|  | /* | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | * | 
|  | * Copyright (C) 2000, 2001 Kanoj Sarcar | 
|  | * Copyright (C) 2000, 2001 Ralf Baechle | 
|  | * Copyright (C) 2000, 2001 Silicon Graphics, Inc. | 
|  | * Copyright (C) 2000, 2001, 2003 Broadcom Corporation | 
|  | */ | 
|  | #include <linux/cache.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cpumask.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/smp.h> | 
|  |  | 
|  | cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */ | 
|  | volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */ | 
|  | cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */ | 
|  | int __cpu_number_map[NR_CPUS];		/* Map physical to logical */ | 
|  | int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */ | 
|  |  | 
|  | EXPORT_SYMBOL(phys_cpu_present_map); | 
|  | EXPORT_SYMBOL(cpu_online_map); | 
|  |  | 
|  | static void smp_tune_scheduling (void) | 
|  | { | 
|  | struct cache_desc *cd = ¤t_cpu_data.scache; | 
|  | unsigned long cachesize;       /* kB   */ | 
|  | unsigned long bandwidth = 350; /* MB/s */ | 
|  | unsigned long cpu_khz; | 
|  |  | 
|  | /* | 
|  | * Crude estimate until we actually meassure ... | 
|  | */ | 
|  | cpu_khz = loops_per_jiffy * 2 * HZ / 1000; | 
|  |  | 
|  | /* | 
|  | * Rough estimation for SMP scheduling, this is the number of | 
|  | * cycles it takes for a fully memory-limited process to flush | 
|  | * the SMP-local cache. | 
|  | * | 
|  | * (For a P5 this pretty much means we will choose another idle | 
|  | *  CPU almost always at wakeup time (this is due to the small | 
|  | *  L1 cache), on PIIs it's around 50-100 usecs, depending on | 
|  | *  the cache size) | 
|  | */ | 
|  | if (!cpu_khz) | 
|  | return; | 
|  |  | 
|  | cachesize = cd->linesz * cd->sets * cd->ways; | 
|  | } | 
|  |  | 
|  | extern void __init calibrate_delay(void); | 
|  | extern ATTRIB_NORET void cpu_idle(void); | 
|  |  | 
|  | /* | 
|  | * First C code run on the secondary CPUs after being started up by | 
|  | * the master. | 
|  | */ | 
|  | asmlinkage void start_secondary(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | cpu_probe(); | 
|  | cpu_report(); | 
|  | per_cpu_trap_init(); | 
|  | prom_init_secondary(); | 
|  |  | 
|  | /* | 
|  | * XXX parity protection should be folded in here when it's converted | 
|  | * to an option instead of something based on .cputype | 
|  | */ | 
|  |  | 
|  | calibrate_delay(); | 
|  | cpu_data[cpu].udelay_val = loops_per_jiffy; | 
|  |  | 
|  | prom_smp_finish(); | 
|  |  | 
|  | cpu_set(cpu, cpu_callin_map); | 
|  |  | 
|  | cpu_idle(); | 
|  | } | 
|  |  | 
|  | DEFINE_SPINLOCK(smp_call_lock); | 
|  |  | 
|  | struct call_data_struct *call_data; | 
|  |  | 
|  | /* | 
|  | * Run a function on all other CPUs. | 
|  | *  <func>      The function to run. This must be fast and non-blocking. | 
|  | *  <info>      An arbitrary pointer to pass to the function. | 
|  | *  <retry>     If true, keep retrying until ready. | 
|  | *  <wait>      If true, wait until function has completed on other CPUs. | 
|  | *  [RETURNS]   0 on success, else a negative status code. | 
|  | * | 
|  | * Does not return until remote CPUs are nearly ready to execute <func> | 
|  | * or are or have executed. | 
|  | * | 
|  | * You must not call this function with disabled interrupts or from a | 
|  | * hardware interrupt handler or from a bottom half handler. | 
|  | */ | 
|  | int smp_call_function (void (*func) (void *info), void *info, int retry, | 
|  | int wait) | 
|  | { | 
|  | struct call_data_struct data; | 
|  | int i, cpus = num_online_cpus() - 1; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!cpus) | 
|  | return 0; | 
|  |  | 
|  | /* Can deadlock when called with interrupts disabled */ | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | data.func = func; | 
|  | data.info = info; | 
|  | atomic_set(&data.started, 0); | 
|  | data.wait = wait; | 
|  | if (wait) | 
|  | atomic_set(&data.finished, 0); | 
|  |  | 
|  | spin_lock(&smp_call_lock); | 
|  | call_data = &data; | 
|  | mb(); | 
|  |  | 
|  | /* Send a message to all other CPUs and wait for them to respond */ | 
|  | for (i = 0; i < NR_CPUS; i++) | 
|  | if (cpu_online(i) && i != cpu) | 
|  | core_send_ipi(i, SMP_CALL_FUNCTION); | 
|  |  | 
|  | /* Wait for response */ | 
|  | /* FIXME: lock-up detection, backtrace on lock-up */ | 
|  | while (atomic_read(&data.started) != cpus) | 
|  | barrier(); | 
|  |  | 
|  | if (wait) | 
|  | while (atomic_read(&data.finished) != cpus) | 
|  | barrier(); | 
|  | spin_unlock(&smp_call_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void smp_call_function_interrupt(void) | 
|  | { | 
|  | void (*func) (void *info) = call_data->func; | 
|  | void *info = call_data->info; | 
|  | int wait = call_data->wait; | 
|  |  | 
|  | /* | 
|  | * Notify initiating CPU that I've grabbed the data and am | 
|  | * about to execute the function. | 
|  | */ | 
|  | mb(); | 
|  | atomic_inc(&call_data->started); | 
|  |  | 
|  | /* | 
|  | * At this point the info structure may be out of scope unless wait==1. | 
|  | */ | 
|  | irq_enter(); | 
|  | (*func)(info); | 
|  | irq_exit(); | 
|  |  | 
|  | if (wait) { | 
|  | mb(); | 
|  | atomic_inc(&call_data->finished); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void stop_this_cpu(void *dummy) | 
|  | { | 
|  | /* | 
|  | * Remove this CPU: | 
|  | */ | 
|  | cpu_clear(smp_processor_id(), cpu_online_map); | 
|  | local_irq_enable();	/* May need to service _machine_restart IPI */ | 
|  | for (;;);		/* Wait if available. */ | 
|  | } | 
|  |  | 
|  | void smp_send_stop(void) | 
|  | { | 
|  | smp_call_function(stop_this_cpu, NULL, 1, 0); | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | prom_cpus_done(); | 
|  | } | 
|  |  | 
|  | /* called from main before smp_init() */ | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | cpu_data[0].udelay_val = loops_per_jiffy; | 
|  | init_new_context(current, &init_mm); | 
|  | current_thread_info()->cpu = 0; | 
|  | smp_tune_scheduling(); | 
|  | prom_prepare_cpus(max_cpus); | 
|  | } | 
|  |  | 
|  | /* preload SMP state for boot cpu */ | 
|  | void __devinit smp_prepare_boot_cpu(void) | 
|  | { | 
|  | /* | 
|  | * This assumes that bootup is always handled by the processor | 
|  | * with the logic and physical number 0. | 
|  | */ | 
|  | __cpu_number_map[0] = 0; | 
|  | __cpu_logical_map[0] = 0; | 
|  | cpu_set(0, phys_cpu_present_map); | 
|  | cpu_set(0, cpu_online_map); | 
|  | cpu_set(0, cpu_callin_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Startup the CPU with this logical number | 
|  | */ | 
|  | static int __init do_boot_cpu(int cpu) | 
|  | { | 
|  | struct task_struct *idle; | 
|  |  | 
|  | /* | 
|  | * The following code is purely to make sure | 
|  | * Linux can schedule processes on this slave. | 
|  | */ | 
|  | idle = fork_idle(cpu); | 
|  | if (IS_ERR(idle)) | 
|  | panic("failed fork for CPU %d\n", cpu); | 
|  |  | 
|  | prom_boot_secondary(cpu, idle); | 
|  |  | 
|  | /* XXXKW timeout */ | 
|  | while (!cpu_isset(cpu, cpu_callin_map)) | 
|  | udelay(100); | 
|  |  | 
|  | cpu_set(cpu, cpu_online_map); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu | 
|  | * and keep control until "cpu_online(cpu)" is set.  Note: cpu is | 
|  | * physical, not logical. | 
|  | */ | 
|  | int __devinit __cpu_up(unsigned int cpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Processor goes to start_secondary(), sets online flag */ | 
|  | ret = do_boot_cpu(cpu); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Not really SMP stuff ... */ | 
|  | int setup_profiling_timer(unsigned int multiplier) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void flush_tlb_all_ipi(void *info) | 
|  | { | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | void flush_tlb_all(void) | 
|  | { | 
|  | on_each_cpu(flush_tlb_all_ipi, 0, 1, 1); | 
|  | } | 
|  |  | 
|  | static void flush_tlb_mm_ipi(void *mm) | 
|  | { | 
|  | local_flush_tlb_mm((struct mm_struct *)mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following tlb flush calls are invoked when old translations are | 
|  | * being torn down, or pte attributes are changing. For single threaded | 
|  | * address spaces, a new context is obtained on the current cpu, and tlb | 
|  | * context on other cpus are invalidated to force a new context allocation | 
|  | * at switch_mm time, should the mm ever be used on other cpus. For | 
|  | * multithreaded address spaces, intercpu interrupts have to be sent. | 
|  | * Another case where intercpu interrupts are required is when the target | 
|  | * mm might be active on another cpu (eg debuggers doing the flushes on | 
|  | * behalf of debugees, kswapd stealing pages from another process etc). | 
|  | * Kanoj 07/00. | 
|  | */ | 
|  |  | 
|  | void flush_tlb_mm(struct mm_struct *mm) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | 
|  | smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < num_online_cpus(); i++) | 
|  | if (smp_processor_id() != i) | 
|  | cpu_context(i, mm) = 0; | 
|  | } | 
|  | local_flush_tlb_mm(mm); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | struct flush_tlb_data { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long addr1; | 
|  | unsigned long addr2; | 
|  | }; | 
|  |  | 
|  | static void flush_tlb_range_ipi(void *info) | 
|  | { | 
|  | struct flush_tlb_data *fd = (struct flush_tlb_data *)info; | 
|  |  | 
|  | local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); | 
|  | } | 
|  |  | 
|  | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | preempt_disable(); | 
|  | if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | 
|  | struct flush_tlb_data fd; | 
|  |  | 
|  | fd.vma = vma; | 
|  | fd.addr1 = start; | 
|  | fd.addr2 = end; | 
|  | smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < num_online_cpus(); i++) | 
|  | if (smp_processor_id() != i) | 
|  | cpu_context(i, mm) = 0; | 
|  | } | 
|  | local_flush_tlb_range(vma, start, end); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void flush_tlb_kernel_range_ipi(void *info) | 
|  | { | 
|  | struct flush_tlb_data *fd = (struct flush_tlb_data *)info; | 
|  |  | 
|  | local_flush_tlb_kernel_range(fd->addr1, fd->addr2); | 
|  | } | 
|  |  | 
|  | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | struct flush_tlb_data fd; | 
|  |  | 
|  | fd.addr1 = start; | 
|  | fd.addr2 = end; | 
|  | on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1); | 
|  | } | 
|  |  | 
|  | static void flush_tlb_page_ipi(void *info) | 
|  | { | 
|  | struct flush_tlb_data *fd = (struct flush_tlb_data *)info; | 
|  |  | 
|  | local_flush_tlb_page(fd->vma, fd->addr1); | 
|  | } | 
|  |  | 
|  | void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
|  | { | 
|  | preempt_disable(); | 
|  | if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { | 
|  | struct flush_tlb_data fd; | 
|  |  | 
|  | fd.vma = vma; | 
|  | fd.addr1 = page; | 
|  | smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < num_online_cpus(); i++) | 
|  | if (smp_processor_id() != i) | 
|  | cpu_context(i, vma->vm_mm) = 0; | 
|  | } | 
|  | local_flush_tlb_page(vma, page); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void flush_tlb_one_ipi(void *info) | 
|  | { | 
|  | unsigned long vaddr = (unsigned long) info; | 
|  |  | 
|  | local_flush_tlb_one(vaddr); | 
|  | } | 
|  |  | 
|  | void flush_tlb_one(unsigned long vaddr) | 
|  | { | 
|  | smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1); | 
|  | local_flush_tlb_one(vaddr); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(flush_tlb_page); | 
|  | EXPORT_SYMBOL(flush_tlb_one); | 
|  | EXPORT_SYMBOL(cpu_data); | 
|  | EXPORT_SYMBOL(synchronize_irq); |