|  | /* | 
|  | * Copyright 2001 MontaVista Software Inc. | 
|  | * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net | 
|  | * Copyright (c) 2003, 2004  Maciej W. Rozycki | 
|  | * | 
|  | * Common time service routines for MIPS machines. See | 
|  | * Documentation/mips/time.README. | 
|  | * | 
|  | * This program is free software; you can redistribute  it and/or modify it | 
|  | * under  the terms of  the GNU General  Public License as published by the | 
|  | * Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | * option) any later version. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <asm/bootinfo.h> | 
|  | #include <asm/compiler.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cpu-features.h> | 
|  | #include <asm/div64.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/time.h> | 
|  |  | 
|  | /* | 
|  | * The integer part of the number of usecs per jiffy is taken from tick, | 
|  | * but the fractional part is not recorded, so we calculate it using the | 
|  | * initial value of HZ.  This aids systems where tick isn't really an | 
|  | * integer (e.g. for HZ = 128). | 
|  | */ | 
|  | #define USECS_PER_JIFFY		TICK_SIZE | 
|  | #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ)) | 
|  |  | 
|  | #define TICK_SIZE	(tick_nsec / 1000) | 
|  |  | 
|  | u64 jiffies_64 = INITIAL_JIFFIES; | 
|  |  | 
|  | EXPORT_SYMBOL(jiffies_64); | 
|  |  | 
|  | /* | 
|  | * forward reference | 
|  | */ | 
|  | extern volatile unsigned long wall_jiffies; | 
|  |  | 
|  | DEFINE_SPINLOCK(rtc_lock); | 
|  |  | 
|  | /* | 
|  | * By default we provide the null RTC ops | 
|  | */ | 
|  | static unsigned long null_rtc_get_time(void) | 
|  | { | 
|  | return mktime(2000, 1, 1, 0, 0, 0); | 
|  | } | 
|  |  | 
|  | static int null_rtc_set_time(unsigned long sec) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long (*rtc_get_time)(void) = null_rtc_get_time; | 
|  | int (*rtc_set_time)(unsigned long) = null_rtc_set_time; | 
|  | int (*rtc_set_mmss)(unsigned long); | 
|  |  | 
|  |  | 
|  | /* usecs per counter cycle, shifted to left by 32 bits */ | 
|  | static unsigned int sll32_usecs_per_cycle; | 
|  |  | 
|  | /* how many counter cycles in a jiffy */ | 
|  | static unsigned long cycles_per_jiffy; | 
|  |  | 
|  | /* Cycle counter value at the previous timer interrupt.. */ | 
|  | static unsigned int timerhi, timerlo; | 
|  |  | 
|  | /* expirelo is the count value for next CPU timer interrupt */ | 
|  | static unsigned int expirelo; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Null timer ack for systems not needing one (e.g. i8254). | 
|  | */ | 
|  | static void null_timer_ack(void) { /* nothing */ } | 
|  |  | 
|  | /* | 
|  | * Null high precision timer functions for systems lacking one. | 
|  | */ | 
|  | static unsigned int null_hpt_read(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void null_hpt_init(unsigned int count) { /* nothing */ } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Timer ack for an R4k-compatible timer of a known frequency. | 
|  | */ | 
|  | static void c0_timer_ack(void) | 
|  | { | 
|  | unsigned int count; | 
|  |  | 
|  | /* Ack this timer interrupt and set the next one.  */ | 
|  | expirelo += cycles_per_jiffy; | 
|  | write_c0_compare(expirelo); | 
|  |  | 
|  | /* Check to see if we have missed any timer interrupts.  */ | 
|  | count = read_c0_count(); | 
|  | if ((count - expirelo) < 0x7fffffff) { | 
|  | /* missed_timer_count++; */ | 
|  | expirelo = count + cycles_per_jiffy; | 
|  | write_c0_compare(expirelo); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * High precision timer functions for a R4k-compatible timer. | 
|  | */ | 
|  | static unsigned int c0_hpt_read(void) | 
|  | { | 
|  | return read_c0_count(); | 
|  | } | 
|  |  | 
|  | /* For use solely as a high precision timer.  */ | 
|  | static void c0_hpt_init(unsigned int count) | 
|  | { | 
|  | write_c0_count(read_c0_count() - count); | 
|  | } | 
|  |  | 
|  | /* For use both as a high precision timer and an interrupt source.  */ | 
|  | static void c0_hpt_timer_init(unsigned int count) | 
|  | { | 
|  | count = read_c0_count() - count; | 
|  | expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; | 
|  | write_c0_count(expirelo - cycles_per_jiffy); | 
|  | write_c0_compare(expirelo); | 
|  | write_c0_count(count); | 
|  | } | 
|  |  | 
|  | int (*mips_timer_state)(void); | 
|  | void (*mips_timer_ack)(void); | 
|  | unsigned int (*mips_hpt_read)(void); | 
|  | void (*mips_hpt_init)(unsigned int); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This version of gettimeofday has microsecond resolution and better than | 
|  | * microsecond precision on fast machines with cycle counter. | 
|  | */ | 
|  | void do_gettimeofday(struct timeval *tv) | 
|  | { | 
|  | unsigned long seq; | 
|  | unsigned long lost; | 
|  | unsigned long usec, sec; | 
|  | unsigned long max_ntp_tick = tick_usec - tickadj; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  |  | 
|  | usec = do_gettimeoffset(); | 
|  |  | 
|  | lost = jiffies - wall_jiffies; | 
|  |  | 
|  | /* | 
|  | * If time_adjust is negative then NTP is slowing the clock | 
|  | * so make sure not to go into next possible interval. | 
|  | * Better to lose some accuracy than have time go backwards.. | 
|  | */ | 
|  | if (unlikely(time_adjust < 0)) { | 
|  | usec = min(usec, max_ntp_tick); | 
|  |  | 
|  | if (lost) | 
|  | usec += lost * max_ntp_tick; | 
|  | } else if (unlikely(lost)) | 
|  | usec += lost * tick_usec; | 
|  |  | 
|  | sec = xtime.tv_sec; | 
|  | usec += (xtime.tv_nsec / 1000); | 
|  |  | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | while (usec >= 1000000) { | 
|  | usec -= 1000000; | 
|  | sec++; | 
|  | } | 
|  |  | 
|  | tv->tv_sec = sec; | 
|  | tv->tv_usec = usec; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_gettimeofday); | 
|  |  | 
|  | int do_settimeofday(struct timespec *tv) | 
|  | { | 
|  | time_t wtm_sec, sec = tv->tv_sec; | 
|  | long wtm_nsec, nsec = tv->tv_nsec; | 
|  |  | 
|  | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | write_seqlock_irq(&xtime_lock); | 
|  |  | 
|  | /* | 
|  | * This is revolting.  We need to set "xtime" correctly.  However, | 
|  | * the value in this location is the value at the most recent update | 
|  | * of wall time.  Discover what correction gettimeofday() would have | 
|  | * made, and then undo it! | 
|  | */ | 
|  | nsec -= do_gettimeoffset() * NSEC_PER_USEC; | 
|  | nsec -= (jiffies - wall_jiffies) * tick_nsec; | 
|  |  | 
|  | wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
|  | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
|  |  | 
|  | set_normalized_timespec(&xtime, sec, nsec); | 
|  | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
|  |  | 
|  | time_adjust = 0;			/* stop active adjtime() */ | 
|  | time_status |= STA_UNSYNC; | 
|  | time_maxerror = NTP_PHASE_LIMIT; | 
|  | time_esterror = NTP_PHASE_LIMIT; | 
|  |  | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | clock_was_set(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_settimeofday); | 
|  |  | 
|  | /* | 
|  | * Gettimeoffset routines.  These routines returns the time duration | 
|  | * since last timer interrupt in usecs. | 
|  | * | 
|  | * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. | 
|  | * Otherwise use calibrate_gettimeoffset() | 
|  | * | 
|  | * If the CPU does not have the counter register, you can either supply | 
|  | * your own gettimeoffset() routine, or use null_gettimeoffset(), which | 
|  | * gives the same resolution as HZ. | 
|  | */ | 
|  |  | 
|  | static unsigned long null_gettimeoffset(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The function pointer to one of the gettimeoffset funcs.  */ | 
|  | unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; | 
|  |  | 
|  |  | 
|  | static unsigned long fixed_rate_gettimeoffset(void) | 
|  | { | 
|  | u32 count; | 
|  | unsigned long res; | 
|  |  | 
|  | /* Get last timer tick in absolute kernel time */ | 
|  | count = mips_hpt_read(); | 
|  |  | 
|  | /* .. relative to previous jiffy (32 bits is enough) */ | 
|  | count -= timerlo; | 
|  |  | 
|  | __asm__("multu	%1,%2" | 
|  | : "=h" (res) | 
|  | : "r" (count), "r" (sll32_usecs_per_cycle) | 
|  | : "lo", GCC_REG_ACCUM); | 
|  |  | 
|  | /* | 
|  | * Due to possible jiffies inconsistencies, we need to check | 
|  | * the result so that we'll get a timer that is monotonic. | 
|  | */ | 
|  | if (res >= USECS_PER_JIFFY) | 
|  | res = USECS_PER_JIFFY - 1; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Cached "1/(clocks per usec) * 2^32" value. | 
|  | * It has to be recalculated once each jiffy. | 
|  | */ | 
|  | static unsigned long cached_quotient; | 
|  |  | 
|  | /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ | 
|  | static unsigned long last_jiffies; | 
|  |  | 
|  | /* | 
|  | * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. | 
|  | */ | 
|  | static unsigned long calibrate_div32_gettimeoffset(void) | 
|  | { | 
|  | u32 count; | 
|  | unsigned long res, tmp; | 
|  | unsigned long quotient; | 
|  |  | 
|  | tmp = jiffies; | 
|  |  | 
|  | quotient = cached_quotient; | 
|  |  | 
|  | if (last_jiffies != tmp) { | 
|  | last_jiffies = tmp; | 
|  | if (last_jiffies != 0) { | 
|  | unsigned long r0; | 
|  | do_div64_32(r0, timerhi, timerlo, tmp); | 
|  | do_div64_32(quotient, USECS_PER_JIFFY, | 
|  | USECS_PER_JIFFY_FRAC, r0); | 
|  | cached_quotient = quotient; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get last timer tick in absolute kernel time */ | 
|  | count = mips_hpt_read(); | 
|  |  | 
|  | /* .. relative to previous jiffy (32 bits is enough) */ | 
|  | count -= timerlo; | 
|  |  | 
|  | __asm__("multu  %1,%2" | 
|  | : "=h" (res) | 
|  | : "r" (count), "r" (quotient) | 
|  | : "lo", GCC_REG_ACCUM); | 
|  |  | 
|  | /* | 
|  | * Due to possible jiffies inconsistencies, we need to check | 
|  | * the result so that we'll get a timer that is monotonic. | 
|  | */ | 
|  | if (res >= USECS_PER_JIFFY) | 
|  | res = USECS_PER_JIFFY - 1; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static unsigned long calibrate_div64_gettimeoffset(void) | 
|  | { | 
|  | u32 count; | 
|  | unsigned long res, tmp; | 
|  | unsigned long quotient; | 
|  |  | 
|  | tmp = jiffies; | 
|  |  | 
|  | quotient = cached_quotient; | 
|  |  | 
|  | if (last_jiffies != tmp) { | 
|  | last_jiffies = tmp; | 
|  | if (last_jiffies) { | 
|  | unsigned long r0; | 
|  | __asm__(".set	push\n\t" | 
|  | ".set	mips3\n\t" | 
|  | "lwu	%0,%3\n\t" | 
|  | "dsll32	%1,%2,0\n\t" | 
|  | "or	%1,%1,%0\n\t" | 
|  | "ddivu	$0,%1,%4\n\t" | 
|  | "mflo	%1\n\t" | 
|  | "dsll32	%0,%5,0\n\t" | 
|  | "or	%0,%0,%6\n\t" | 
|  | "ddivu	$0,%0,%1\n\t" | 
|  | "mflo	%0\n\t" | 
|  | ".set	pop" | 
|  | : "=&r" (quotient), "=&r" (r0) | 
|  | : "r" (timerhi), "m" (timerlo), | 
|  | "r" (tmp), "r" (USECS_PER_JIFFY), | 
|  | "r" (USECS_PER_JIFFY_FRAC) | 
|  | : "hi", "lo", GCC_REG_ACCUM); | 
|  | cached_quotient = quotient; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get last timer tick in absolute kernel time */ | 
|  | count = mips_hpt_read(); | 
|  |  | 
|  | /* .. relative to previous jiffy (32 bits is enough) */ | 
|  | count -= timerlo; | 
|  |  | 
|  | __asm__("multu	%1,%2" | 
|  | : "=h" (res) | 
|  | : "r" (count), "r" (quotient) | 
|  | : "lo", GCC_REG_ACCUM); | 
|  |  | 
|  | /* | 
|  | * Due to possible jiffies inconsistencies, we need to check | 
|  | * the result so that we'll get a timer that is monotonic. | 
|  | */ | 
|  | if (res >= USECS_PER_JIFFY) | 
|  | res = USECS_PER_JIFFY - 1; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* last time when xtime and rtc are sync'ed up */ | 
|  | static long last_rtc_update; | 
|  |  | 
|  | /* | 
|  | * local_timer_interrupt() does profiling and process accounting | 
|  | * on a per-CPU basis. | 
|  | * | 
|  | * In UP mode, it is invoked from the (global) timer_interrupt. | 
|  | * | 
|  | * In SMP mode, it might invoked by per-CPU timer interrupt, or | 
|  | * a broadcasted inter-processor interrupt which itself is triggered | 
|  | * by the global timer interrupt. | 
|  | */ | 
|  | void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | if (current->pid) | 
|  | profile_tick(CPU_PROFILING, regs); | 
|  | update_process_times(user_mode(regs)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * High-level timer interrupt service routines.  This function | 
|  | * is set as irqaction->handler and is invoked through do_IRQ. | 
|  | */ | 
|  | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long j; | 
|  | unsigned int count; | 
|  |  | 
|  | count = mips_hpt_read(); | 
|  | mips_timer_ack(); | 
|  |  | 
|  | /* Update timerhi/timerlo for intra-jiffy calibration. */ | 
|  | timerhi += count < timerlo;			/* Wrap around */ | 
|  | timerlo = count; | 
|  |  | 
|  | /* | 
|  | * call the generic timer interrupt handling | 
|  | */ | 
|  | do_timer(regs); | 
|  |  | 
|  | /* | 
|  | * If we have an externally synchronized Linux clock, then update | 
|  | * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be | 
|  | * called as close as possible to 500 ms before the new second starts. | 
|  | */ | 
|  | write_seqlock(&xtime_lock); | 
|  | if ((time_status & STA_UNSYNC) == 0 && | 
|  | xtime.tv_sec > last_rtc_update + 660 && | 
|  | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | 
|  | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
|  | if (rtc_set_mmss(xtime.tv_sec) == 0) { | 
|  | last_rtc_update = xtime.tv_sec; | 
|  | } else { | 
|  | /* do it again in 60 s */ | 
|  | last_rtc_update = xtime.tv_sec - 600; | 
|  | } | 
|  | } | 
|  | write_sequnlock(&xtime_lock); | 
|  |  | 
|  | /* | 
|  | * If jiffies has overflown in this timer_interrupt, we must | 
|  | * update the timer[hi]/[lo] to make fast gettimeoffset funcs | 
|  | * quotient calc still valid. -arca | 
|  | * | 
|  | * The first timer interrupt comes late as interrupts are | 
|  | * enabled long after timers are initialized.  Therefore the | 
|  | * high precision timer is fast, leading to wrong gettimeoffset() | 
|  | * calculations.  We deal with it by setting it based on the | 
|  | * number of its ticks between the second and the third interrupt. | 
|  | * That is still somewhat imprecise, but it's a good estimate. | 
|  | * --macro | 
|  | */ | 
|  | j = jiffies; | 
|  | if (j < 4) { | 
|  | static unsigned int prev_count; | 
|  | static int hpt_initialized; | 
|  |  | 
|  | switch (j) { | 
|  | case 0: | 
|  | timerhi = timerlo = 0; | 
|  | mips_hpt_init(count); | 
|  | break; | 
|  | case 2: | 
|  | prev_count = count; | 
|  | break; | 
|  | case 3: | 
|  | if (!hpt_initialized) { | 
|  | unsigned int c3 = 3 * (count - prev_count); | 
|  |  | 
|  | timerhi = 0; | 
|  | timerlo = c3; | 
|  | mips_hpt_init(count - c3); | 
|  | hpt_initialized = 1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In UP mode, we call local_timer_interrupt() to do profiling | 
|  | * and process accouting. | 
|  | * | 
|  | * In SMP mode, local_timer_interrupt() is invoked by appropriate | 
|  | * low-level local timer interrupt handler. | 
|  | */ | 
|  | local_timer_interrupt(irq, dev_id, regs); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) | 
|  | { | 
|  | irq_enter(); | 
|  | kstat_this_cpu.irqs[irq]++; | 
|  |  | 
|  | /* we keep interrupt disabled all the time */ | 
|  | timer_interrupt(irq, NULL, regs); | 
|  |  | 
|  | irq_exit(); | 
|  | } | 
|  |  | 
|  | asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) | 
|  | { | 
|  | irq_enter(); | 
|  | if (smp_processor_id() != 0) | 
|  | kstat_this_cpu.irqs[irq]++; | 
|  |  | 
|  | /* we keep interrupt disabled all the time */ | 
|  | local_timer_interrupt(irq, NULL, regs); | 
|  |  | 
|  | irq_exit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * time_init() - it does the following things. | 
|  | * | 
|  | * 1) board_time_init() - | 
|  | * 	a) (optional) set up RTC routines, | 
|  | *      b) (optional) calibrate and set the mips_hpt_frequency | 
|  | *	    (only needed if you intended to use fixed_rate_gettimeoffset | 
|  | *	     or use cpu counter as timer interrupt source) | 
|  | * 2) setup xtime based on rtc_get_time(). | 
|  | * 3) choose a appropriate gettimeoffset routine. | 
|  | * 4) calculate a couple of cached variables for later usage | 
|  | * 5) board_timer_setup() - | 
|  | *	a) (optional) over-write any choices made above by time_init(). | 
|  | *	b) machine specific code should setup the timer irqaction. | 
|  | *	c) enable the timer interrupt | 
|  | */ | 
|  |  | 
|  | void (*board_time_init)(void); | 
|  | void (*board_timer_setup)(struct irqaction *irq); | 
|  |  | 
|  | unsigned int mips_hpt_frequency; | 
|  |  | 
|  | static struct irqaction timer_irqaction = { | 
|  | .handler = timer_interrupt, | 
|  | .flags = SA_INTERRUPT, | 
|  | .name = "timer", | 
|  | }; | 
|  |  | 
|  | static unsigned int __init calibrate_hpt(void) | 
|  | { | 
|  | u64 frequency; | 
|  | u32 hpt_start, hpt_end, hpt_count, hz; | 
|  |  | 
|  | const int loops = HZ / 10; | 
|  | int log_2_loops = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We want to calibrate for 0.1s, but to avoid a 64-bit | 
|  | * division we round the number of loops up to the nearest | 
|  | * power of 2. | 
|  | */ | 
|  | while (loops > 1 << log_2_loops) | 
|  | log_2_loops++; | 
|  | i = 1 << log_2_loops; | 
|  |  | 
|  | /* | 
|  | * Wait for a rising edge of the timer interrupt. | 
|  | */ | 
|  | while (mips_timer_state()); | 
|  | while (!mips_timer_state()); | 
|  |  | 
|  | /* | 
|  | * Now see how many high precision timer ticks happen | 
|  | * during the calculated number of periods between timer | 
|  | * interrupts. | 
|  | */ | 
|  | hpt_start = mips_hpt_read(); | 
|  | do { | 
|  | while (mips_timer_state()); | 
|  | while (!mips_timer_state()); | 
|  | } while (--i); | 
|  | hpt_end = mips_hpt_read(); | 
|  |  | 
|  | hpt_count = hpt_end - hpt_start; | 
|  | hz = HZ; | 
|  | frequency = (u64)hpt_count * (u64)hz; | 
|  |  | 
|  | return frequency >> log_2_loops; | 
|  | } | 
|  |  | 
|  | void __init time_init(void) | 
|  | { | 
|  | if (board_time_init) | 
|  | board_time_init(); | 
|  |  | 
|  | if (!rtc_set_mmss) | 
|  | rtc_set_mmss = rtc_set_time; | 
|  |  | 
|  | xtime.tv_sec = rtc_get_time(); | 
|  | xtime.tv_nsec = 0; | 
|  |  | 
|  | set_normalized_timespec(&wall_to_monotonic, | 
|  | -xtime.tv_sec, -xtime.tv_nsec); | 
|  |  | 
|  | /* Choose appropriate high precision timer routines.  */ | 
|  | if (!cpu_has_counter && !mips_hpt_read) { | 
|  | /* No high precision timer -- sorry.  */ | 
|  | mips_hpt_read = null_hpt_read; | 
|  | mips_hpt_init = null_hpt_init; | 
|  | } else if (!mips_hpt_frequency && !mips_timer_state) { | 
|  | /* A high precision timer of unknown frequency.  */ | 
|  | if (!mips_hpt_read) { | 
|  | /* No external high precision timer -- use R4k.  */ | 
|  | mips_hpt_read = c0_hpt_read; | 
|  | mips_hpt_init = c0_hpt_init; | 
|  | } | 
|  |  | 
|  | if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || | 
|  | (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || | 
|  | (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) | 
|  | /* | 
|  | * We need to calibrate the counter but we don't have | 
|  | * 64-bit division. | 
|  | */ | 
|  | do_gettimeoffset = calibrate_div32_gettimeoffset; | 
|  | else | 
|  | /* | 
|  | * We need to calibrate the counter but we *do* have | 
|  | * 64-bit division. | 
|  | */ | 
|  | do_gettimeoffset = calibrate_div64_gettimeoffset; | 
|  | } else { | 
|  | /* We know counter frequency.  Or we can get it.  */ | 
|  | if (!mips_hpt_read) { | 
|  | /* No external high precision timer -- use R4k.  */ | 
|  | mips_hpt_read = c0_hpt_read; | 
|  |  | 
|  | if (mips_timer_state) | 
|  | mips_hpt_init = c0_hpt_init; | 
|  | else { | 
|  | /* No external timer interrupt -- use R4k.  */ | 
|  | mips_hpt_init = c0_hpt_timer_init; | 
|  | mips_timer_ack = c0_timer_ack; | 
|  | } | 
|  | } | 
|  | if (!mips_hpt_frequency) | 
|  | mips_hpt_frequency = calibrate_hpt(); | 
|  |  | 
|  | do_gettimeoffset = fixed_rate_gettimeoffset; | 
|  |  | 
|  | /* Calculate cache parameters.  */ | 
|  | cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; | 
|  |  | 
|  | /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */ | 
|  | do_div64_32(sll32_usecs_per_cycle, | 
|  | 1000000, mips_hpt_frequency / 2, | 
|  | mips_hpt_frequency); | 
|  |  | 
|  | /* Report the high precision timer rate for a reference.  */ | 
|  | printk("Using %u.%03u MHz high precision timer.\n", | 
|  | ((mips_hpt_frequency + 500) / 1000) / 1000, | 
|  | ((mips_hpt_frequency + 500) / 1000) % 1000); | 
|  | } | 
|  |  | 
|  | if (!mips_timer_ack) | 
|  | /* No timer interrupt ack (e.g. i8254).  */ | 
|  | mips_timer_ack = null_timer_ack; | 
|  |  | 
|  | /* This sets up the high precision timer for the first interrupt.  */ | 
|  | mips_hpt_init(mips_hpt_read()); | 
|  |  | 
|  | /* | 
|  | * Call board specific timer interrupt setup. | 
|  | * | 
|  | * this pointer must be setup in machine setup routine. | 
|  | * | 
|  | * Even if a machine chooses to use a low-level timer interrupt, | 
|  | * it still needs to setup the timer_irqaction. | 
|  | * In that case, it might be better to set timer_irqaction.handler | 
|  | * to be NULL function so that we are sure the high-level code | 
|  | * is not invoked accidentally. | 
|  | */ | 
|  | board_timer_setup(&timer_irqaction); | 
|  | } | 
|  |  | 
|  | #define FEBRUARY		2 | 
|  | #define STARTOFTIME		1970 | 
|  | #define SECDAY			86400L | 
|  | #define SECYR			(SECDAY * 365) | 
|  | #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400)) | 
|  | #define days_in_year(y)		(leapyear(y) ? 366 : 365) | 
|  | #define days_in_month(m)	(month_days[(m) - 1]) | 
|  |  | 
|  | static int month_days[12] = { | 
|  | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
|  | }; | 
|  |  | 
|  | void to_tm(unsigned long tim, struct rtc_time *tm) | 
|  | { | 
|  | long hms, day, gday; | 
|  | int i; | 
|  |  | 
|  | gday = day = tim / SECDAY; | 
|  | hms = tim % SECDAY; | 
|  |  | 
|  | /* Hours, minutes, seconds are easy */ | 
|  | tm->tm_hour = hms / 3600; | 
|  | tm->tm_min = (hms % 3600) / 60; | 
|  | tm->tm_sec = (hms % 3600) % 60; | 
|  |  | 
|  | /* Number of years in days */ | 
|  | for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
|  | day -= days_in_year(i); | 
|  | tm->tm_year = i; | 
|  |  | 
|  | /* Number of months in days left */ | 
|  | if (leapyear(tm->tm_year)) | 
|  | days_in_month(FEBRUARY) = 29; | 
|  | for (i = 1; day >= days_in_month(i); i++) | 
|  | day -= days_in_month(i); | 
|  | days_in_month(FEBRUARY) = 28; | 
|  | tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */ | 
|  |  | 
|  | /* Days are what is left over (+1) from all that. */ | 
|  | tm->tm_mday = day + 1; | 
|  |  | 
|  | /* | 
|  | * Determine the day of week | 
|  | */ | 
|  | tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */ | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(rtc_lock); | 
|  | EXPORT_SYMBOL(to_tm); | 
|  | EXPORT_SYMBOL(rtc_set_time); | 
|  | EXPORT_SYMBOL(rtc_get_time); | 
|  |  | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | return (unsigned long long)jiffies*(1000000000/HZ); | 
|  | } |