flags = 0; | 
 |  | 
 | 	/* enable device (incl. PCI PM wakeup), and bus-mastering */ | 
 | 	rc = pci_enable_device(pdev); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting."); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Cannot find PCI device base address, aborting.\n"); | 
 | 		rc = -ENODEV; | 
 | 		goto err_out_disable; | 
 | 	} | 
 |  | 
 | 	rc = pci_request_regions(pdev, DRV_MODULE_NAME); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); | 
 | 		goto err_out_disable; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); | 
 | 	if (bp->pm_cap == 0) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Cannot find power management capability, aborting.\n"); | 
 | 		rc = -EIO; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX); | 
 | 	if (bp->pcix_cap == 0) { | 
 | 		dev_err(&pdev->dev, "Cannot find PCIX capability, aborting.\n"); | 
 | 		rc = -EIO; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) { | 
 | 		bp->flags |= USING_DAC_FLAG; | 
 | 		if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) { | 
 | 			dev_err(&pdev->dev, | 
 | 				"pci_set_consistent_dma_mask failed, aborting.\n"); | 
 | 			rc = -EIO; | 
 | 			goto err_out_release; | 
 | 		} | 
 | 	} | 
 | 	else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) { | 
 | 		dev_err(&pdev->dev, "System does not support DMA, aborting.\n"); | 
 | 		rc = -EIO; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	bp->dev = dev; | 
 | 	bp->pdev = pdev; | 
 |  | 
 | 	spin_lock_init(&bp->phy_lock); | 
 | 	INIT_WORK(&bp->reset_task, bnx2_reset_task, bp); | 
 |  | 
 | 	dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0); | 
 | 	mem_len = MB_GET_CID_ADDR(17); | 
 | 	dev->mem_end = dev->mem_start + mem_len; | 
 | 	dev->irq = pdev->irq; | 
 |  | 
 | 	bp->regview = ioremap_nocache(dev->base_addr, mem_len); | 
 |  | 
 | 	if (!bp->regview) { | 
 | 		dev_err(&pdev->dev, "Cannot map register space, aborting.\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	/* Configure byte swap and enable write to the reg_window registers. | 
 | 	 * Rely on CPU to do target byte swapping on big endian systems | 
 | 	 * The chip's target access swapping will not swap all accesses | 
 | 	 */ | 
 | 	pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, | 
 | 			       BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | | 
 | 			       BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); | 
 |  | 
 | 	bnx2_set_power_state(bp, PCI_D0); | 
 |  | 
 | 	bp->chip_id = REG_RD(bp, BNX2_MISC_ID); | 
 |  | 
 | 	/* Get bus information. */ | 
 | 	reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS); | 
 | 	if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) { | 
 | 		u32 clkreg; | 
 |  | 
 | 		bp->flags |= PCIX_FLAG; | 
 |  | 
 | 		clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS); | 
 |  | 
 | 		clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; | 
 | 		switch (clkreg) { | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: | 
 | 			bp->bus_speed_mhz = 133; | 
 | 			break; | 
 |  | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: | 
 | 			bp->bus_speed_mhz = 100; | 
 | 			break; | 
 |  | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: | 
 | 			bp->bus_speed_mhz = 66; | 
 | 			break; | 
 |  | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: | 
 | 			bp->bus_speed_mhz = 50; | 
 | 			break; | 
 |  | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: | 
 | 		case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: | 
 | 			bp->bus_speed_mhz = 33; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		if (reg & BNX2_PCICFG_MISC_STATUS_M66EN) | 
 | 			bp->bus_speed_mhz = 66; | 
 | 		else | 
 | 			bp->bus_speed_mhz = 33; | 
 | 	} | 
 |  | 
 | 	if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET) | 
 | 		bp->flags |= PCI_32BIT_FLAG; | 
 |  | 
 | 	/* 5706A0 may falsely detect SERR and PERR. */ | 
 | 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) { | 
 | 		reg = REG_RD(bp, PCI_COMMAND); | 
 | 		reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); | 
 | 		REG_WR(bp, PCI_COMMAND, reg); | 
 | 	} | 
 | 	else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) && | 
 | 		!(bp->flags & PCIX_FLAG)) { | 
 |  | 
 | 		dev_err(&pdev->dev, | 
 | 			"5706 A1 can only be used in a PCIX bus, aborting.\n"); | 
 | 		goto err_out_unmap; | 
 | 	} | 
 |  | 
 | 	bnx2_init_nvram(bp); | 
 |  | 
 | 	reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE); | 
 |  | 
 | 	if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) == | 
 | 	    BNX2_SHM_HDR_SIGNATURE_SIG) | 
 | 		bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0); | 
 | 	else | 
 | 		bp->shmem_base = HOST_VIEW_SHMEM_BASE; | 
 |  | 
 | 	/* Get the permanent MAC address.  First we need to make sure the | 
 | 	 * firmware is actually running. | 
 | 	 */ | 
 | 	reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE); | 
 |  | 
 | 	if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) != | 
 | 	    BNX2_DEV_INFO_SIGNATURE_MAGIC) { | 
 | 		dev_err(&pdev->dev, "Firmware not running, aborting.\n"); | 
 | 		rc = -ENODEV; | 
 | 		goto err_out_unmap; | 
 | 	} | 
 |  | 
 | 	bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV); | 
 |  | 
 | 	reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER); | 
 | 	bp->mac_addr[0] = (u8) (reg >> 8); | 
 | 	bp->mac_addr[1] = (u8) reg; | 
 |  | 
 | 	reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER); | 
 | 	bp->mac_addr[2] = (u8) (reg >> 24); | 
 | 	bp->mac_addr[3] = (u8) (reg >> 16); | 
 | 	bp->mac_addr[4] = (u8) (reg >> 8); | 
 | 	bp->mac_addr[5] = (u8) reg; | 
 |  | 
 | 	bp->tx_ring_size = MAX_TX_DESC_CNT; | 
 | 	bnx2_set_rx_ring_size(bp, 255); | 
 |  | 
 | 	bp->rx_csum = 1; | 
 |  | 
 | 	bp->rx_offset = sizeof(struct l2_fhdr) + 2; | 
 |  | 
 | 	bp->tx_quick_cons_trip_int = 20; | 
 | 	bp->tx_quick_cons_trip = 20; | 
 | 	bp->tx_ticks_int = 80; | 
 | 	bp->tx_ticks = 80; | 
 |  | 
 | 	bp->rx_quick_cons_trip_int = 6; | 
 | 	bp->rx_quick_cons_trip = 6; | 
 | 	bp->rx_ticks_int = 18; | 
 | 	bp->rx_ticks = 18; | 
 |  | 
 | 	bp->stats_ticks = 1000000 & 0xffff00; | 
 |  | 
 | 	bp->timer_interval =  HZ; | 
 | 	bp->current_interval =  HZ; | 
 |  | 
 | 	bp->phy_addr = 1; | 
 |  | 
 | 	/* Disable WOL support if we are running on a SERDES chip. */ | 
 | 	if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) { | 
 | 		bp->phy_flags |= PHY_SERDES_FLAG; | 
 | 		bp->flags |= NO_WOL_FLAG; | 
 | 		if (CHIP_NUM(bp) == CHIP_NUM_5708) { | 
 | 			bp->phy_addr = 2; | 
 | 			reg = REG_RD_IND(bp, bp->shmem_base + | 
 | 					 BNX2_SHARED_HW_CFG_CONFIG); | 
 | 			if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G) | 
 | 				bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_B0) || | 
 | 	    (CHIP_ID(bp) == CHIP_ID_5708_B1)) | 
 | 		bp->flags |= NO_WOL_FLAG; | 
 |  | 
 | 	if (CHIP_ID(bp) == CHIP_ID_5706_A0) { | 
 | 		bp->tx_quick_cons_trip_int = | 
 | 			bp->tx_quick_cons_trip; | 
 | 		bp->tx_ticks_int = bp->tx_ticks; | 
 | 		bp->rx_quick_cons_trip_int = | 
 | 			bp->rx_quick_cons_trip; | 
 | 		bp->rx_ticks_int = bp->rx_ticks; | 
 | 		bp->comp_prod_trip_int = bp->comp_prod_trip; | 
 | 		bp->com_ticks_int = bp->com_ticks; | 
 | 		bp->cmd_ticks_int = bp->cmd_ticks; | 
 | 	} | 
 |  | 
 | 	/* Disable MSI on 5706 if AMD 8132 bridge is found. | 
 | 	 * | 
 | 	 * MSI is defined to be 32-bit write.  The 5706 does 64-bit MSI writes | 
 | 	 * with byte enables disabled on the unused 32-bit word.  This is legal | 
 | 	 * but causes problems on the AMD 8132 which will eventually stop | 
 | 	 * responding after a while. | 
 | 	 * | 
 | 	 * AMD believes this incompatibility is unique to the 5706, and | 
 | 	 * prefers to locally disable MSI rather than globally disabling it | 
 | 	 * using pci_msi_quirk. | 
 | 	 */ | 
 | 	if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) { | 
 | 		struct pci_dev *amd_8132 = NULL; | 
 |  | 
 | 		while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD, | 
 | 						  PCI_DEVICE_ID_AMD_8132_BRIDGE, | 
 | 						  amd_8132))) { | 
 | 			u8 rev; | 
 |  | 
 | 			pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev); | 
 | 			if (rev >= 0x10 && rev <= 0x13) { | 
 | 				disable_msi = 1; | 
 | 				pci_dev_put(amd_8132); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL; | 
 | 	bp->req_line_speed = 0; | 
 | 	if (bp->phy_flags & PHY_SERDES_FLAG) { | 
 | 		bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg; | 
 |  | 
 | 		reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG); | 
 | 		reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK; | 
 | 		if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) { | 
 | 			bp->autoneg = 0; | 
 | 			bp->req_line_speed = bp->line_speed = SPEED_1000; | 
 | 			bp->req_duplex = DUPLEX_FULL; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg; | 
 | 	} | 
 |  | 
 | 	bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX; | 
 |  | 
 | 	init_timer(&bp->timer); | 
 | 	bp->timer.expires = RUN_AT(bp->timer_interval); | 
 | 	bp->timer.data = (unsigned long) bp; | 
 | 	bp->timer.function = bnx2_timer; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_unmap: | 
 | 	if (bp->regview) { | 
 | 		iounmap(bp->regview); | 
 | 		bp->regview = NULL; | 
 | 	} | 
 |  | 
 | err_out_release: | 
 | 	pci_release_regions(pdev); | 
 |  | 
 | err_out_disable: | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 |  | 
 | err_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __devinit | 
 | bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | 
 | { | 
 | 	static int version_printed = 0; | 
 | 	struct net_device *dev = NULL; | 
 | 	struct bnx2 *bp; | 
 | 	int rc, i; | 
 |  | 
 | 	if (version_printed++ == 0) | 
 | 		printk(KERN_INFO "%s", version); | 
 |  | 
 | 	/* dev zeroed in init_etherdev */ | 
 | 	dev = alloc_etherdev(sizeof(*bp)); | 
 |  | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = bnx2_init_board(pdev, dev); | 
 | 	if (rc < 0) { | 
 | 		free_netdev(dev); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	dev->open = bnx2_open; | 
 | 	dev->hard_start_xmit = bnx2_start_xmit; | 
 | 	dev->stop = bnx2_close; | 
 | 	dev->get_stats = bnx2_get_stats; | 
 | 	dev->set_multicast_list = bnx2_set_rx_mode; | 
 | 	dev->do_ioctl = bnx2_ioctl; | 
 | 	dev->set_mac_address = bnx2_change_mac_addr; | 
 | 	dev->change_mtu = bnx2_change_mtu; | 
 | 	dev->tx_timeout = bnx2_tx_timeout; | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | #ifdef BCM_VLAN | 
 | 	dev->vlan_rx_register = bnx2_vlan_rx_register; | 
 | 	dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid; | 
 | #endif | 
 | 	dev->poll = bnx2_poll; | 
 | 	dev->ethtool_ops = &bnx2_ethtool_ops; | 
 | 	dev->weight = 64; | 
 |  | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) | 
 | 	dev->poll_controller = poll_bnx2; | 
 | #endif | 
 |  | 
 | 	if ((rc = register_netdev(dev))) { | 
 | 		dev_err(&pdev->dev, "Cannot register net device\n"); | 
 | 		if (bp->regview) | 
 | 			iounmap(bp->regview); | 
 | 		pci_release_regions(pdev); | 
 | 		pci_disable_device(pdev); | 
 | 		pci_set_drvdata(pdev, NULL); | 
 | 		free_netdev(dev); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	memcpy(dev->dev_addr, bp->mac_addr, 6); | 
 | 	memcpy(dev->perm_addr, bp->mac_addr, 6); | 
 | 	bp->name = board_info[ent->driver_data].name, | 
 | 	printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, " | 
 | 		"IRQ %d, ", | 
 | 		dev->name, | 
 | 		bp->name, | 
 | 		((CHIP_ID(bp) & 0xf000) >> 12) + 'A', | 
 | 		((CHIP_ID(bp) & 0x0ff0) >> 4), | 
 | 		((bp->flags & PCIX_FLAG) ? "-X" : ""), | 
 | 		((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), | 
 | 		bp->bus_speed_mhz, | 
 | 		dev->base_addr, | 
 | 		bp->pdev->irq); | 
 |  | 
 | 	printk("node addr "); | 
 | 	for (i = 0; i < 6; i++) | 
 | 		printk("%2.2x", dev->dev_addr[i]); | 
 | 	printk("\n"); | 
 |  | 
 | 	dev->features |= NETIF_F_SG; | 
 | 	if (bp->flags & USING_DAC_FLAG) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 | 	dev->features |= NETIF_F_IP_CSUM; | 
 | #ifdef BCM_VLAN | 
 | 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | 
 | #endif | 
 | #ifdef BCM_TSO | 
 | 	dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN; | 
 | #endif | 
 |  | 
 | 	netif_carrier_off(bp->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __devexit | 
 | bnx2_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	flush_scheduled_work(); | 
 |  | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	if (bp->regview) | 
 | 		iounmap(bp->regview); | 
 |  | 
 | 	free_netdev(dev); | 
 | 	pci_release_regions(pdev); | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | } | 
 |  | 
 | static int | 
 | bnx2_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 | 	u32 reset_code; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return 0; | 
 |  | 
 | 	flush_scheduled_work(); | 
 | 	bnx2_netif_stop(bp); | 
 | 	netif_device_detach(dev); | 
 | 	del_timer_sync(&bp->timer); | 
 | 	if (bp->flags & NO_WOL_FLAG) | 
 | 		reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN; | 
 | 	else if (bp->wol) | 
 | 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; | 
 | 	else | 
 | 		reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; | 
 | 	bnx2_reset_chip(bp, reset_code); | 
 | 	bnx2_free_skbs(bp); | 
 | 	bnx2_set_power_state(bp, pci_choose_state(pdev, state)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | bnx2_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2 *bp = netdev_priv(dev); | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return 0; | 
 |  | 
 | 	bnx2_set_power_state(bp, PCI_D0); | 
 | 	netif_device_attach(dev); | 
 | 	bnx2_init_nic(bp); | 
 | 	bnx2_netif_start(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pci_driver bnx2_pci_driver = { | 
 | 	.name		= DRV_MODULE_NAME, | 
 | 	.id_table	= bnx2_pci_tbl, | 
 | 	.probe		= bnx2_init_one, | 
 | 	.remove		= __devexit_p(bnx2_remove_one), | 
 | 	.suspend	= bnx2_suspend, | 
 | 	.resume		= bnx2_resume, | 
 | }; | 
 |  | 
 | static int __init bnx2_init(void) | 
 | { | 
 | 	return pci_register_driver(&bnx2_pci_driver); | 
 | } | 
 |  | 
 | static void __exit bnx2_cleanup(void) | 
 | { | 
 | 	pci_unregister_driver(&bnx2_pci_driver); | 
 | } | 
 |  | 
 | module_init(bnx2_init); | 
 | module_exit(bnx2_cleanup); | 
 |  | 
 |  | 
 |  |