| /* | 
 | 	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project | 
 | 	<http://rt2x00.serialmonkey.com> | 
 |  | 
 | 	This program is free software; you can redistribute it and/or modify | 
 | 	it under the terms of the GNU General Public License as published by | 
 | 	the Free Software Foundation; either version 2 of the License, or | 
 | 	(at your option) any later version. | 
 |  | 
 | 	This program is distributed in the hope that it will be useful, | 
 | 	but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
 | 	GNU General Public License for more details. | 
 |  | 
 | 	You should have received a copy of the GNU General Public License | 
 | 	along with this program; if not, write to the | 
 | 	Free Software Foundation, Inc., | 
 | 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  */ | 
 |  | 
 | /* | 
 | 	Module: rt61pci | 
 | 	Abstract: rt61pci device specific routines. | 
 | 	Supported chipsets: RT2561, RT2561s, RT2661. | 
 |  */ | 
 |  | 
 | #include <linux/crc-itu-t.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/eeprom_93cx6.h> | 
 |  | 
 | #include "rt2x00.h" | 
 | #include "rt2x00pci.h" | 
 | #include "rt61pci.h" | 
 |  | 
 | /* | 
 |  * Register access. | 
 |  * BBP and RF register require indirect register access, | 
 |  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. | 
 |  * These indirect registers work with busy bits, | 
 |  * and we will try maximal REGISTER_BUSY_COUNT times to access | 
 |  * the register while taking a REGISTER_BUSY_DELAY us delay | 
 |  * between each attampt. When the busy bit is still set at that time, | 
 |  * the access attempt is considered to have failed, | 
 |  * and we will print an error. | 
 |  */ | 
 | static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
 | 		rt2x00pci_register_read(rt2x00dev, PHY_CSR3, ®); | 
 | 		if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY)) | 
 | 			break; | 
 | 		udelay(REGISTER_BUSY_DELAY); | 
 | 	} | 
 |  | 
 | 	return reg; | 
 | } | 
 |  | 
 | static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, | 
 | 			      const unsigned int word, const u8 value) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Wait until the BBP becomes ready. | 
 | 	 */ | 
 | 	reg = rt61pci_bbp_check(rt2x00dev); | 
 | 	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { | 
 | 		ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write the data into the BBP. | 
 | 	 */ | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, PHY_CSR3_VALUE, value); | 
 | 	rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
 | 	rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
 | 	rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); | 
 | } | 
 |  | 
 | static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, | 
 | 			     const unsigned int word, u8 *value) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Wait until the BBP becomes ready. | 
 | 	 */ | 
 | 	reg = rt61pci_bbp_check(rt2x00dev); | 
 | 	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { | 
 | 		ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write the request into the BBP. | 
 | 	 */ | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
 | 	rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
 | 	rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); | 
 |  | 
 | 	/* | 
 | 	 * Wait until the BBP becomes ready. | 
 | 	 */ | 
 | 	reg = rt61pci_bbp_check(rt2x00dev); | 
 | 	if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { | 
 | 		ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); | 
 | 		*value = 0xff; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); | 
 | } | 
 |  | 
 | static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, | 
 | 			     const unsigned int word, const u32 value) | 
 | { | 
 | 	u32 reg; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!word) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
 | 		rt2x00pci_register_read(rt2x00dev, PHY_CSR4, ®); | 
 | 		if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY)) | 
 | 			goto rf_write; | 
 | 		udelay(REGISTER_BUSY_DELAY); | 
 | 	} | 
 |  | 
 | 	ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n"); | 
 | 	return; | 
 |  | 
 | rf_write: | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, PHY_CSR4_VALUE, value); | 
 | 	rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); | 
 | 	rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); | 
 | 	rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg); | 
 | 	rt2x00_rf_write(rt2x00dev, word, value); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT61PCI_LEDS | 
 | /* | 
 |  * This function is only called from rt61pci_led_brightness() | 
 |  * make gcc happy by placing this function inside the | 
 |  * same ifdef statement as the caller. | 
 |  */ | 
 | static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, | 
 | 				const u8 command, const u8 token, | 
 | 				const u8 arg0, const u8 arg1) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, ®); | 
 |  | 
 | 	if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) { | 
 | 		ERROR(rt2x00dev, "mcu request error. " | 
 | 		      "Request 0x%02x failed for token 0x%02x.\n", | 
 | 		      command, token); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); | 
 | 	rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); | 
 | 	rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); | 
 | 	rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); | 
 | 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®); | 
 | 	rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); | 
 | 	rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg); | 
 | } | 
 | #endif /* CONFIG_RT61PCI_LEDS */ | 
 |  | 
 | static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = eeprom->data; | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
 |  | 
 | 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); | 
 | 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); | 
 | 	eeprom->reg_data_clock = | 
 | 	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); | 
 | 	eeprom->reg_chip_select = | 
 | 	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); | 
 | } | 
 |  | 
 | static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = eeprom->data; | 
 | 	u32 reg = 0; | 
 |  | 
 | 	rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); | 
 | 	rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); | 
 | 	rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, | 
 | 			   !!eeprom->reg_data_clock); | 
 | 	rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, | 
 | 			   !!eeprom->reg_chip_select); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); | 
 | } | 
 |  | 
 | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
 | #define CSR_OFFSET(__word)	( CSR_REG_BASE + ((__word) * sizeof(u32)) ) | 
 |  | 
 | static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev, | 
 | 			     const unsigned int word, u32 *data) | 
 | { | 
 | 	rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data); | 
 | } | 
 |  | 
 | static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev, | 
 | 			      const unsigned int word, u32 data) | 
 | { | 
 | 	rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data); | 
 | } | 
 |  | 
 | static const struct rt2x00debug rt61pci_rt2x00debug = { | 
 | 	.owner	= THIS_MODULE, | 
 | 	.csr	= { | 
 | 		.read		= rt61pci_read_csr, | 
 | 		.write		= rt61pci_write_csr, | 
 | 		.word_size	= sizeof(u32), | 
 | 		.word_count	= CSR_REG_SIZE / sizeof(u32), | 
 | 	}, | 
 | 	.eeprom	= { | 
 | 		.read		= rt2x00_eeprom_read, | 
 | 		.write		= rt2x00_eeprom_write, | 
 | 		.word_size	= sizeof(u16), | 
 | 		.word_count	= EEPROM_SIZE / sizeof(u16), | 
 | 	}, | 
 | 	.bbp	= { | 
 | 		.read		= rt61pci_bbp_read, | 
 | 		.write		= rt61pci_bbp_write, | 
 | 		.word_size	= sizeof(u8), | 
 | 		.word_count	= BBP_SIZE / sizeof(u8), | 
 | 	}, | 
 | 	.rf	= { | 
 | 		.read		= rt2x00_rf_read, | 
 | 		.write		= rt61pci_rf_write, | 
 | 		.word_size	= sizeof(u32), | 
 | 		.word_count	= RF_SIZE / sizeof(u32), | 
 | 	}, | 
 | }; | 
 | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
 |  | 
 | #ifdef CONFIG_RT61PCI_RFKILL | 
 | static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); | 
 | 	return rt2x00_get_field32(reg, MAC_CSR13_BIT5); | 
 | } | 
 | #else | 
 | #define rt61pci_rfkill_poll	NULL | 
 | #endif /* CONFIG_RT61PCI_RFKILL */ | 
 |  | 
 | #ifdef CONFIG_RT61PCI_LEDS | 
 | static void rt61pci_brightness_set(struct led_classdev *led_cdev, | 
 | 				   enum led_brightness brightness) | 
 | { | 
 | 	struct rt2x00_led *led = | 
 | 	    container_of(led_cdev, struct rt2x00_led, led_dev); | 
 | 	unsigned int enabled = brightness != LED_OFF; | 
 | 	unsigned int a_mode = | 
 | 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); | 
 | 	unsigned int bg_mode = | 
 | 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
 |  | 
 | 	if (led->type == LED_TYPE_RADIO) { | 
 | 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
 | 				   MCU_LEDCS_RADIO_STATUS, enabled); | 
 |  | 
 | 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, | 
 | 				    (led->rt2x00dev->led_mcu_reg & 0xff), | 
 | 				    ((led->rt2x00dev->led_mcu_reg >> 8))); | 
 | 	} else if (led->type == LED_TYPE_ASSOC) { | 
 | 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
 | 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode); | 
 | 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
 | 				   MCU_LEDCS_LINK_A_STATUS, a_mode); | 
 |  | 
 | 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, | 
 | 				    (led->rt2x00dev->led_mcu_reg & 0xff), | 
 | 				    ((led->rt2x00dev->led_mcu_reg >> 8))); | 
 | 	} else if (led->type == LED_TYPE_QUALITY) { | 
 | 		/* | 
 | 		 * The brightness is divided into 6 levels (0 - 5), | 
 | 		 * this means we need to convert the brightness | 
 | 		 * argument into the matching level within that range. | 
 | 		 */ | 
 | 		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, | 
 | 				    brightness / (LED_FULL / 6), 0); | 
 | 	} | 
 | } | 
 |  | 
 | static int rt61pci_blink_set(struct led_classdev *led_cdev, | 
 | 			     unsigned long *delay_on, | 
 | 			     unsigned long *delay_off) | 
 | { | 
 | 	struct rt2x00_led *led = | 
 | 	    container_of(led_cdev, struct rt2x00_led, led_dev); | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); | 
 | 	rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); | 
 | 	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_RT61PCI_LEDS */ | 
 |  | 
 | /* | 
 |  * Configuration handlers. | 
 |  */ | 
 | static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, | 
 | 				  const unsigned int filter_flags) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Start configuration steps. | 
 | 	 * Note that the version error will always be dropped | 
 | 	 * and broadcast frames will always be accepted since | 
 | 	 * there is no filter for it at this time. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, | 
 | 			   !(filter_flags & FIF_FCSFAIL)); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, | 
 | 			   !(filter_flags & FIF_PLCPFAIL)); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, | 
 | 			   !(filter_flags & FIF_CONTROL)); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, | 
 | 			   !(filter_flags & FIF_PROMISC_IN_BSS)); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, | 
 | 			   !(filter_flags & FIF_PROMISC_IN_BSS) && | 
 | 			   !rt2x00dev->intf_ap_count); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, | 
 | 			   !(filter_flags & FIF_ALLMULTI)); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, | 
 | 			   !(filter_flags & FIF_CONTROL)); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
 | } | 
 |  | 
 | static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, | 
 | 				struct rt2x00_intf *intf, | 
 | 				struct rt2x00intf_conf *conf, | 
 | 				const unsigned int flags) | 
 | { | 
 | 	unsigned int beacon_base; | 
 | 	u32 reg; | 
 |  | 
 | 	if (flags & CONFIG_UPDATE_TYPE) { | 
 | 		/* | 
 | 		 * Clear current synchronisation setup. | 
 | 		 * For the Beacon base registers we only need to clear | 
 | 		 * the first byte since that byte contains the VALID and OWNER | 
 | 		 * bits which (when set to 0) will invalidate the entire beacon. | 
 | 		 */ | 
 | 		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); | 
 | 		rt2x00pci_register_write(rt2x00dev, beacon_base, 0); | 
 |  | 
 | 		/* | 
 | 		 * Enable synchronisation. | 
 | 		 */ | 
 | 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
 | 		rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); | 
 | 		rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); | 
 | 		rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); | 
 | 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
 | 	} | 
 |  | 
 | 	if (flags & CONFIG_UPDATE_MAC) { | 
 | 		reg = le32_to_cpu(conf->mac[1]); | 
 | 		rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); | 
 | 		conf->mac[1] = cpu_to_le32(reg); | 
 |  | 
 | 		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, | 
 | 					      conf->mac, sizeof(conf->mac)); | 
 | 	} | 
 |  | 
 | 	if (flags & CONFIG_UPDATE_BSSID) { | 
 | 		reg = le32_to_cpu(conf->bssid[1]); | 
 | 		rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); | 
 | 		conf->bssid[1] = cpu_to_le32(reg); | 
 |  | 
 | 		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, | 
 | 					      conf->bssid, sizeof(conf->bssid)); | 
 | 	} | 
 | } | 
 |  | 
 | static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, | 
 | 			       struct rt2x00lib_erp *erp) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, | 
 | 			   !!erp->short_preamble); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); | 
 | } | 
 |  | 
 | static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev, | 
 | 				   const int basic_rate_mask) | 
 | { | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask); | 
 | } | 
 |  | 
 | static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, | 
 | 				   struct rf_channel *rf, const int txpower) | 
 | { | 
 | 	u8 r3; | 
 | 	u8 r94; | 
 | 	u8 smart; | 
 |  | 
 | 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
 | 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | 
 |  | 
 | 	smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) || | 
 | 		  rt2x00_rf(&rt2x00dev->chip, RF2527)); | 
 |  | 
 | 	rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
 | 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); | 
 | 	rt61pci_bbp_write(rt2x00dev, 3, r3); | 
 |  | 
 | 	r94 = 6; | 
 | 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) | 
 | 		r94 += txpower - MAX_TXPOWER; | 
 | 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) | 
 | 		r94 += txpower; | 
 | 	rt61pci_bbp_write(rt2x00dev, 94, r94); | 
 |  | 
 | 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
 | 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
 | 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
 | 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
 |  | 
 | 	udelay(200); | 
 |  | 
 | 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
 | 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
 | 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | 
 | 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
 |  | 
 | 	udelay(200); | 
 |  | 
 | 	rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
 | 	rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
 | 	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
 | 	rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
 |  | 
 | 	msleep(1); | 
 | } | 
 |  | 
 | static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, | 
 | 				   const int txpower) | 
 | { | 
 | 	struct rf_channel rf; | 
 |  | 
 | 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); | 
 | 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); | 
 | 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); | 
 | 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); | 
 |  | 
 | 	rt61pci_config_channel(rt2x00dev, &rf, txpower); | 
 | } | 
 |  | 
 | static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, | 
 | 				      struct antenna_setup *ant) | 
 | { | 
 | 	u8 r3; | 
 | 	u8 r4; | 
 | 	u8 r77; | 
 |  | 
 | 	rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
 | 	rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
 | 	rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
 |  | 
 | 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, | 
 | 			  rt2x00_rf(&rt2x00dev->chip, RF5325)); | 
 |  | 
 | 	/* | 
 | 	 * Configure the RX antenna. | 
 | 	 */ | 
 | 	switch (ant->rx) { | 
 | 	case ANTENNA_HW_DIVERSITY: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, | 
 | 				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ)); | 
 | 		break; | 
 | 	case ANTENNA_A: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
 | 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
 | 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
 | 		else | 
 | 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
 | 		break; | 
 | 	case ANTENNA_B: | 
 | 	default: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
 | 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
 | 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
 | 		else | 
 | 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rt61pci_bbp_write(rt2x00dev, 77, r77); | 
 | 	rt61pci_bbp_write(rt2x00dev, 3, r3); | 
 | 	rt61pci_bbp_write(rt2x00dev, 4, r4); | 
 | } | 
 |  | 
 | static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, | 
 | 				      struct antenna_setup *ant) | 
 | { | 
 | 	u8 r3; | 
 | 	u8 r4; | 
 | 	u8 r77; | 
 |  | 
 | 	rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
 | 	rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
 | 	rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
 |  | 
 | 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, | 
 | 			  rt2x00_rf(&rt2x00dev->chip, RF2529)); | 
 | 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, | 
 | 			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); | 
 |  | 
 | 	/* | 
 | 	 * Configure the RX antenna. | 
 | 	 */ | 
 | 	switch (ant->rx) { | 
 | 	case ANTENNA_HW_DIVERSITY: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
 | 		break; | 
 | 	case ANTENNA_A: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
 | 		break; | 
 | 	case ANTENNA_B: | 
 | 	default: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rt61pci_bbp_write(rt2x00dev, 77, r77); | 
 | 	rt61pci_bbp_write(rt2x00dev, 3, r3); | 
 | 	rt61pci_bbp_write(rt2x00dev, 4, r4); | 
 | } | 
 |  | 
 | static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, | 
 | 					   const int p1, const int p2) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); | 
 |  | 
 | 	rt2x00_set_field32(®, MAC_CSR13_BIT4, p1); | 
 | 	rt2x00_set_field32(®, MAC_CSR13_BIT12, 0); | 
 |  | 
 | 	rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2); | 
 | 	rt2x00_set_field32(®, MAC_CSR13_BIT11, 0); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg); | 
 | } | 
 |  | 
 | static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, | 
 | 					struct antenna_setup *ant) | 
 | { | 
 | 	u8 r3; | 
 | 	u8 r4; | 
 | 	u8 r77; | 
 |  | 
 | 	rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
 | 	rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
 | 	rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
 |  | 
 | 	/* | 
 | 	 * Configure the RX antenna. | 
 | 	 */ | 
 | 	switch (ant->rx) { | 
 | 	case ANTENNA_A: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
 | 		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); | 
 | 		break; | 
 | 	case ANTENNA_HW_DIVERSITY: | 
 | 		/* | 
 | 		 * FIXME: Antenna selection for the rf 2529 is very confusing | 
 | 		 * in the legacy driver. Just default to antenna B until the | 
 | 		 * legacy code can be properly translated into rt2x00 code. | 
 | 		 */ | 
 | 	case ANTENNA_B: | 
 | 	default: | 
 | 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
 | 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
 | 		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	rt61pci_bbp_write(rt2x00dev, 77, r77); | 
 | 	rt61pci_bbp_write(rt2x00dev, 3, r3); | 
 | 	rt61pci_bbp_write(rt2x00dev, 4, r4); | 
 | } | 
 |  | 
 | struct antenna_sel { | 
 | 	u8 word; | 
 | 	/* | 
 | 	 * value[0] -> non-LNA | 
 | 	 * value[1] -> LNA | 
 | 	 */ | 
 | 	u8 value[2]; | 
 | }; | 
 |  | 
 | static const struct antenna_sel antenna_sel_a[] = { | 
 | 	{ 96,  { 0x58, 0x78 } }, | 
 | 	{ 104, { 0x38, 0x48 } }, | 
 | 	{ 75,  { 0xfe, 0x80 } }, | 
 | 	{ 86,  { 0xfe, 0x80 } }, | 
 | 	{ 88,  { 0xfe, 0x80 } }, | 
 | 	{ 35,  { 0x60, 0x60 } }, | 
 | 	{ 97,  { 0x58, 0x58 } }, | 
 | 	{ 98,  { 0x58, 0x58 } }, | 
 | }; | 
 |  | 
 | static const struct antenna_sel antenna_sel_bg[] = { | 
 | 	{ 96,  { 0x48, 0x68 } }, | 
 | 	{ 104, { 0x2c, 0x3c } }, | 
 | 	{ 75,  { 0xfe, 0x80 } }, | 
 | 	{ 86,  { 0xfe, 0x80 } }, | 
 | 	{ 88,  { 0xfe, 0x80 } }, | 
 | 	{ 35,  { 0x50, 0x50 } }, | 
 | 	{ 97,  { 0x48, 0x48 } }, | 
 | 	{ 98,  { 0x48, 0x48 } }, | 
 | }; | 
 |  | 
 | static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev, | 
 | 				   struct antenna_setup *ant) | 
 | { | 
 | 	const struct antenna_sel *sel; | 
 | 	unsigned int lna; | 
 | 	unsigned int i; | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * We should never come here because rt2x00lib is supposed | 
 | 	 * to catch this and send us the correct antenna explicitely. | 
 | 	 */ | 
 | 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || | 
 | 	       ant->tx == ANTENNA_SW_DIVERSITY); | 
 |  | 
 | 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
 | 		sel = antenna_sel_a; | 
 | 		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); | 
 | 	} else { | 
 | 		sel = antenna_sel_bg; | 
 | 		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) | 
 | 		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®); | 
 |  | 
 | 	rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, | 
 | 			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
 | 	rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, | 
 | 			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg); | 
 |  | 
 | 	if (rt2x00_rf(&rt2x00dev->chip, RF5225) || | 
 | 	    rt2x00_rf(&rt2x00dev->chip, RF5325)) | 
 | 		rt61pci_config_antenna_5x(rt2x00dev, ant); | 
 | 	else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) | 
 | 		rt61pci_config_antenna_2x(rt2x00dev, ant); | 
 | 	else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) { | 
 | 		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) | 
 | 			rt61pci_config_antenna_2x(rt2x00dev, ant); | 
 | 		else | 
 | 			rt61pci_config_antenna_2529(rt2x00dev, ant); | 
 | 	} | 
 | } | 
 |  | 
 | static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev, | 
 | 				    struct rt2x00lib_conf *libconf) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs); | 
 | 	rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); | 
 | 	rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, | 
 | 			   libconf->conf->beacon_int * 16); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
 | } | 
 |  | 
 | static void rt61pci_config(struct rt2x00_dev *rt2x00dev, | 
 | 			   struct rt2x00lib_conf *libconf, | 
 | 			   const unsigned int flags) | 
 | { | 
 | 	if (flags & CONFIG_UPDATE_PHYMODE) | 
 | 		rt61pci_config_phymode(rt2x00dev, libconf->basic_rates); | 
 | 	if (flags & CONFIG_UPDATE_CHANNEL) | 
 | 		rt61pci_config_channel(rt2x00dev, &libconf->rf, | 
 | 				       libconf->conf->power_level); | 
 | 	if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL)) | 
 | 		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); | 
 | 	if (flags & CONFIG_UPDATE_ANTENNA) | 
 | 		rt61pci_config_antenna(rt2x00dev, &libconf->ant); | 
 | 	if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT)) | 
 | 		rt61pci_config_duration(rt2x00dev, libconf); | 
 | } | 
 |  | 
 | /* | 
 |  * Link tuning | 
 |  */ | 
 | static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, | 
 | 			       struct link_qual *qual) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Update FCS error count from register. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); | 
 | 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); | 
 |  | 
 | 	/* | 
 | 	 * Update False CCA count from register. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); | 
 | 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); | 
 | } | 
 |  | 
 | static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	rt61pci_bbp_write(rt2x00dev, 17, 0x20); | 
 | 	rt2x00dev->link.vgc_level = 0x20; | 
 | } | 
 |  | 
 | static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	int rssi = rt2x00_get_link_rssi(&rt2x00dev->link); | 
 | 	u8 r17; | 
 | 	u8 up_bound; | 
 | 	u8 low_bound; | 
 |  | 
 | 	rt61pci_bbp_read(rt2x00dev, 17, &r17); | 
 |  | 
 | 	/* | 
 | 	 * Determine r17 bounds. | 
 | 	 */ | 
 | 	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { | 
 | 		low_bound = 0x28; | 
 | 		up_bound = 0x48; | 
 | 		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { | 
 | 			low_bound += 0x10; | 
 | 			up_bound += 0x10; | 
 | 		} | 
 | 	} else { | 
 | 		low_bound = 0x20; | 
 | 		up_bound = 0x40; | 
 | 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { | 
 | 			low_bound += 0x10; | 
 | 			up_bound += 0x10; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are not associated, we should go straight to the | 
 | 	 * dynamic CCA tuning. | 
 | 	 */ | 
 | 	if (!rt2x00dev->intf_associated) | 
 | 		goto dynamic_cca_tune; | 
 |  | 
 | 	/* | 
 | 	 * Special big-R17 for very short distance | 
 | 	 */ | 
 | 	if (rssi >= -35) { | 
 | 		if (r17 != 0x60) | 
 | 			rt61pci_bbp_write(rt2x00dev, 17, 0x60); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special big-R17 for short distance | 
 | 	 */ | 
 | 	if (rssi >= -58) { | 
 | 		if (r17 != up_bound) | 
 | 			rt61pci_bbp_write(rt2x00dev, 17, up_bound); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special big-R17 for middle-short distance | 
 | 	 */ | 
 | 	if (rssi >= -66) { | 
 | 		low_bound += 0x10; | 
 | 		if (r17 != low_bound) | 
 | 			rt61pci_bbp_write(rt2x00dev, 17, low_bound); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special mid-R17 for middle distance | 
 | 	 */ | 
 | 	if (rssi >= -74) { | 
 | 		low_bound += 0x08; | 
 | 		if (r17 != low_bound) | 
 | 			rt61pci_bbp_write(rt2x00dev, 17, low_bound); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special case: Change up_bound based on the rssi. | 
 | 	 * Lower up_bound when rssi is weaker then -74 dBm. | 
 | 	 */ | 
 | 	up_bound -= 2 * (-74 - rssi); | 
 | 	if (low_bound > up_bound) | 
 | 		up_bound = low_bound; | 
 |  | 
 | 	if (r17 > up_bound) { | 
 | 		rt61pci_bbp_write(rt2x00dev, 17, up_bound); | 
 | 		return; | 
 | 	} | 
 |  | 
 | dynamic_cca_tune: | 
 |  | 
 | 	/* | 
 | 	 * r17 does not yet exceed upper limit, continue and base | 
 | 	 * the r17 tuning on the false CCA count. | 
 | 	 */ | 
 | 	if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) { | 
 | 		if (++r17 > up_bound) | 
 | 			r17 = up_bound; | 
 | 		rt61pci_bbp_write(rt2x00dev, 17, r17); | 
 | 	} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) { | 
 | 		if (--r17 < low_bound) | 
 | 			r17 = low_bound; | 
 | 		rt61pci_bbp_write(rt2x00dev, 17, r17); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Firmware functions | 
 |  */ | 
 | static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	char *fw_name; | 
 |  | 
 | 	switch (rt2x00dev->chip.rt) { | 
 | 	case RT2561: | 
 | 		fw_name = FIRMWARE_RT2561; | 
 | 		break; | 
 | 	case RT2561s: | 
 | 		fw_name = FIRMWARE_RT2561s; | 
 | 		break; | 
 | 	case RT2661: | 
 | 		fw_name = FIRMWARE_RT2661; | 
 | 		break; | 
 | 	default: | 
 | 		fw_name = NULL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return fw_name; | 
 | } | 
 |  | 
 | static u16 rt61pci_get_firmware_crc(void *data, const size_t len) | 
 | { | 
 | 	u16 crc; | 
 |  | 
 | 	/* | 
 | 	 * Use the crc itu-t algorithm. | 
 | 	 * The last 2 bytes in the firmware array are the crc checksum itself, | 
 | 	 * this means that we should never pass those 2 bytes to the crc | 
 | 	 * algorithm. | 
 | 	 */ | 
 | 	crc = crc_itu_t(0, data, len - 2); | 
 | 	crc = crc_itu_t_byte(crc, 0); | 
 | 	crc = crc_itu_t_byte(crc, 0); | 
 |  | 
 | 	return crc; | 
 | } | 
 |  | 
 | static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data, | 
 | 				 const size_t len) | 
 | { | 
 | 	int i; | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Wait for stable hardware. | 
 | 	 */ | 
 | 	for (i = 0; i < 100; i++) { | 
 | 		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); | 
 | 		if (reg) | 
 | 			break; | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	if (!reg) { | 
 | 		ERROR(rt2x00dev, "Unstable hardware.\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prepare MCU and mailbox for firmware loading. | 
 | 	 */ | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
 | 	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); | 
 | 	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0); | 
 |  | 
 | 	/* | 
 | 	 * Write firmware to device. | 
 | 	 */ | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); | 
 | 	rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, | 
 | 				      data, len); | 
 |  | 
 | 	rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
 |  | 
 | 	rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
 |  | 
 | 	for (i = 0; i < 100; i++) { | 
 | 		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®); | 
 | 		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) | 
 | 			break; | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	if (i == 100) { | 
 | 		ERROR(rt2x00dev, "MCU Control register not ready.\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reset MAC and BBP registers. | 
 | 	 */ | 
 | 	reg = 0; | 
 | 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialization functions. | 
 |  */ | 
 | static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev, | 
 | 				 struct queue_entry *entry) | 
 | { | 
 | 	struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data; | 
 | 	u32 word; | 
 |  | 
 | 	rt2x00_desc_read(priv_rx->desc, 5, &word); | 
 | 	rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, | 
 | 			   priv_rx->data_dma); | 
 | 	rt2x00_desc_write(priv_rx->desc, 5, word); | 
 |  | 
 | 	rt2x00_desc_read(priv_rx->desc, 0, &word); | 
 | 	rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); | 
 | 	rt2x00_desc_write(priv_rx->desc, 0, word); | 
 | } | 
 |  | 
 | static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev, | 
 | 				 struct queue_entry *entry) | 
 | { | 
 | 	struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data; | 
 | 	u32 word; | 
 |  | 
 | 	rt2x00_desc_read(priv_tx->desc, 1, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); | 
 | 	rt2x00_desc_write(priv_tx->desc, 1, word); | 
 |  | 
 | 	rt2x00_desc_read(priv_tx->desc, 5, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); | 
 | 	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx); | 
 | 	rt2x00_desc_write(priv_tx->desc, 5, word); | 
 |  | 
 | 	rt2x00_desc_read(priv_tx->desc, 6, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, | 
 | 			   priv_tx->data_dma); | 
 | 	rt2x00_desc_write(priv_tx->desc, 6, word); | 
 |  | 
 | 	rt2x00_desc_read(priv_tx->desc, 0, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W0_VALID, 0); | 
 | 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); | 
 | 	rt2x00_desc_write(priv_tx->desc, 0, word); | 
 | } | 
 |  | 
 | static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	struct queue_entry_priv_pci_rx *priv_rx; | 
 | 	struct queue_entry_priv_pci_tx *priv_tx; | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Initialize registers. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, | 
 | 			   rt2x00dev->tx[0].limit); | 
 | 	rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, | 
 | 			   rt2x00dev->tx[1].limit); | 
 | 	rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, | 
 | 			   rt2x00dev->tx[2].limit); | 
 | 	rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, | 
 | 			   rt2x00dev->tx[3].limit); | 
 | 	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®); | 
 | 	rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, | 
 | 			   rt2x00dev->tx[0].desc_size / 4); | 
 | 	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg); | 
 |  | 
 | 	priv_tx = rt2x00dev->tx[0].entries[0].priv_data; | 
 | 	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®); | 
 | 	rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, | 
 | 			   priv_tx->desc_dma); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg); | 
 |  | 
 | 	priv_tx = rt2x00dev->tx[1].entries[0].priv_data; | 
 | 	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®); | 
 | 	rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, | 
 | 			   priv_tx->desc_dma); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg); | 
 |  | 
 | 	priv_tx = rt2x00dev->tx[2].entries[0].priv_data; | 
 | 	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®); | 
 | 	rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, | 
 | 			   priv_tx->desc_dma); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg); | 
 |  | 
 | 	priv_tx = rt2x00dev->tx[3].entries[0].priv_data; | 
 | 	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®); | 
 | 	rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, | 
 | 			   priv_tx->desc_dma); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®); | 
 | 	rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); | 
 | 	rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, | 
 | 			   rt2x00dev->rx->desc_size / 4); | 
 | 	rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); | 
 | 	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg); | 
 |  | 
 | 	priv_rx = rt2x00dev->rx->entries[0].priv_data; | 
 | 	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®); | 
 | 	rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, | 
 | 			   priv_rx->desc_dma); | 
 | 	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®); | 
 | 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); | 
 | 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); | 
 | 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); | 
 | 	rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); | 
 | 	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®); | 
 | 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); | 
 | 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); | 
 | 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); | 
 | 	rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); | 
 | 	rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ | 
 | 	rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg); | 
 |  | 
 | 	/* | 
 | 	 * CCK TXD BBP registers | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); | 
 | 	rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg); | 
 |  | 
 | 	/* | 
 | 	 * OFDM TXD BBP registers | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); | 
 | 	rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); | 
 | 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); | 
 | 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); | 
 | 	rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); | 
 | 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); | 
 | 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); | 
 | 	rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); | 
 |  | 
 | 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); | 
 |  | 
 | 	/* | 
 | 	 * Invalidate all Shared Keys (SEC_CSR0), | 
 | 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) | 
 | 	 */ | 
 | 	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000); | 
 | 	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000); | 
 | 	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606); | 
 | 	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, ®); | 
 | 	rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0); | 
 | 	rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, ®); | 
 | 	rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192); | 
 | 	rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48); | 
 | 	rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg); | 
 |  | 
 | 	/* | 
 | 	 * Clear all beacons | 
 | 	 * For the Beacon base registers we only need to clear | 
 | 	 * the first byte since that byte contains the VALID and OWNER | 
 | 	 * bits which (when set to 0) will invalidate the entire beacon. | 
 | 	 */ | 
 | 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0); | 
 |  | 
 | 	/* | 
 | 	 * We must clear the error counters. | 
 | 	 * These registers are cleared on read, | 
 | 	 * so we may pass a useless variable to store the value. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); | 
 | 	rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); | 
 | 	rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®); | 
 |  | 
 | 	/* | 
 | 	 * Reset MAC and BBP registers. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	unsigned int i; | 
 | 	u16 eeprom; | 
 | 	u8 reg_id; | 
 | 	u8 value; | 
 |  | 
 | 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
 | 		rt61pci_bbp_read(rt2x00dev, 0, &value); | 
 | 		if ((value != 0xff) && (value != 0x00)) | 
 | 			goto continue_csr_init; | 
 | 		NOTICE(rt2x00dev, "Waiting for BBP register.\n"); | 
 | 		udelay(REGISTER_BUSY_DELAY); | 
 | 	} | 
 |  | 
 | 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
 | 	return -EACCES; | 
 |  | 
 | continue_csr_init: | 
 | 	rt61pci_bbp_write(rt2x00dev, 3, 0x00); | 
 | 	rt61pci_bbp_write(rt2x00dev, 15, 0x30); | 
 | 	rt61pci_bbp_write(rt2x00dev, 21, 0xc8); | 
 | 	rt61pci_bbp_write(rt2x00dev, 22, 0x38); | 
 | 	rt61pci_bbp_write(rt2x00dev, 23, 0x06); | 
 | 	rt61pci_bbp_write(rt2x00dev, 24, 0xfe); | 
 | 	rt61pci_bbp_write(rt2x00dev, 25, 0x0a); | 
 | 	rt61pci_bbp_write(rt2x00dev, 26, 0x0d); | 
 | 	rt61pci_bbp_write(rt2x00dev, 34, 0x12); | 
 | 	rt61pci_bbp_write(rt2x00dev, 37, 0x07); | 
 | 	rt61pci_bbp_write(rt2x00dev, 39, 0xf8); | 
 | 	rt61pci_bbp_write(rt2x00dev, 41, 0x60); | 
 | 	rt61pci_bbp_write(rt2x00dev, 53, 0x10); | 
 | 	rt61pci_bbp_write(rt2x00dev, 54, 0x18); | 
 | 	rt61pci_bbp_write(rt2x00dev, 60, 0x10); | 
 | 	rt61pci_bbp_write(rt2x00dev, 61, 0x04); | 
 | 	rt61pci_bbp_write(rt2x00dev, 62, 0x04); | 
 | 	rt61pci_bbp_write(rt2x00dev, 75, 0xfe); | 
 | 	rt61pci_bbp_write(rt2x00dev, 86, 0xfe); | 
 | 	rt61pci_bbp_write(rt2x00dev, 88, 0xfe); | 
 | 	rt61pci_bbp_write(rt2x00dev, 90, 0x0f); | 
 | 	rt61pci_bbp_write(rt2x00dev, 99, 0x00); | 
 | 	rt61pci_bbp_write(rt2x00dev, 102, 0x16); | 
 | 	rt61pci_bbp_write(rt2x00dev, 107, 0x04); | 
 |  | 
 | 	for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
 | 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
 |  | 
 | 		if (eeprom != 0xffff && eeprom != 0x0000) { | 
 | 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
 | 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
 | 			rt61pci_bbp_write(rt2x00dev, reg_id, value); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Device state switch handlers. | 
 |  */ | 
 | static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev, | 
 | 			      enum dev_state state) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, | 
 | 			   state == STATE_RADIO_RX_OFF); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
 | } | 
 |  | 
 | static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, | 
 | 			       enum dev_state state) | 
 | { | 
 | 	int mask = (state == STATE_RADIO_IRQ_OFF); | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * When interrupts are being enabled, the interrupt registers | 
 | 	 * should clear the register to assure a clean state. | 
 | 	 */ | 
 | 	if (state == STATE_RADIO_IRQ_ON) { | 
 | 		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
 | 		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
 |  | 
 | 		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); | 
 | 		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only toggle the interrupts bits we are going to use. | 
 | 	 * Non-checked interrupt bits are disabled by default. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
 | 	rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); | 
 | 	rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); | 
 | 	rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); | 
 | 	rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); | 
 | 	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); | 
 | 	rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); | 
 | } | 
 |  | 
 | static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Initialize all registers. | 
 | 	 */ | 
 | 	if (rt61pci_init_queues(rt2x00dev) || | 
 | 	    rt61pci_init_registers(rt2x00dev) || | 
 | 	    rt61pci_init_bbp(rt2x00dev)) { | 
 | 		ERROR(rt2x00dev, "Register initialization failed.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable interrupts. | 
 | 	 */ | 
 | 	rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON); | 
 |  | 
 | 	/* | 
 | 	 * Enable RX. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); | 
 | 	rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818); | 
 |  | 
 | 	/* | 
 | 	 * Disable synchronisation. | 
 | 	 */ | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0); | 
 |  | 
 | 	/* | 
 | 	 * Cancel RX and TX. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); | 
 | 	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
 |  | 
 | 	/* | 
 | 	 * Disable interrupts. | 
 | 	 */ | 
 | 	rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF); | 
 | } | 
 |  | 
 | static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) | 
 | { | 
 | 	u32 reg; | 
 | 	unsigned int i; | 
 | 	char put_to_sleep; | 
 | 	char current_state; | 
 |  | 
 | 	put_to_sleep = (state != STATE_AWAKE); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); | 
 | 	rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); | 
 | 	rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); | 
 | 	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg); | 
 |  | 
 | 	/* | 
 | 	 * Device is not guaranteed to be in the requested state yet. | 
 | 	 * We must wait until the register indicates that the | 
 | 	 * device has entered the correct state. | 
 | 	 */ | 
 | 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
 | 		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); | 
 | 		current_state = | 
 | 		    rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE); | 
 | 		if (current_state == !put_to_sleep) | 
 | 			return 0; | 
 | 		msleep(10); | 
 | 	} | 
 |  | 
 | 	NOTICE(rt2x00dev, "Device failed to enter state %d, " | 
 | 	       "current device state %d.\n", !put_to_sleep, current_state); | 
 |  | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, | 
 | 				    enum dev_state state) | 
 | { | 
 | 	int retval = 0; | 
 |  | 
 | 	switch (state) { | 
 | 	case STATE_RADIO_ON: | 
 | 		retval = rt61pci_enable_radio(rt2x00dev); | 
 | 		break; | 
 | 	case STATE_RADIO_OFF: | 
 | 		rt61pci_disable_radio(rt2x00dev); | 
 | 		break; | 
 | 	case STATE_RADIO_RX_ON: | 
 | 	case STATE_RADIO_RX_ON_LINK: | 
 | 		rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); | 
 | 		break; | 
 | 	case STATE_RADIO_RX_OFF: | 
 | 	case STATE_RADIO_RX_OFF_LINK: | 
 | 		rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); | 
 | 		break; | 
 | 	case STATE_DEEP_SLEEP: | 
 | 	case STATE_SLEEP: | 
 | 	case STATE_STANDBY: | 
 | 	case STATE_AWAKE: | 
 | 		retval = rt61pci_set_state(rt2x00dev, state); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -ENOTSUPP; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * TX descriptor initialization | 
 |  */ | 
 | static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, | 
 | 				    struct sk_buff *skb, | 
 | 				    struct txentry_desc *txdesc, | 
 | 				    struct ieee80211_tx_control *control) | 
 | { | 
 | 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); | 
 | 	__le32 *txd = skbdesc->desc; | 
 | 	u32 word; | 
 |  | 
 | 	/* | 
 | 	 * Start writing the descriptor words. | 
 | 	 */ | 
 | 	rt2x00_desc_read(txd, 1, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue); | 
 | 	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs); | 
 | 	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min); | 
 | 	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max); | 
 | 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER); | 
 | 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1); | 
 | 	rt2x00_desc_write(txd, 1, word); | 
 |  | 
 | 	rt2x00_desc_read(txd, 2, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal); | 
 | 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service); | 
 | 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low); | 
 | 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high); | 
 | 	rt2x00_desc_write(txd, 2, word); | 
 |  | 
 | 	rt2x00_desc_read(txd, 5, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W5_TX_POWER, | 
 | 			   TXPOWER_TO_DEV(rt2x00dev->tx_power)); | 
 | 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); | 
 | 	rt2x00_desc_write(txd, 5, word); | 
 |  | 
 | 	if (skbdesc->desc_len > TXINFO_SIZE) { | 
 | 		rt2x00_desc_read(txd, 11, &word); | 
 | 		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len); | 
 | 		rt2x00_desc_write(txd, 11, word); | 
 | 	} | 
 |  | 
 | 	rt2x00_desc_read(txd, 0, &word); | 
 | 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); | 
 | 	rt2x00_set_field32(&word, TXD_W0_VALID, 1); | 
 | 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, | 
 | 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_ACK, | 
 | 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, | 
 | 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_OFDM, | 
 | 			   test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs); | 
 | 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, | 
 | 			   !!(control->flags & | 
 | 			      IEEE80211_TXCTL_LONG_RETRY_LIMIT)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0); | 
 | 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len); | 
 | 	rt2x00_set_field32(&word, TXD_W0_BURST, | 
 | 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags)); | 
 | 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); | 
 | 	rt2x00_desc_write(txd, 0, word); | 
 | } | 
 |  | 
 | /* | 
 |  * TX data initialization | 
 |  */ | 
 | static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, | 
 | 				  const unsigned int queue) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	if (queue == RT2X00_BCN_QUEUE_BEACON) { | 
 | 		/* | 
 | 		 * For Wi-Fi faily generated beacons between participating | 
 | 		 * stations. Set TBTT phase adaptive adjustment step to 8us. | 
 | 		 */ | 
 | 		rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); | 
 |  | 
 | 		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
 | 		if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) { | 
 | 			rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); | 
 | 			rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); | 
 | 			rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
 | 			rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, | 
 | 			   (queue == IEEE80211_TX_QUEUE_DATA0)); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, | 
 | 			   (queue == IEEE80211_TX_QUEUE_DATA1)); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, | 
 | 			   (queue == IEEE80211_TX_QUEUE_DATA2)); | 
 | 	rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, | 
 | 			   (queue == IEEE80211_TX_QUEUE_DATA3)); | 
 | 	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
 | } | 
 |  | 
 | /* | 
 |  * RX control handlers | 
 |  */ | 
 | static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) | 
 | { | 
 | 	u16 eeprom; | 
 | 	u8 offset; | 
 | 	u8 lna; | 
 |  | 
 | 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); | 
 | 	switch (lna) { | 
 | 	case 3: | 
 | 		offset = 90; | 
 | 		break; | 
 | 	case 2: | 
 | 		offset = 74; | 
 | 		break; | 
 | 	case 1: | 
 | 		offset = 64; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { | 
 | 		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) | 
 | 			offset += 14; | 
 |  | 
 | 		if (lna == 3 || lna == 2) | 
 | 			offset += 10; | 
 |  | 
 | 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); | 
 | 		offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); | 
 | 	} else { | 
 | 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) | 
 | 			offset += 14; | 
 |  | 
 | 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); | 
 | 		offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); | 
 | 	} | 
 |  | 
 | 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; | 
 | } | 
 |  | 
 | static void rt61pci_fill_rxdone(struct queue_entry *entry, | 
 | 			        struct rxdone_entry_desc *rxdesc) | 
 | { | 
 | 	struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data; | 
 | 	u32 word0; | 
 | 	u32 word1; | 
 |  | 
 | 	rt2x00_desc_read(priv_rx->desc, 0, &word0); | 
 | 	rt2x00_desc_read(priv_rx->desc, 1, &word1); | 
 |  | 
 | 	rxdesc->flags = 0; | 
 | 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) | 
 | 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
 |  | 
 | 	/* | 
 | 	 * Obtain the status about this packet. | 
 | 	 * When frame was received with an OFDM bitrate, | 
 | 	 * the signal is the PLCP value. If it was received with | 
 | 	 * a CCK bitrate the signal is the rate in 100kbit/s. | 
 | 	 */ | 
 | 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); | 
 | 	rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1); | 
 | 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); | 
 |  | 
 | 	rxdesc->dev_flags = 0; | 
 | 	if (rt2x00_get_field32(word0, RXD_W0_OFDM)) | 
 | 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; | 
 | 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) | 
 | 		rxdesc->dev_flags |= RXDONE_MY_BSS; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupt functions. | 
 |  */ | 
 | static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	struct data_queue *queue; | 
 | 	struct queue_entry *entry; | 
 | 	struct queue_entry *entry_done; | 
 | 	struct queue_entry_priv_pci_tx *priv_tx; | 
 | 	struct txdone_entry_desc txdesc; | 
 | 	u32 word; | 
 | 	u32 reg; | 
 | 	u32 old_reg; | 
 | 	int type; | 
 | 	int index; | 
 |  | 
 | 	/* | 
 | 	 * During each loop we will compare the freshly read | 
 | 	 * STA_CSR4 register value with the value read from | 
 | 	 * the previous loop. If the 2 values are equal then | 
 | 	 * we should stop processing because the chance it | 
 | 	 * quite big that the device has been unplugged and | 
 | 	 * we risk going into an endless loop. | 
 | 	 */ | 
 | 	old_reg = 0; | 
 |  | 
 | 	while (1) { | 
 | 		rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®); | 
 | 		if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) | 
 | 			break; | 
 |  | 
 | 		if (old_reg == reg) | 
 | 			break; | 
 | 		old_reg = reg; | 
 |  | 
 | 		/* | 
 | 		 * Skip this entry when it contains an invalid | 
 | 		 * queue identication number. | 
 | 		 */ | 
 | 		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); | 
 | 		queue = rt2x00queue_get_queue(rt2x00dev, type); | 
 | 		if (unlikely(!queue)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Skip this entry when it contains an invalid | 
 | 		 * index number. | 
 | 		 */ | 
 | 		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); | 
 | 		if (unlikely(index >= queue->limit)) | 
 | 			continue; | 
 |  | 
 | 		entry = &queue->entries[index]; | 
 | 		priv_tx = entry->priv_data; | 
 | 		rt2x00_desc_read(priv_tx->desc, 0, &word); | 
 |  | 
 | 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || | 
 | 		    !rt2x00_get_field32(word, TXD_W0_VALID)) | 
 | 			return; | 
 |  | 
 | 		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
 | 		while (entry != entry_done) { | 
 | 			/* Catch up. | 
 | 			 * Just report any entries we missed as failed. | 
 | 			 */ | 
 | 			WARNING(rt2x00dev, | 
 | 				"TX status report missed for entry %d\n", | 
 | 				entry_done->entry_idx); | 
 |  | 
 | 			txdesc.status = TX_FAIL_OTHER; | 
 | 			txdesc.retry = 0; | 
 |  | 
 | 			rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc); | 
 | 			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Obtain the status about this packet. | 
 | 		 */ | 
 | 		txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT); | 
 | 		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); | 
 |  | 
 | 		rt2x00pci_txdone(rt2x00dev, entry, &txdesc); | 
 | 	} | 
 | } | 
 |  | 
 | static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = dev_instance; | 
 | 	u32 reg_mcu; | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * Get the interrupt sources & saved to local variable. | 
 | 	 * Write register value back to clear pending interrupts. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu); | 
 | 	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
 | 	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
 |  | 
 | 	if (!reg && !reg_mcu) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) | 
 | 		return IRQ_HANDLED; | 
 |  | 
 | 	/* | 
 | 	 * Handle interrupts, walk through all bits | 
 | 	 * and run the tasks, the bits are checked in order of | 
 | 	 * priority. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * 1 - Rx ring done interrupt. | 
 | 	 */ | 
 | 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) | 
 | 		rt2x00pci_rxdone(rt2x00dev); | 
 |  | 
 | 	/* | 
 | 	 * 2 - Tx ring done interrupt. | 
 | 	 */ | 
 | 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) | 
 | 		rt61pci_txdone(rt2x00dev); | 
 |  | 
 | 	/* | 
 | 	 * 3 - Handle MCU command done. | 
 | 	 */ | 
 | 	if (reg_mcu) | 
 | 		rt2x00pci_register_write(rt2x00dev, | 
 | 					 M2H_CMD_DONE_CSR, 0xffffffff); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * Device probe functions. | 
 |  */ | 
 | static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	struct eeprom_93cx6 eeprom; | 
 | 	u32 reg; | 
 | 	u16 word; | 
 | 	u8 *mac; | 
 | 	s8 value; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
 |  | 
 | 	eeprom.data = rt2x00dev; | 
 | 	eeprom.register_read = rt61pci_eepromregister_read; | 
 | 	eeprom.register_write = rt61pci_eepromregister_write; | 
 | 	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? | 
 | 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; | 
 | 	eeprom.reg_data_in = 0; | 
 | 	eeprom.reg_data_out = 0; | 
 | 	eeprom.reg_data_clock = 0; | 
 | 	eeprom.reg_chip_select = 0; | 
 |  | 
 | 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, | 
 | 			       EEPROM_SIZE / sizeof(u16)); | 
 |  | 
 | 	/* | 
 | 	 * Start validation of the data that has been read. | 
 | 	 */ | 
 | 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
 | 	if (!is_valid_ether_addr(mac)) { | 
 | 		DECLARE_MAC_BUF(macbuf); | 
 |  | 
 | 		random_ether_addr(mac); | 
 | 		EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac)); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, | 
 | 				   ANTENNA_B); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, | 
 | 				   ANTENNA_B); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
 | 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
 | 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, | 
 | 				   LED_MODE_DEFAULT); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); | 
 | 		EEPROM(rt2x00dev, "Led: 0x%04x\n", word); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
 | 		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
 | 		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); | 
 | 	} else { | 
 | 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); | 
 | 		if (value < -10 || value > 10) | 
 | 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
 | 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); | 
 | 		if (value < -10 || value > 10) | 
 | 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
 | 	} | 
 |  | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); | 
 | 	if (word == 0xffff) { | 
 | 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
 | 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
 | 		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); | 
 | 	} else { | 
 | 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); | 
 | 		if (value < -10 || value > 10) | 
 | 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
 | 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); | 
 | 		if (value < -10 || value > 10) | 
 | 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
 | 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	u32 reg; | 
 | 	u16 value; | 
 | 	u16 eeprom; | 
 | 	u16 device; | 
 |  | 
 | 	/* | 
 | 	 * Read EEPROM word for configuration. | 
 | 	 */ | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
 |  | 
 | 	/* | 
 | 	 * Identify RF chipset. | 
 | 	 * To determine the RT chip we have to read the | 
 | 	 * PCI header of the device. | 
 | 	 */ | 
 | 	pci_read_config_word(rt2x00dev_pci(rt2x00dev), | 
 | 			     PCI_CONFIG_HEADER_DEVICE, &device); | 
 | 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
 | 	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); | 
 | 	rt2x00_set_chip(rt2x00dev, device, value, reg); | 
 |  | 
 | 	if (!rt2x00_rf(&rt2x00dev->chip, RF5225) && | 
 | 	    !rt2x00_rf(&rt2x00dev->chip, RF5325) && | 
 | 	    !rt2x00_rf(&rt2x00dev->chip, RF2527) && | 
 | 	    !rt2x00_rf(&rt2x00dev->chip, RF2529)) { | 
 | 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine number of antenna's. | 
 | 	 */ | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) | 
 | 		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags); | 
 |  | 
 | 	/* | 
 | 	 * Identify default antenna configuration. | 
 | 	 */ | 
 | 	rt2x00dev->default_ant.tx = | 
 | 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); | 
 | 	rt2x00dev->default_ant.rx = | 
 | 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); | 
 |  | 
 | 	/* | 
 | 	 * Read the Frame type. | 
 | 	 */ | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) | 
 | 		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags); | 
 |  | 
 | 	/* | 
 | 	 * Detect if this device has an hardware controlled radio. | 
 | 	 */ | 
 | #ifdef CONFIG_RT61PCI_RFKILL | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) | 
 | 		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); | 
 | #endif /* CONFIG_RT61PCI_RFKILL */ | 
 |  | 
 | 	/* | 
 | 	 * Read frequency offset and RF programming sequence. | 
 | 	 */ | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) | 
 | 		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags); | 
 |  | 
 | 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | 
 |  | 
 | 	/* | 
 | 	 * Read external LNA informations. | 
 | 	 */ | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | 
 |  | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) | 
 | 		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); | 
 | 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) | 
 | 		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); | 
 |  | 
 | 	/* | 
 | 	 * When working with a RF2529 chip without double antenna | 
 | 	 * the antenna settings should be gathered from the NIC | 
 | 	 * eeprom word. | 
 | 	 */ | 
 | 	if (rt2x00_rf(&rt2x00dev->chip, RF2529) && | 
 | 	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) { | 
 | 		switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) { | 
 | 		case 0: | 
 | 			rt2x00dev->default_ant.tx = ANTENNA_B; | 
 | 			rt2x00dev->default_ant.rx = ANTENNA_A; | 
 | 			break; | 
 | 		case 1: | 
 | 			rt2x00dev->default_ant.tx = ANTENNA_B; | 
 | 			rt2x00dev->default_ant.rx = ANTENNA_B; | 
 | 			break; | 
 | 		case 2: | 
 | 			rt2x00dev->default_ant.tx = ANTENNA_A; | 
 | 			rt2x00dev->default_ant.rx = ANTENNA_A; | 
 | 			break; | 
 | 		case 3: | 
 | 			rt2x00dev->default_ant.tx = ANTENNA_A; | 
 | 			rt2x00dev->default_ant.rx = ANTENNA_B; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) | 
 | 			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; | 
 | 		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) | 
 | 			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Store led settings, for correct led behaviour. | 
 | 	 * If the eeprom value is invalid, | 
 | 	 * switch to default led mode. | 
 | 	 */ | 
 | #ifdef CONFIG_RT61PCI_LEDS | 
 | 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); | 
 | 	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); | 
 |  | 
 | 	rt2x00dev->led_radio.rt2x00dev = rt2x00dev; | 
 | 	rt2x00dev->led_radio.type = LED_TYPE_RADIO; | 
 | 	rt2x00dev->led_radio.led_dev.brightness_set = | 
 | 	    rt61pci_brightness_set; | 
 | 	rt2x00dev->led_radio.led_dev.blink_set = | 
 | 	    rt61pci_blink_set; | 
 | 	rt2x00dev->led_radio.flags = LED_INITIALIZED; | 
 |  | 
 | 	rt2x00dev->led_assoc.rt2x00dev = rt2x00dev; | 
 | 	rt2x00dev->led_assoc.type = LED_TYPE_ASSOC; | 
 | 	rt2x00dev->led_assoc.led_dev.brightness_set = | 
 | 	    rt61pci_brightness_set; | 
 | 	rt2x00dev->led_assoc.led_dev.blink_set = | 
 | 	    rt61pci_blink_set; | 
 | 	rt2x00dev->led_assoc.flags = LED_INITIALIZED; | 
 |  | 
 | 	if (value == LED_MODE_SIGNAL_STRENGTH) { | 
 | 		rt2x00dev->led_qual.rt2x00dev = rt2x00dev; | 
 | 		rt2x00dev->led_radio.type = LED_TYPE_QUALITY; | 
 | 		rt2x00dev->led_qual.led_dev.brightness_set = | 
 | 		    rt61pci_brightness_set; | 
 | 		rt2x00dev->led_qual.led_dev.blink_set = | 
 | 		    rt61pci_blink_set; | 
 | 		rt2x00dev->led_qual.flags = LED_INITIALIZED; | 
 | 	} | 
 |  | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_GPIO_0)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_GPIO_1)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_GPIO_2)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_GPIO_3)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_GPIO_4)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, | 
 | 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_RDY_G)); | 
 | 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, | 
 | 			   rt2x00_get_field16(eeprom, | 
 | 					      EEPROM_LED_POLARITY_RDY_A)); | 
 | #endif /* CONFIG_RT61PCI_LEDS */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * RF value list for RF5225 & RF5325 | 
 |  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled | 
 |  */ | 
 | static const struct rf_channel rf_vals_noseq[] = { | 
 | 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, | 
 | 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, | 
 | 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, | 
 | 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, | 
 | 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, | 
 | 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, | 
 | 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, | 
 | 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, | 
 | 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, | 
 | 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, | 
 | 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, | 
 | 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, | 
 | 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, | 
 | 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, | 
 |  | 
 | 	/* 802.11 UNI / HyperLan 2 */ | 
 | 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, | 
 | 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, | 
 | 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, | 
 | 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, | 
 | 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, | 
 | 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, | 
 | 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, | 
 | 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, | 
 |  | 
 | 	/* 802.11 HyperLan 2 */ | 
 | 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, | 
 | 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, | 
 | 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, | 
 | 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, | 
 | 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, | 
 | 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, | 
 | 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, | 
 | 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, | 
 | 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, | 
 | 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, | 
 |  | 
 | 	/* 802.11 UNII */ | 
 | 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, | 
 | 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, | 
 | 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, | 
 | 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, | 
 | 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, | 
 | 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, | 
 |  | 
 | 	/* MMAC(Japan)J52 ch 34,38,42,46 */ | 
 | 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, | 
 | 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, | 
 | 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, | 
 | 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, | 
 | }; | 
 |  | 
 | /* | 
 |  * RF value list for RF5225 & RF5325 | 
 |  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled | 
 |  */ | 
 | static const struct rf_channel rf_vals_seq[] = { | 
 | 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, | 
 | 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, | 
 | 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, | 
 | 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, | 
 | 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, | 
 | 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, | 
 | 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, | 
 | 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, | 
 | 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, | 
 | 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, | 
 | 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, | 
 | 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, | 
 | 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, | 
 | 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, | 
 |  | 
 | 	/* 802.11 UNI / HyperLan 2 */ | 
 | 	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, | 
 | 	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, | 
 | 	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, | 
 | 	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, | 
 | 	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, | 
 | 	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, | 
 | 	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, | 
 | 	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, | 
 |  | 
 | 	/* 802.11 HyperLan 2 */ | 
 | 	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, | 
 | 	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, | 
 | 	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, | 
 | 	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, | 
 | 	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, | 
 | 	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, | 
 | 	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, | 
 | 	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, | 
 | 	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, | 
 | 	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, | 
 |  | 
 | 	/* 802.11 UNII */ | 
 | 	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, | 
 | 	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, | 
 | 	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, | 
 | 	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, | 
 | 	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, | 
 | 	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, | 
 |  | 
 | 	/* MMAC(Japan)J52 ch 34,38,42,46 */ | 
 | 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, | 
 | 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, | 
 | 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, | 
 | 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, | 
 | }; | 
 |  | 
 | static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	struct hw_mode_spec *spec = &rt2x00dev->spec; | 
 | 	u8 *txpower; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Initialize all hw fields. | 
 | 	 */ | 
 | 	rt2x00dev->hw->flags = | 
 | 	    IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE | | 
 | 	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; | 
 | 	rt2x00dev->hw->extra_tx_headroom = 0; | 
 | 	rt2x00dev->hw->max_signal = MAX_SIGNAL; | 
 | 	rt2x00dev->hw->max_rssi = MAX_RX_SSI; | 
 | 	rt2x00dev->hw->queues = 4; | 
 |  | 
 | 	SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev); | 
 | 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
 | 				rt2x00_eeprom_addr(rt2x00dev, | 
 | 						   EEPROM_MAC_ADDR_0)); | 
 |  | 
 | 	/* | 
 | 	 * Convert tx_power array in eeprom. | 
 | 	 */ | 
 | 	txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); | 
 | 	for (i = 0; i < 14; i++) | 
 | 		txpower[i] = TXPOWER_FROM_DEV(txpower[i]); | 
 |  | 
 | 	/* | 
 | 	 * Initialize hw_mode information. | 
 | 	 */ | 
 | 	spec->supported_bands = SUPPORT_BAND_2GHZ; | 
 | 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
 | 	spec->tx_power_a = NULL; | 
 | 	spec->tx_power_bg = txpower; | 
 | 	spec->tx_power_default = DEFAULT_TXPOWER; | 
 |  | 
 | 	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) { | 
 | 		spec->num_channels = 14; | 
 | 		spec->channels = rf_vals_noseq; | 
 | 	} else { | 
 | 		spec->num_channels = 14; | 
 | 		spec->channels = rf_vals_seq; | 
 | 	} | 
 |  | 
 | 	if (rt2x00_rf(&rt2x00dev->chip, RF5225) || | 
 | 	    rt2x00_rf(&rt2x00dev->chip, RF5325)) { | 
 | 		spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
 | 		spec->num_channels = ARRAY_SIZE(rf_vals_seq); | 
 |  | 
 | 		txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); | 
 | 		for (i = 0; i < 14; i++) | 
 | 			txpower[i] = TXPOWER_FROM_DEV(txpower[i]); | 
 |  | 
 | 		spec->tx_power_a = txpower; | 
 | 	} | 
 | } | 
 |  | 
 | static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	/* | 
 | 	 * Allocate eeprom data. | 
 | 	 */ | 
 | 	retval = rt61pci_validate_eeprom(rt2x00dev); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	retval = rt61pci_init_eeprom(rt2x00dev); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	/* | 
 | 	 * Initialize hw specifications. | 
 | 	 */ | 
 | 	rt61pci_probe_hw_mode(rt2x00dev); | 
 |  | 
 | 	/* | 
 | 	 * This device requires firmware. | 
 | 	 */ | 
 | 	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); | 
 |  | 
 | 	/* | 
 | 	 * Set the rssi offset. | 
 | 	 */ | 
 | 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * IEEE80211 stack callback functions. | 
 |  */ | 
 | static int rt61pci_set_retry_limit(struct ieee80211_hw *hw, | 
 | 				   u32 short_retry, u32 long_retry) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = hw->priv; | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry); | 
 | 	rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 rt61pci_get_tsf(struct ieee80211_hw *hw) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = hw->priv; | 
 | 	u64 tsf; | 
 | 	u32 reg; | 
 |  | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®); | 
 | 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®); | 
 | 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); | 
 |  | 
 | 	return tsf; | 
 | } | 
 |  | 
 | static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb, | 
 | 			  struct ieee80211_tx_control *control) | 
 | { | 
 | 	struct rt2x00_dev *rt2x00dev = hw->priv; | 
 | 	struct rt2x00_intf *intf = vif_to_intf(control->vif); | 
 | 	struct skb_frame_desc *skbdesc; | 
 | 	unsigned int beacon_base; | 
 | 	u32 reg; | 
 |  | 
 | 	if (unlikely(!intf->beacon)) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	/* | 
 | 	 * We need to append the descriptor in front of the | 
 | 	 * beacon frame. | 
 | 	 */ | 
 | 	if (skb_headroom(skb) < intf->beacon->queue->desc_size) { | 
 | 		if (pskb_expand_head(skb, intf->beacon->queue->desc_size, | 
 | 				     0, GFP_ATOMIC)) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Add the descriptor in front of the skb. | 
 | 	 */ | 
 | 	skb_push(skb, intf->beacon->queue->desc_size); | 
 | 	memset(skb->data, 0, intf->beacon->queue->desc_size); | 
 |  | 
 | 	/* | 
 | 	 * Fill in skb descriptor | 
 | 	 */ | 
 | 	skbdesc = get_skb_frame_desc(skb); | 
 | 	memset(skbdesc, 0, sizeof(*skbdesc)); | 
 | 	skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED; | 
 | 	skbdesc->data = skb->data + intf->beacon->queue->desc_size; | 
 | 	skbdesc->data_len = skb->len - intf->beacon->queue->desc_size; | 
 | 	skbdesc->desc = skb->data; | 
 | 	skbdesc->desc_len = intf->beacon->queue->desc_size; | 
 | 	skbdesc->entry = intf->beacon; | 
 |  | 
 | 	/* | 
 | 	 * Disable beaconing while we are reloading the beacon data, | 
 | 	 * otherwise we might be sending out invalid data. | 
 | 	 */ | 
 | 	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
 | 	rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); | 
 | 	rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); | 
 | 	rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
 | 	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
 |  | 
 | 	/* | 
 | 	 * mac80211 doesn't provide the control->queue variable | 
 | 	 * for beacons. Set our own queue identification so | 
 | 	 * it can be used during descriptor initialization. | 
 | 	 */ | 
 | 	control->queue = RT2X00_BCN_QUEUE_BEACON; | 
 | 	rt2x00lib_write_tx_desc(rt2x00dev, skb, control); | 
 |  | 
 | 	/* | 
 | 	 * Write entire beacon with descriptor to register, | 
 | 	 * and kick the beacon generator. | 
 | 	 */ | 
 | 	beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); | 
 | 	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base, | 
 | 				      skb->data, skb->len); | 
 | 	rt61pci_kick_tx_queue(rt2x00dev, control->queue); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct ieee80211_ops rt61pci_mac80211_ops = { | 
 | 	.tx			= rt2x00mac_tx, | 
 | 	.start			= rt2x00mac_start, | 
 | 	.stop			= rt2x00mac_stop, | 
 | 	.add_interface		= rt2x00mac_add_interface, | 
 | 	.remove_interface	= rt2x00mac_remove_interface, | 
 | 	.config			= rt2x00mac_config, | 
 | 	.config_interface	= rt2x00mac_config_interface, | 
 | 	.configure_filter	= rt2x00mac_configure_filter, | 
 | 	.get_stats		= rt2x00mac_get_stats, | 
 | 	.set_retry_limit	= rt61pci_set_retry_limit, | 
 | 	.bss_info_changed	= rt2x00mac_bss_info_changed, | 
 | 	.conf_tx		= rt2x00mac_conf_tx, | 
 | 	.get_tx_stats		= rt2x00mac_get_tx_stats, | 
 | 	.get_tsf		= rt61pci_get_tsf, | 
 | 	.beacon_update		= rt61pci_beacon_update, | 
 | }; | 
 |  | 
 | static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { | 
 | 	.irq_handler		= rt61pci_interrupt, | 
 | 	.probe_hw		= rt61pci_probe_hw, | 
 | 	.get_firmware_name	= rt61pci_get_firmware_name, | 
 | 	.get_firmware_crc	= rt61pci_get_firmware_crc, | 
 | 	.load_firmware		= rt61pci_load_firmware, | 
 | 	.initialize		= rt2x00pci_initialize, | 
 | 	.uninitialize		= rt2x00pci_uninitialize, | 
 | 	.init_rxentry		= rt61pci_init_rxentry, | 
 | 	.init_txentry		= rt61pci_init_txentry, | 
 | 	.set_device_state	= rt61pci_set_device_state, | 
 | 	.rfkill_poll		= rt61pci_rfkill_poll, | 
 | 	.link_stats		= rt61pci_link_stats, | 
 | 	.reset_tuner		= rt61pci_reset_tuner, | 
 | 	.link_tuner		= rt61pci_link_tuner, | 
 | 	.write_tx_desc		= rt61pci_write_tx_desc, | 
 | 	.write_tx_data		= rt2x00pci_write_tx_data, | 
 | 	.kick_tx_queue		= rt61pci_kick_tx_queue, | 
 | 	.fill_rxdone		= rt61pci_fill_rxdone, | 
 | 	.config_filter		= rt61pci_config_filter, | 
 | 	.config_intf		= rt61pci_config_intf, | 
 | 	.config_erp		= rt61pci_config_erp, | 
 | 	.config			= rt61pci_config, | 
 | }; | 
 |  | 
 | static const struct data_queue_desc rt61pci_queue_rx = { | 
 | 	.entry_num		= RX_ENTRIES, | 
 | 	.data_size		= DATA_FRAME_SIZE, | 
 | 	.desc_size		= RXD_DESC_SIZE, | 
 | 	.priv_size		= sizeof(struct queue_entry_priv_pci_rx), | 
 | }; | 
 |  | 
 | static const struct data_queue_desc rt61pci_queue_tx = { | 
 | 	.entry_num		= TX_ENTRIES, | 
 | 	.data_size		= DATA_FRAME_SIZE, | 
 | 	.desc_size		= TXD_DESC_SIZE, | 
 | 	.priv_size		= sizeof(struct queue_entry_priv_pci_tx), | 
 | }; | 
 |  | 
 | static const struct data_queue_desc rt61pci_queue_bcn = { | 
 | 	.entry_num		= 4 * BEACON_ENTRIES, | 
 | 	.data_size		= MGMT_FRAME_SIZE, | 
 | 	.desc_size		= TXINFO_SIZE, | 
 | 	.priv_size		= sizeof(struct queue_entry_priv_pci_tx), | 
 | }; | 
 |  | 
 | static const struct rt2x00_ops rt61pci_ops = { | 
 | 	.name		= KBUILD_MODNAME, | 
 | 	.max_sta_intf	= 1, | 
 | 	.max_ap_intf	= 4, | 
 | 	.eeprom_size	= EEPROM_SIZE, | 
 | 	.rf_size	= RF_SIZE, | 
 | 	.rx		= &rt61pci_queue_rx, | 
 | 	.tx		= &rt61pci_queue_tx, | 
 | 	.bcn		= &rt61pci_queue_bcn, | 
 | 	.lib		= &rt61pci_rt2x00_ops, | 
 | 	.hw		= &rt61pci_mac80211_ops, | 
 | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
 | 	.debugfs	= &rt61pci_rt2x00debug, | 
 | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
 | }; | 
 |  | 
 | /* | 
 |  * RT61pci module information. | 
 |  */ | 
 | static struct pci_device_id rt61pci_device_table[] = { | 
 | 	/* RT2561s */ | 
 | 	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) }, | 
 | 	/* RT2561 v2 */ | 
 | 	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) }, | 
 | 	/* RT2661 */ | 
 | 	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) }, | 
 | 	{ 0, } | 
 | }; | 
 |  | 
 | MODULE_AUTHOR(DRV_PROJECT); | 
 | MODULE_VERSION(DRV_VERSION); | 
 | MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); | 
 | MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " | 
 | 			"PCI & PCMCIA chipset based cards"); | 
 | MODULE_DEVICE_TABLE(pci, rt61pci_device_table); | 
 | MODULE_FIRMWARE(FIRMWARE_RT2561); | 
 | MODULE_FIRMWARE(FIRMWARE_RT2561s); | 
 | MODULE_FIRMWARE(FIRMWARE_RT2661); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static struct pci_driver rt61pci_driver = { | 
 | 	.name		= KBUILD_MODNAME, | 
 | 	.id_table	= rt61pci_device_table, | 
 | 	.probe		= rt2x00pci_probe, | 
 | 	.remove		= __devexit_p(rt2x00pci_remove), | 
 | 	.suspend	= rt2x00pci_suspend, | 
 | 	.resume		= rt2x00pci_resume, | 
 | }; | 
 |  | 
 | static int __init rt61pci_init(void) | 
 | { | 
 | 	return pci_register_driver(&rt61pci_driver); | 
 | } | 
 |  | 
 | static void __exit rt61pci_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&rt61pci_driver); | 
 | } | 
 |  | 
 | module_init(rt61pci_init); | 
 | module_exit(rt61pci_exit); |